PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 5, Pages 1289–1291 S 0002-9939(99)04816-9 Article electronically published on January 27, 1999

A SIMPLE PROOF OF A CURIOUS CONGRUENCE BY SUN

ZUN SHAN AND EDWARD T. H. WANG

(Communicated by David Rohrlich)

ABSTRACT. In this note, we give a simple and elementary proof of the following curious congruence which was established by Zhi-Wei Sun:

$$\sum_{k=1}^{(p-1)/2} \frac{1}{k \cdot 2^k} \equiv \sum_{k=1}^{[3p/4]} \frac{(-1)^{k-1}}{k} \pmod{p}.$$

In [4], the following curious congruence for odd prime p was established by Zhi-Wei Sun:

(1)
$$\sum_{k=1}^{(p-1)/2} \frac{1}{k \cdot 2^k} \equiv \sum_{k=1}^{[3p/4]} \frac{(-1)^{k-1}}{k} \pmod{p}.$$

The author's proof, using Pell sequences, is fairly complicated. In fact, a recent article [3] on congruence modulo p ends in the remark that "It seems unlikely that (1) can be proved with the simple approach that we have used here." In the present note, we give a simple and elementary proof of (1). Throughout, p denotes an odd prime.

First of all, it is well known (e.g. [1], [2]) that for $k = 0, 1, 2, \ldots, p-1$,

(2)
$$\binom{p-1}{k} \equiv (-1)^k \pmod{p}.$$

From (2) we get

(3)
$$\frac{2^{p-1}-1}{2} = \frac{(1+1)^p - 2}{2p} = \frac{1}{2p} \sum_{k=1}^{p-1} \binom{p}{k} = \frac{1}{2} \sum_{k=1}^{p-1} \frac{1}{k} \binom{p-1}{k-1} \\ \equiv \frac{1}{2} \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k} \pmod{p}.$$

©1999 American Mathematical Society

Received by the editors August 13, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11A07, 11A41.

Let $\varepsilon = e^{\pi i/4}$. Then

$$(1+\varepsilon)^{p} + (1-\varepsilon)^{p} = 2 + 2 \sum_{\substack{1 \le k \le p \\ k \text{ even}}} {p \choose k} \varepsilon^{k}$$

$$= 2 + 2p \sum_{\substack{1 \le k \le p \\ k \text{ even}}} \frac{1}{k} {p-1 \choose k-1} \varepsilon^{k}$$

$$\equiv 2 + 2p \sum_{\substack{1 \le k \le p \\ k \text{ even}}} \frac{\varepsilon^{k}}{k} \pmod{p^{2}}$$

$$\equiv 2 - 2p \sum_{\substack{1 \le k \le p \\ k \text{ even}}} \frac{\varepsilon^{k}}{k} \pmod{p^{2}}$$

$$= 2 - 2p \left(\sum_{k=1}^{\left[\frac{p-1}{4}\right]} \frac{(-1)^{k}}{4k} + i \sum_{k=1}^{\left[\frac{p+1}{4}\right]} \frac{(-1)^{k-1}}{4k-2} \right)$$

$$= 2 - \frac{p}{2} \sum_{k=1}^{\left[\frac{p-1}{4}\right]} \frac{(-1)^{k}}{k} + ip \sum_{k=1}^{\left[\frac{p+1}{4}\right]} \frac{(-1)^{k}}{2k-1}$$

$$= 2 - \frac{p}{2} A + ipB$$

where

(5)

$$A = \sum_{k=1}^{\left[\frac{p-1}{4}\right]} \frac{(-1)^k}{k} \quad \text{and} \quad B = \sum_{k=1}^{\left[\frac{p-1}{4}\right]} \frac{(-1)^k}{2k-1}.$$

Since $\overline{\varepsilon} = \varepsilon^{-1}$, taking modulus of both sides of (4) yields

$$\begin{split} 4 - 2pA &\equiv \left(2 - \frac{p}{2}A\right)^2 + p^2 B^2 \\ &\equiv 4 - 2pA \equiv \left((1 + \varepsilon)^p + (1 - \varepsilon)^p\right)((1 + \varepsilon^{-1})^p + (1 - \varepsilon^{-1})^p) \\ &= (2 + \varepsilon + \varepsilon^{-1})^p + (2 - \varepsilon - \varepsilon^{-1})^p \\ &= (2 + \sqrt{2})^p + (2 - \sqrt{2})^p \\ &= 2^{p+1} + 2\sum_{\substack{1 \leq k \leq p \\ k \text{ even}}} \binom{p}{k} 2^{p-k} (\sqrt{2})^k \\ &= 2^{p+1} + 2^{p+1} \sum_{\substack{k=1 \\ k \text{ even}}}^{(p-1)/2} \binom{p}{2k} \frac{1}{2^k} \\ &= 2^{p+1} + 2^p p \sum_{\substack{k=1 \\ k=1}}^{(p-1)/2} \frac{1}{k \cdot 2^k} \binom{p-1}{2k-1} \\ &\equiv 2^{p+1} - 2^p p \sum_{\substack{k=1 \\ k=1}}^{(p-1)/2} \frac{1}{k \cdot 2^k} \pmod{p^2}. \end{split}$$

1290

From (5) and (3) we obtain, since $2^{p-1} \equiv 1 \pmod{p}$,

$$A \equiv -\frac{2^{p}-2}{p} + 2^{p-1} \sum_{k=1}^{(p-1)/2} \frac{1}{k \cdot 2^{k}}$$
$$\equiv \sum_{k=1}^{p-1} \frac{(-1)^{k}}{k} + \sum_{k=1}^{(p-1)/2} \frac{1}{k \cdot 2^{k}} \pmod{p}$$

and so

$$\sum_{k=1}^{(p-1)/2} \frac{1}{k \cdot 2^k} \equiv -\sum_{k=1}^{p-1} \frac{(-1)^k}{k} + A = \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k} + \sum_{k=1}^{\left\lfloor \frac{p-1}{4} \right\rfloor} \frac{(-1)^k}{k}$$
$$= \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k} + \sum_{k=p-\left\lfloor \frac{p-1}{4} \right\rfloor}^{p-1} \frac{(-1)^{p-k}}{p-k}$$
$$\equiv \sum_{k=1}^{p-1} \frac{(-1)^{k-1}}{k} - \sum_{k=p-\left\lfloor \frac{p-1}{4} \right\rfloor}^{p-1} \frac{(-1)^{k-1}}{k} \pmod{p}$$
$$= \sum_{k=1}^{\left\lfloor \frac{3p}{4} \right\rfloor} \frac{(-1)^{k-1}}{k}$$

and (1) is proved.

Acknowledgement

This paper was written when the first author was visiting the Mathematics Department of Wilfrid Laurier University, December 1996–August 1997. The hospitality of Wilfrid Laurier University is greatly appreciated.

References

- [1] Louis Comet, Advanced Combinatorics, D. Reidel Publishing Company, 1974.
- [2] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fourth Edition, Clarendon Press, Oxford, 1960.
- [3] Winfried Kohnen, A simple congruence modulo p, Amer. Math. Monthly 104 (1997), 444– 445. MR 98e:11004
- [4] Zhi-Wei Sun, A congruence for primes, Proc. Amer. Math. Soc. 123 (1995), 1341–1346. MR 95f:11003

DEPARTMENT OF MATHEMATICS, NANJING NORMAL UNIVERSITY, NANJING, JIANGSU, 210097, PEOPLE'S REPUBLIC OF CHINA

Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L $3\mathrm{C5}$

E-mail address: ewang@machl.wlu.ca