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ISOPERIMETRIC CURVES ON HYPERBOLIC SURFACES

COLIN ADAMS AND FRANK MORGAN

(Communicated by Christopher B. Croke)

Abstract. Least-perimeter enclosures of prescribed area on hyperbolic sur-
faces are characterized.

1. Introduction

The isoperimetric problem of identifying the least-perimeter enclosure of given
area A (henceforth called a minimizer) is solved only for a few Riemannian surfaces:
the Euclidean plane, a round sphere, a round projective plane, the hyperbolic plane,
a circular cone, a circular cylinder, a flat torus or Klein bottle, and recently a general
surface of revolution with decreasing Gauss curvature (see the survey [HHM]). For
most Riemannian surfaces the isoperimetric problem remains open.

In this paper, we will investigate the isoperimetric problem on hyperbolic sur-
faces. Theorem 2.2 shows that least-perimeter enclosures of prescribed area A are
of four types (corresponding to the types of constant-curvature curves in hyperbolic
space):

(1) circles,
(2) horocycles around cusps,
(3) boundaries of annular neighborhoods of geodesics, and
(4) collections of “neighboring curves” of geodesics.
If the surface has at least one puncture (cusp), then types (1) and (3) do not

occur and the least perimeter L ≤ A; if moreover A < π, then a minimizer is
of type (2). The proof turns out to use little more than existence and regularity
theory, the Gauss-Bonnet Theorem, and simple area formulas (see, e.g. Lemma
2.3). Elementary estimates then show for example that if one component of an
isoperimetric region is an annulus, then it is the only component. One needs to
check that certain types of candidates remain embedded.

Complete solutions to the isoperimetric problem on the once-punctured torus
and the thrice-punctured sphere follow immediately. Proposition 2.4 deduces a
complete solution for the four-punctured sphere.

Section 3 considers genus two surfaces without punctures and shows that there
are choices of metrics for which pairs of pants and tori with boundary can and
cannot occur as minimizers. In particular, the “maximal” genus two surface has
only discs, annuli, and their complements as minimizers.
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Section 4 provides an algorithm to find a minimizer of prescribed area on a
hyperbolic surface.

Section 5 considers higher dimensions and shows that cusp neighborhoods remain
minimizing for small prescribed volumes.

We assume that all of our hyperbolic surfaces are connected and geometrically
finite. Such surfaces may be compact or have finitely many ends: cusps (with
exponentially shrinking thickness and finite area) or flared ends (asymptotic to the
hyperbolic plane).

We would like to thank Hugh Howards for helpful conversations. This work was
partially supported by National Science Foundation grants.

2. Least-perimeter enclosures in hyperbolic surfaces

The existence and regularity of least-perimeter enclosures (Lemma 2.1) follows
from [HM] and plays an important role in our characterization of minimizers in
Theorem 2.2.

2.1. Lemma (Existence and regularity). In a (geometrically finite) hyperbolic sur-
face, there exists a perimeter minimizer among regions of prescribed area bounded
by embedded rectifiable curves. It consists of curves of equal constant curvature.

Proof. Suppose for some minimizing sequence, all of k components, some compo-
nent goes off to infinity. If it goes out a cusp, the enclosed area goes to 0, and it
may be discarded. It it goes out a flared end, it can be translated back inside a
fixed compact region. Hence the results of [HM, §3], stated for compact surfaces,
apply and provide the asserted existence and regularity.

The following characterization of minimizers is the main result of this paper.

2.2. Theorem. Let S be a hyperbolic surface. For given area 0 < A < area(S), a
perimeter-minimizing system of embedded rectifiable curves bounding a region R of
area A consists of a set of curves of one of the following four types (and all curves
in the set have the same constant curvature):

(1) a circle,
(2) horocycles around cusps,
(3) two “neighboring curves” at constant distance from a geodesic, bounding an

annulus or complement,
(4) geodesics or single “neighboring curves.”
The total perimeter L of a minimizer of area A satisfies

L ≤
√

A2 + 4πA,(∗)
where equality holds precisely for a circle bounding a disc. If S has at least one
cusp, then cases (1) and (3) do not occur and L ≤ A, with equality precisely for
horocycles ; if moreover A < π, then a minimizer consists of neighborhoods of an
arbitrary collection of cusps bounded by horocycles, of total length A.

Proof. By Lemma 2.1, a minimizer exists and consists of curves of constant curva-
ture κ. Lifting to the Poincaré disc model for H2, a geodesic (κ = 0) is a diameter
or a Euclidean circular arc normal to the boundary. Any other constant-curvature
curve is determined by a choice of base point, a unit normal direction, and a pos-
itive curvature |κ|. Up to an isometry of H2, the base point can be chosen at
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the origin and the unit normal direction along the positive x-axis. Any positive-
constant-curvature curve through this base point with this normal vector comes as
the portion inside the unit disc of a Euclidean circle C centered on the positive
x-axis and passing through the origin. If C lies within the open disc, it has |κ| > 1
and projects to a circle bounding a disc. If C is tangent to the unit circle, it is a
horocycle with |κ| = 1. Otherwise C has |κ| < 1 and it is one of the two boundaries
of a neighborhood of fixed hyperbolic radius about the geodesic with endpoints at
the two points where C intersects the unit circle.

A minimizer cannot have more than one circle, since sliding one until it hits
another (or itself) would contradict regularity. For a circle, by Gauss-Bonnet,
Lκ = 2π + A. Therefore dL/dA = κ = (2π + A)/L. Integrating from 0 to A yields
L2 = A2 + 4πA. For other types of boundary curves, dL/dA = κ is less than it is
for a circle. Therefore L ≤ √

A2 + 4πA always holds, with equality precisely for a
circle. Moreover, there is an A0 ≥ 0 such that if A < A0, the minimizer is a circle,
while if A > A0, it is not a circle and (for ∆A > 0)

∆L/∆A < 1.(∗∗)
Suppose a minimizer properly includes both neighboring curves of some geodesic

and the annulus between them. Let L1 denote their total length and let A1 denote
the area of the annulus. Let L2 denote the rest of the perimeter and A2 the rest of
the area. If A1 < A0 and A2 < A0, then

L(A1 + A2) = L1 + L2 ≥
√

A2
1 + 4πA1 +

√
A2

2 + 4πA2

>
√

(A1 + A2)2 + 4π(A1 + A2),

a contradiction of (∗). If A2 ≥ A0, then by (∗∗)
L(A1 + A2) ≤ L(A2) + A1 < L2 + L1

by Lemma 2.3 below, a contradiction. Similarly if A2 < A0 but A1 ≥ A0, then

L(A1 + A2) ≤ L1 + A2 < L1 + L2,

the same contradiction.
Similarly suppose a minimizer properly includes both neighboring curves of some

geodesic but not the annulus between them. If the hyperbolic surface has finite area,
taking complements reproduces the previous contradiction. Otherwise a minimizer
is never the complement of a circle, and for ∆A > 0, ∆L/∆A > −1. Therefore

L(A) ≤ L(A1 + A2) + A1 < L2 + L1 = L,

a contradiction. Therefore the minimizer must be of one of the four asserted types.
Henceforth assume S has a cusp. Type (1) curves cannot occur, because sliding

the circle out the cusp until it hits itself would contradict regularity. Hence the
minimizer always has |κ| ≤ 1, and always satisfies L(A) ≤ A. In particular, by
Lemma 2.3, annuli cannot occur. Therefore complements of annuli cannot occur.

Finally assume A < π. We claim there is no minimizer with −1 ≤ κ < 1 and
length L ≤ A, so −A + κL < 0. Otherwise, applying Gauss-Bonnet to the enclosed
region yields

2πχ = −A + κL < 0,

χ ≤ −1, −A + κL ≤ −2π, κL ≤ −π, κ < 0, L ≥ π > A, a contradiction.
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The remaining possibilities, systems of curves with κ = 1, consist of horocycles
bounding cusp neighborhoods.

Since κ = 1, as we slide a horocycle out a cusp, dL/dA = 1, and therefore
its length equals the area of the cusp neighborhood. By the previous claim, such
systems remain minimizing as long as they exist, either for all A < π or until they
bump up against themselves at some A1 < π. But if one bumps, by regularity the
minimizer has perimeter less than A1, contradicting the claim.

Remark. The final hypothesis A < π is sharp. A once-punctured torus or a thrice-
punctured sphere (with three cusps) has area 2π, and a least-perimeter region of
area π consists of cusp neighborhoods or their complement, by the theorem.

Given A > π, there is a hyperbolic sphere with four punctures (four cusps) for
which the two minimizers are of type (4), as can be seen from consideration of the
limiting case of two thrice-punctured spheres with one shared puncture point.

Embedded cusp neighborhoods. Theorem 2.2 implies that any cusp has an embedded
neighborhood of area greater than π bounded by a horocycle. Adams [A] has shown
any cusp must have an embedded neighborhood of area at least 4 bounded by a
horocycle.

The following useful lemma provides simple formulas for candidate least perime-
ters, given the length of the underlying geodesics.

2.3. Lemma. Consider a neighboring curve of length L and curvature κ at dis-
tance s from a geodesic of length `, enclosing area A. Then

L2 = A2 + `2,

A = `sinh s, L = `cosh s, and κ = tanh s. For an annular region, the perimeter
L satisfies L2 = A2 + 4`2. For a region bounded by single neighboring curves (of
type 2.2 (4)) about geodesics of total length `, L2 = ∆A2 + `2, where ∆A is the
difference from the area of the region bounded by the geodesics.

Proof. By Gauss-Bonnet, the curvature κ satisfies Lκ−A = 0. Therefore

dL/dA = κ = A/L.

Integrating from 0 to A yields

L2 = A2 + `2.

Hence for some parameter s, A = `sinh s, L = `cosh s, and κ = tanh s. Since
dA/ds = L, s is distance from the geodesic. The remaining formulas follow imme-
diately.

We give another example.

2.4. Proposition. On a hyperbolic 4-punctured sphere S (of area 4π) with systole
` (shortest simple closed geodesic length), the least-perimeter enclosure of areaA is

(1) horocycles around cusps for 0 < A ≤ π + `2/4π or 3π− `2/4π ≤ A < areaS,
(2) a neighboring curve for π + `2/4π ≤ A ≤ 3π − `2/4π.

Proof. By Gauss-Bonnet, the area of S is 4π and every closed simple geodesic must
enclose half the cusps and half the area. The division of cases follows from Lemma
2.3. We just need to show that the neighboring curve of the geodesic remains



ISOPERIMETRIC CURVES ON HYPERBOLIC SURFACES 1351

embedded from ∆A = 0 to ∆A = π − `2/4π. If not, when it first bumped up
against itself, by regularity it could not be minimizing, but there are no other
possibilities in this range.

Remark. The preceding argument may not work for every hyperbolic surface be-
cause nonembedded curves bounding overlapping regions can be shorter than the
shortest embedded curve. For example, on a high-genus, multiply-cusped hyper-
bolic surface with two cusps bounded by a short geodesic g, a double cover of g
bounding the cusps with multiplicity two could be shorter than any embedded curve
bounding a region of the same area.

3. The compact genus two surface

We will examine in more detail the possible types of minimizers one can obtain
for the genus two surface. A typical metric might have minimizers of various types,
as suggested by Figure 3.0. Of course small minimizers are circles, but not all min-
imizers are circles, because an annulus about the shortest simple closed geodesic
of length `, of width `, beats a circle of the same area (no matter what ` is, by
Lemma 2.3, more generally on any nontrivial unpunctured surface). Theorem 3.1
shows that for one “maximal” metric with long separating curves, the minimizers
are all circles or boundaries of annuli. Perhaps other metrics, with a short, mini-
mizing separating curve, have no annular minimizers (a separating systole greater
than 2π

√
7, if possible, would suffice to make circles and separating curves beat

annular candidates). For some metrics pairs of pants occur, as can be seen by con-
sidering the limiting case of two thrice-punctured spheres, glued together at each
of the three punctures. In any case, given the lengths of the underlying geodesics,
Lemma 2.3 shows that all candidate perimeters as functions of area are hyperbolas
asymptotic to lines of slope ±1 (or for horocycles such lines themselves); see Figure
3.0.

L

LC

LA
LS

A

LÁ

LC´

0 area(S)

Figure 3.0. A speculative graph of least perimeter L as a function
of prescribed area A for a compact genus two surface. By Lemma
2.3, the candidate perimeters, here circles of length LC , boundaries
of annuli of length LA, and separating curves of length LS , are
hyperbolas asymptotic to lines of slope ±1.
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Figure 3.1. The fundamental domain of the maximal surface of
genus two is an octagon with interior angles π/4 and opposite sides,
all of length 3.057 . . . , identified.

3.1. Theorem. There exists a “maximal” hyperbolic metric on the genus two sur-
face such that all minimizers are a disc, an annulus, or the complement of a disc
or annulus.

Proof. The systole of a hyperbolic metric on a surface is defined to be a shortest
closed simple geodesic. P. Schmutz [S, Thms. 5.2, 5.3] gives a proof of the previously
known fact that the length of a systole for any choice of hyperbolic metric on the
compact genus two surface is bounded above by ` = 2arccosh(1 +

√
2) = 3.057 . . .

and then shows there is a unique surface realizing this systole length, called the
maximal surface. This surface contains 12 systoles which together cut the surface
into 16 equilateral triangles with angles π/4. The standard fundamental domain
is the regular octagon of Figure 3.1, with all angles π/4, and opposite sides, all of
length 3.057 . . . , identified.

Since any annulus minimizer has core geodesic of length at least `, 2.2(∗) and
Lemma 2.3 imply that the circle beats the annulus for A < `2/π. For `2/π < A <

2π, the length of the boundary of the annulus increases to 2
√

π2 + `2 = 8.767 . . . .
Over this range of areas, the only possible competitors are a pair of pants or a
nontrivial separating curve. A pair of pants has boundary length at least as large
as the sum of the lengths of three geodesics, which is at least 3(3.057 . . . ). By
Lemma 3.2 below, a separating geodesic must have length at least 9.027 . . . . Since
the annulus beats both of these, by regularity, it must remain embedded over this
entire range of areas. For 2π < A < 4π, the complement of the annulus and of the
disc become the minimizers.

3.2. Lemma. A separating geodesic on the maximal genus two surface has length
at least 9.027 . . . .

Proof. In the standard fundamental domain of Figure 3.1, the geodesic made up of
four arcs, each connecting a distinct pair of edges that are separated by one edge
on the boundary of the domain and each intersecting the boundary of the domain
perpendicularly, has length 9.027. . . . Suppose that there exists a shorter separating
geodesic. Realize it as a set of arcs properly embedded in the standard fundamental
domain. We can assume that the arcs miss the vertices of the fundamental domain
by choosing, if necessary, a different one of the six points where the systoles of the
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Figure 3.2. This pattern cannot occur for a geodesic.

surface intersect in fours to correspond to the vertices of the domain. (A separating
geodesic of length less than 9.027. . . cannot intersect all six of the intersection
points.)

If an arc cuts a triangle off the fundamental domain, call it a corner arc, and oth-
erwise call it a long arc. First note that a long arc cuts off a component containing
two proper subarcs of boundary edges and one, two, or three entire boundary edges.
The shortest long arc cutting off one entire boundary edge is perpendicular to the
boundary arcs at its endpoints and cuts a quadrilateral from the octagon. Bisecting
the quadrilateral with an arc perpendicular to the long arc cuts the quadrilateral
into two Lambert quadrilaterals (see §3.3), from which one can compute that the
long arc has length at least 2.2567. . . . Four copies of a long arc realizing this lower
bound give the separating geodesic of length 9.027. . . . The shortest possible long
arc cutting off two entire boundary edges cuts a pentagon from the octagon with
three adjacent π/4 angles and two right angles. Adding a geodesic arc connecting
the two nonadjacent vertices with π/4 angles cuts an isosceles triangle off the pen-
tagon. Hyperbolic trigonometry determines its edge lengths and angles. Bisecting
the remaining quadrilateral by an arc that is perpendicular to the long arc and
the new arc yields Lambert quadrilaterals from which the length of the long arc
can be seen to be 2.881 . . . . The shortest possible long arc cutting off three entire
boundary edges must pass through the center of the octagon and is a systole of
length 3.057 . . . .

Thus, our geodesic separator can contain at most three long arcs. Moreover, it
can pass through at most three consecutive corner arcs, as can be seen by noting
that more than three corner arcs would span an angle of more than π around their
common vertex in the universal cover, making it impossible for a geodesic to pass
through them all. In the fundamental domain this rules out a separating geodesic
which includes the pattern of corner arcs of Figure 3.2.

The cases of one long arc and three long arcs can be eliminated using the fact
that each boundary edge must be separated from its opposite by an even number
of arcs. Listing all of the possibilities for combinatorial patterns with two long arcs
that satisfy the restrictions yields just two cases, as appear in Figure 3.3.

For the first such pattern, if the fundamental domain is decomposed into sixteen
equilateral triangles all with angles π/4, by chopping the domain open along arcs
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Figure 3.3. There are two possible patterns for shortest separat-
ing geodesics with two long arcs.

connecting the midpoints of opposite edges and arcs connecting the midpoints of
adjacent edges, this geodesic is realized by a set of isometric geodesic segments, each
of which cuts across one of sixteen of the triangles. Each segment has endpoints
on two of the three edges of a given triangle, intersecting one edge perpendicularly
and intersecting the other edge at its midpoint. Each such segment has length
1.5537 . . . , and the geodesic realizing this pattern has a length of 24.86 . . . .

In the decomposition of the fundamental domain into equilateral triangles, the
geodesic corresponding to the second combinatorial pattern is realized by a set of
isometric geodesic segments, each of which cuts across one of twelve of the triangles.
Each segment has endpoints on two of the three edges of one of the triangles and its
endpoints bisect each edge. This forces the length of each segment to be 1+

√
2, and

the corresponding geodesic has a length of 12(1+
√

2), again longer than 9.027 . . . .

3.3. Lambert quadrilaterals. A Lambert (geodesic) quadrilateral has three right
angles and one other angle ϕ. If the two edges adjacent to the angle ϕ have lengths
b1, b2 and the opposite edges have lengths a1 and a2 respectively, then the following
two formulas hold:

sinh(a1) sinh(a2) = cosϕ,

cosh(a1) = cosh(b1) sin ϕ.

4. An algorithm for finding minimizers

Theorem 4.1 provides an algorithm for finding minimizers on a hyperbolic sur-
face.

4.1. Theorem. Given a hyperbolic metric on a surface S and an area 0 < A <
area(S) ≤ ∞, the following algorithm finds all least-perimeter regions of area A.

(1) Determine all embedded geodesics of length less than
√

A2 + 4πA (see Re-
mark below). By Theorem 2.2, the only possibilities for a least-perimeter region are
discs, neighborhoods of cusps (all of total length A), annular neighborhoods of such
geodesics, a region bounded by neighboring curves of three or more such geodesics,
or complements. (In the cusped case, you may use A for the upper bound on the
length of the geodesics and exclude discs and annuli.)
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(2) Compute the perimeter for each possibility and order them from smallest
perimeter to largest. (Given the lengths of underlying geodesics, such computations
are easy, as shown by Lemma 2.3; cf. Figure 3.0.) The solution will be the first
embedded possibility. (We do not know whether the shortest possibility is embedded
in general.)

(3) If the least-perimeter region is a disc or cusp neighborhood, it is automati-
cally embedded and a solution. If not, first use Lemma 2.3 to compute the common
distance s from each geodesic to its neighboring curve. Second determine the short-
est perpendicular length between any pair of geodesics or between any geodesic and
itself. If this length is greater than 2s, the region is embedded and a solution. Oth-
erwise move on to the next region on the list.

Remark. Step (1) in the algorithm can be realized computationally as follows.
Starting with a fundamental domain for the surface in the hyperbolic plane, tile the
hyperbolic plane with copies of the domain to cover a neighborhood of the original
domain of radius

√
A2 + 4πA. Any closed geodesic in the surface of length less than√

A2 + 4πA must lift to a geodesic segment in H2 which intersects the initial tile
and which is therefore contained in this neighborhood. Hence all such geodesics
must lift to axes of hyperbolic isometries that are products of generating isometries
that glue edges to edges in this set of tiles. If the surface has punctures or flared
ends, one cannot tile such a neighborhood with a finite number of tiles. However, if
one tiles to cover a neighborhood of radius

√
A2 + 4πA about the original domain

minus the lifts of a disjoint set of flared ends and cusps, all closed geodesics of
length less than

√
A2 + 4πA will lift to geodesic segments in this neighborhood.

Proof of Theorem 4.1. The theorem follows immediately from the characterization
of minimizers of Theorem 2.2. In step (3), a disc, if the shortest possibility, is
the minimizer by 2.2(∗) and hence embedded by regularity; similarly for a cusp
neighborhood in a cusped surface.

5. Higher dimensions

In n-dimensional hyperbolic manifolds M , least-perimeter enclosures of pre-
scribed volume exist by the methods of geometric measure theory (at least if the
volume is finite so that no volume disappears to infinity in the limit) and are
smooth constant-mean-curvature hypersurfaces except for a singular set of Haus-
dorff dimension at most n− 8 [M, pp. 66, 90, 87; cf. pp. 128–131].

The following theorem shows that in cusped manifolds, cusp neighborhoods re-
main minimizing for small volumes.

5.1. Theorem. Let M be a cusped n-dimensional hyperbolic manifold of finite
volume. For some ε > 0, the least-perimeter enclosure of a region of volume V ≤ ε
is an arbitrary collection of horosurfaces around cusps, of total area A = (n− 1)V .

Proof. Since horosurfaces around cusps have mean curvature H = n−1, as you slide
a horosurface out a cusp dA/dV = n− 1, so A = (n− 1)V . For a constant-mean-
curvature hypersurface with H ≤ n − 1, through any point where the embedding
radius of M is bounded below, the area is bounded below (by “monotonicity” [M,
pp. 90–91]). Hence we can choose ε > 0 so that any minimizer with V ≤ ε and
|H | ≤ n− 1 must lie deep in the cusps.

Suppose for some 0 < V ≤ ε there is a minimizer S other than cusp neighbor-
hoods. Choose such to maximize (n − 1)V − A. Then H = n − 1, or varying V
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slightly would increase (n − 1)V − A. Therefore S lies deep in the cusps. Now
moving horosurfaces down the cusps until first contact with S contradicts the max-
imum principle. (At a point on S of first contact the tangent cone to S must be a
plane and S must be regular.)

References

[A] Colin Adams, Maximal cusps, collars and systoles for hyperbolic surfaces, Indiana Univ.
Math. J., to appear.

[HM] Joel Hass and Frank Morgan, Geodesics and soap bubbles in surfaces, Math. Z. 223 (1996),
185–196. MR 97j:53009

[HHM] Hugh Howards, Michael Hutchings, and Frank Morgan, The isoperimetric problem on
surfaces, Amer. Math. Monthly, to appear.

[M] Frank Morgan, Geometric Measure Theory: a Beginner’s Guide, Academic Press, second
edition, 1995. MR 96c:49001

[S] P. Schmutz, Riemann surfaces with shortest geodesic of maximal length, Geom. and Func.
Anal. 3 (1993), 564–631. MR 95f:30060

Department of Mathematics, Williams College, Williamstown, Massachusetts 01267

E-mail address: colin.adams@williams.edu

E-mail address: frank.morgan@williams.edu


