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THE HOLOMORPHIC EXTENSION OF Hp-CR FUNCTIONS
ON TUBE SUBMANIFOLDS

AL BOGGESS

(Communicated by Steven R. Bell)

Abstract. We consider the set of CR functions on a connected tube subman-
ifold of Cn satisfying a uniform bound on the Lp-norm in the tube direction.
We show that all such CR functions holomorphically extend to Hp functions
on the convex hull of the tube (1 ≤ p ≤ ∞). The Hp-norm of the extension
is shown to be the same as the uniform Lp-norm in the tube direction of the
CR function.

1. Definitions and main results

Recently, Boivin and Dwilewicz [BD] have generalized Bochner’s Tube Theorem
by showing that continuous CR functions on a tube-submanifold of Cn holomor-
phically extend to its convex hull. In this manuscript, we show that on a tube-
submanifold, CR functions that satisfy a uniform Lp-estimate in the tube direction
extend to an Hp function on the tube over the convex hull (here, 1 ≤ p ≤ ∞). In
addition, we show the Hp-norm on the convex hull of the holomorphic extension is
bounded by the Hp-norm of the CR function.

We will be working in Cn = Rn + iRn with coordinates x+ iy, x ∈ Rn, y ∈ Rn.
Let N be a connected submanifold of Rn and let M = N + iRn be the (connected)
tube over N . For 1 ≤ p ≤ ∞, let CRp(M) denote the space of CR functions
(solutions to the tangential Cauchy-Riemann equations) on M which satisfy

||f ||pp(M) = sup
x∈N

∫
|f(x + iy)|p dy ≤ Ap < ∞ if 1 ≤ p < ∞,

||f ||∞(M) = sup
x∈N

||f ||L∞(Tx) ≤ A∞ < ∞ if p = ∞,

where Tx = {x}+ iRn (the tube over x).
If 1 ≤ p ≤ ∞ and T is any tube of the form T = U + iRn with U an open set

in Rn, then Hp(T ) will denote the usual space of Hp-functions on the tube T with
the usual Hp-norm (defined as above with N replaced by U).

Our main theorem is the following.

Theorem 1 (Extension Theorem). Suppose N is a connected submanifold of Rn,
and let M = N + iRn be the tube over N . Let N̂ and M̂ = N̂ + iRn denote the
interior of the convex hull of N and M , respectively. If M̂ is nonempty and if 1 ≤
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p ≤ ∞, then each element f ∈ CRp(M) extends to a unique element F ∈ Hp(M̂)
with ||F ||

p(M̂)
= ||f ||p(M). If 1 ≤ p < ∞, then for each x0 ∈ N and each closed,

convex simplex S ⊂ N̂ with x0 as a vertex

lim
x 7→x0, x∈S

∫
|F (x + iy)− f(x0 + iy)|p dy = 0.

If p = ∞, then for each x0 ∈ N and almost every y ∈ Rn

lim
x 7→x0, x∈S

F (x + iy) = f(x0 + iy).

Remark 1. If f is continuous and bounded, then the above convergence result for
p = ∞ is true for every y ∈ Rn. This result is contained in [BD]. An earlier result
along these lines is contained in [Kaz]. Microlocal results for the tube case are
contained in [BTa], [K] and [T].

Remark 2. Since the extension, F , in this theorem is an element of Hp(M̂), all the
boundary value results from Hp-Theory also apply. In particular, the pointwise,
non-tangential boundary values within convex simplicies contained in M̂ exist at
every x ∈ N and almost every y ∈ Rn. For more details on these results see Stein
and Weiss [SW].

A key result that is used in the proof of the above theorem is the following global
Hp-version of Baouendi and Treves’ Approximation Theorem for CR functions on
tubes.

Theorem 2 (Approximation Theorem [BT]). Let N be a connected submanifold
of Rn and let M = N + iRn be the tube over N . If f is an element of CRp(M),
then there exists a sequence of entire functions Fε on Cn such that for each x0 ∈ N

lim
ε 7→0

∫
|Fε(x0 + iy)− f(x0 + iy)|p dy = 0 for 1 ≤ p < ∞.

If p = ∞, then for each x0 ∈ N , lim
ε 7→0

Fε(x0 + iy) = f(x0 + iy) for almost every

y ∈ Rn. For 1 ≤ p ≤ ∞, ||Fε||p(M) ≤ ||f ||p(M) for each ε > 0.

Remark. If f is continuous, then the proof given below can be modified to show
that the approximating sequence converges uniformly on the compact subsets of
M .

2. Proof of the Approximation Theorem

The following proof is based on ideas set forth in [BT].
For any z = x0 + iy0, let

Tz = {x0 + it; t ∈ Rn}
(i.e. the tube over the point x0 passing through z). For z = x0 + iy0 ∈ M , let

Gε(z) =
1

εn(π)n/2

∫
ζ∈Tz

f(ζ)eε−2[ζ−z]2 dζ

where dζ = dζ1 ∧ · · · ∧ dζn and where for w ∈ Cn, [w]2 = w2
1 + · · ·+ w2

n. Another
description of Gε is given by

Gε(z) =
1

εn(π)n/2

∫
t∈Rn

f(x0 + it)e−ε−2|t−y0|2 dt.
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Viewed this way, Gε is the convolution of f in the tube-direction with an approxi-
mation to the identity (given by the spatial slices of the heat kernel). The following
lemma can easily be established using standard techniques.

Lemma 1. For each fixed x0 ∈ N

lim
ε 7→0

∫
|Gε(x0 + iy)− f(x0 + iy)|p dy = 0 for 1 ≤ p < ∞.

If p = ∞, then for each x0 ∈ N , lim
ε 7→0

Gε(x0 + iy) = f(x0 + iy) for almost every

y ∈ Rn. For 1 ≤ p ≤ ∞, ||Gε||p(M) ≤ ||f ||p(M) for each ε > 0.

Since the domain of integration defining Gε(z) depends on z, this function is not,
in general, analytic in z. However, if f is CR on M , then the domain of integration
can be made independent of z as the next lemma shows. By a translation, assume
that the origin 0 belongs to N .

Lemma 2. For z ∈ Cn, let

Fε(z) =
1

εn(π)n/2

∫
ζ∈T0

f(ζ)eε−2[ζ−z]2 dζ.

For each ε > 0, Fε is entire. If f is CR on M , then Fε(z) = Gε(z) for z ∈ M .

Proof. Fε(z) is analytic in z in view of the following observations: the domain of
integration, T0 = {0 + it; t ∈ Rn}, is independent of z; the kernel eε−2[it−z]2 is
analytic in z and has exponential decay in t uniformly in z belonging to a compact
set in Cn; and the function t 7→ f(0 + it) belongs to Lp(Rn).

Now assume f is CR on M . We will show that Fε(z) = Gε(z) for z = x+iy ∈ M .
For R > 0, let gR(x + it) be a smooth function which is independent of x, equal to
one on the set {t ∈ Rn; |t| ≤ R} and supported in the set {t ∈ Rn; |t| ≤ R + 1}.
Let

FR
ε (z) =

1
εn(π)n/2

∫
ζ∈T0

gR(ζ)f(ζ)eε−2[ζ−z]2 dζ.

Define GR
ε analogously (replacing T0 with Tz). For each fixed z ∈ M , clearly

limR7→∞ FR
ε (z) = Fε(z) and limR7→∞ GR

ε (z) = Gε(z).
Let γ : [0, 1] 7→ N be a smooth path which connects 0 = γ(0) to x = Re(z) = γ(1)

(recall, by assumption that N is connected). Let

T̃z = {γ(u) + it; t ∈ Rn, 0 ≤ u ≤ 1}.
The (manifold) boundary of T̃z is Tz − T0. So by Stokes theorem

FR
ε (z) = GR

ε (z) +
1

εn(π)n/2

∫
ζ∈T̃z

dζ{gR(ζ)f(ζ)eε−2 [ζ−z]2 dζ}.

We must show the integral on the right converges to zero as R 7→ ∞. In view of the
presence of dζ = dζ1 ∧ · · · ∧dζn, the dζ reduces to ∂ζ in the last integral. Since f is
CR, the ∂ζ only applies to gR(ζ) which has support in the set R ≤ |Imζ| ≤ R+1. In
view of the exponential decay of eε−2[ζ−z]2 as |Imζ| 7→ ∞ and the fact that f(x+ it)
is an Lp-function in t, the above integral on the right converges to zero as R 7→ ∞.
This completes the proof of the lemma and hence the proof of the Approximation
Theorem.
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Technically speaking, the proof of the above lemma assumes that f is continu-
ously differentiable for the Stokes theorem step. However, Stokes’ theorem applies
to currents (in fact Stokes’ theorem becomes the definition of the exterior derivative
of a current; see [B] for more details) and so the above argument can be dualized
and applied to our context where f is assumed to be a distribution given by a
locally integrable function with a uniform bound on its Lp norm over tube-slices.

3. Proof of the Extension Theorem

Suppose f is an element of CRp(M). To extend f to an analytic function in
M̂ , the interior of the convex hull of M , we first show that this set can be realized
as the set of centers of analytic discs with boundaries in M . Then we show, by
a subaveraging technique on the boundaries of these discs, that the sequence of
entire functions that converges to f on M (from the Approximation Theorem) also
converges uniformly on compact subsets of M̂ . We carry out this outline in a series
of lemmas.

An analytic disc is an analytic map A : D = {ζ ∈ C; |ζ| < 1} 7→ Cn with
boundary values A|{|ζ|=1} in L2({|ζ| = 1}).
Lemma 3. Suppose e0, . . . , em are vectors in N that span a convex simplex S with
nonempty interior in Rn, (m ≥ n). Then, each point z = x + iy with x ∈ S and
y ∈ Rn can be realized as the center of an analytic disc, z = A(ζ = 0), whose
boundary is contained in M . If

x =
m∑

j=0

λjej ∈ S with λj ≥ 0 and
∑

j

λj = 1

then the boundary of the analytic disc A(·) = A(λ, y)(·) depends continuously on
λ = (λ0, . . . , λm) and y in the L2({|ζ| = 1})-norm.

Proof. To establish this lemma, we will specify the desired analytic disc A = u+iv :
D 7→ Cn, by specifying A on the boundary {e2πit; 0 ≤ t < 1} which we identify
with the unit interval I = [0, 1). Partition the unit interval I into a disjoint union
of intervals, Ij , of length λj , j = 0, . . . , m where I0 = [0, λ0), I1 = [λ0, λ0 +λ1), etc.
Let χIj be the characteristic function on the interval Ij (one on Ij , zero everywhere
else). Define u : I 7→ N by

u(t) =
m∑

j=0

ejχIj (t).

Since the length of Ij is λj , u = u(λ) depends continuously on λ = (λ0, . . . , λm) in
the L2(I)-norm.

For y ∈ Rn, let

v = v(λ, y) = T (u(λ)) + y

where T is the Hilbert transform. Since T : L2(I) 7→ L2(I) is continuous, v(λ, y)
depends continuously on λ and y in the L2(I)-norm. Note, however, that T is not
continuous in the sup-norm and so even though u is bounded, Tu is unbounded (in
fact Tu grows logarithmically at the endpoints of the Ij , where u is discontinuous).

Now let A(λ, y)(e2πit) = u(λ)(t) + iv(λ, y)(t). A(λ, y)(·) extends analytically to
the unit disc D (by the definition of the Hilbert transform). Its boundary lies in M
since ReA = u takes values in N . We claim A(ζ = 0) = x+ iy, where x =

∑
j λjej.



THE HOLOMORPHIC EXTENSION OF Hp-CR FUNCTIONS 1431

Since v = T (u) + y and since the Hilbert transform produces the unique harmonic
conjugate which vanishes at the origin, clearly Im(A)(ζ = 0) = y. The real part,
ReA(0), is given by averaging its boundary values.

Re(A)(ζ = 0) =
∫ 1

0

u(λ)(t) dt

=
m∑

j=0

∫ 1

0

ejχIj dt

=
m∑

j=0

λjej

= x.

This completes the proof of the lemma.

We wish to show that the sequence of entire functions Fε, which converges to our
given CR function f on M (in the Lp-norm on tube slices) also converges uniformly
on a neighborhood of each point z0 = x0 + iy0 with y0 ∈ Rn and x0 in the interior
of the convex hull of N . The next lemma contains the key subaveraging step. For
a point x ∈ Rn, let B(x, r) denote the open ball in Rn centered at x of radius r.

Lemma 4. Suppose F is analytic on M̂ (the interior of the convex hull of M) and

continuous on M̂ . Let 1 ≤ p < ∞. For a given z0 = x0 + iy0 ∈ M̂ , there exists an
r > 0, and a constant C = C(p, r) (depending only on r and p) such that for each
z̃ = x̃ + iỹ ∈ B(x0, r) + iB(y0, r)

|F (z̃)| ≤ C

∫ 1

0

∫
λ∈S

∫
|y−y0|≤2r

|F (A(λ, y)(e2πit))|p dy dλ dt

Proof. Fix x0 ∈ N̂ . Choose a convex simplex S with vertices e0, . . . , em ∈ N so
that x0 belongs to the nonempty interior of S. S contains a ball, of radius 2r > 0
in Rn about x0. F is analytic, and so for z̃ = x̃ + iỹ ∈ B(x0, r) + iB(y0, r)

|F (z̃)| ≤ C(r)
∫
|x−x0|≤2r

∫
|y−y0|≤2r

|F (x + iy)| dy dx

≤ C(p, r)

(∫
|x−x0|≤2r

∫
|y−y0|≤2r

|F (x + iy)|p dy dx

)1/p

where the last inequality follows from Hölder’s inequality.
Let A = A(λ, y) be the analytic disc given in Lemma 3. The map

(λ, y) = (λ0, . . . , λm, y) 7→ A(λ, y)(ζ = 0) =
m∑

j=0

λjej + iy ∈ S + iRn

is a linear map whose image contains all of S + iRn which in turn contains

{|x− x0| ≤ 2r}+ iRn.

So

|F (z̃)|p ≤ C

∫
λ∈S

∫
|y−y0|≤2r

|F (A(λ, y)(ζ = 0))|p dydλ

for all z̃ ∈ B(x0, r) + iB(y0, r).
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The proof of the lemma is now completed by using the following inequality which
is a consequence of the fact that |F (A(λ, y)(ζ))|p is subharmonic in ζ for |ζ| < 1
and continuous up to |ζ| = 1

|F (A(λ, y)(ζ = 0))|p ≤
∫ 1

0

|F (A(λ, y)(e2πit))|p dt.

Lemma 5. For 1 ≤ p ≤ ∞, the sequence Fε from the Approximation Theorem
converges uniformly on the compact subsets of M̂ (the interior of the convex hull
of the tube M) to an analytic function F with ||F ||

p(M̂)
≤ ||f ||p(M). In addition,

for each x ∈ N̂

lim
ε 7→0

∫
y∈Rn

|Fε(x + iy)− F (x + iy)|p = 0 if 1 ≤ p < ∞.(1)

Proof. First assume 1 ≤ p < ∞. Choose any z0 = x0 + iy0 ∈ M̂ . Applying Lemma
4 to the entire function Fε1 − Fε2 , yields

|(Fε1 − Fε2)(z̃)| ≤ C

∫ 1

0

∫
λ∈S

∫
|y−y0|≤2r

|(Fε1 − Fε2)(A(λ, y)(e2πit))|p dydλdt

for z̃ ∈ B(x0, r) + iB(y0, r). The boundary of the real part of the analytic disc
A constructed in Lemma 3 is u(λ)(t) =

∑m
j=0 ejχIj . The imaginary part of A is

T (u(λ))+y, which is finite everywhere on [0, 1) except the endpoints of the intervals
Ij . Therefore for z̃ ∈ B(x0, r) + iB(y0, r)

|(Fε1 − Fε2)(z̃)|(2)

≤ C

m∑
j=0

∫
λ∈S

∫
t∈Ij

∫
|y−y0|≤2r

|(Fε1 − Fε2)(ej + i(T (u(λ))(t) + y))|p dydλdt

≤ C

m∑
j=0

∫
λ∈S

λj ||Fε1 − Fε2 ||pLp(Tej
) dλ(3)

where Tej is the tube over ej . By the Approximation Theorem, the Lp norm of
Fε − f over Tej converges to zero as ε 7→ 0. So the right side converges to zero as
ε1, ε2 7→ 0. Therefore Fε(z) is uniformly Cauchy on B(x0, r) + iB(y0, r). Since
x0 ∈ N̂ was arbitrarily chosen, we conclude that Fε converges uniformly to an
analytic function F defined on M̂ .

To prove estimate (1), fix any x ∈ N̂ . Choose S and λ = (λ0, . . . , λm) ∈ S as
in the proof of Lemma 4 with A(λ, y)(ζ = 0) = x + iy. By subaveraging over the
boundary of the disc A:

|(Fε − Fδ)(x + iy)|p ≤
∫ 1

0

|(Fε − Fδ)(A(λ, y)(e2πit))|p dt(4)
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and then integrating y:∫
y∈Rn

|(Fε − Fδ)(x + iy)|p dy

≤
m∑

j=0

∫
t∈Ij

∫
y∈Rn

|(Fε − Fδ)(ej + i(T (u(λ))(t) + y))|p dy dt

≤
m∑

j=0

λj ||Fε − Fδ||pLp(Tej
).

Equation (1) is now established by letting δ 7→ 0 and then ε 7→ 0 and by using the
Approximation Theorem.

The estimate on ||F ||p(M) is established in a similar manner by first showing

|Fε(x + iy)|p ≤
∫ 1

0

|Fε(A(λ, y)(e2πit))|p dt(5)

and then integrating y∫
y∈Rn

|Fε(x + iy)|p dy ≤
m∑

j=0

∫
t∈Ij

∫
y∈Rn

|Fε(ej + i(T (u(λ))(t) + y))|p dy dt.

After taking limits as ε 7→ 0, the above inequality holds with F on the left (in view
of (1)) and f on the right (by the Approximation Theorem). The right side is then
dominated by

m∑
j=0

λj ||f ||pp(M) = ||f ||pp(M)

(since
∑

j λj = 1), as desired.
If p = ∞, then we use (2) with p = 1. The integrand on the right side of (2)

is dominated by 2||f ||∞(M) < ∞ by Lemmas 1 and 2. The domain of integration
on the right side of (2) is bounded. In view of the Approximation Theorem (for
the case p = ∞) and the Dominated Convergence Theorem, we conclude that Fε

is uniformly Cauchy on B(x0, r) + iB(y0, r). The estimate ||F ||p(M̂) = ||f ||p(M) for
p = ∞ follows easily from (5) with p = 1, and the inequality ||Fε||∞(M) ≤ ||f ||∞(M)

(Lemmas 1 and 2).

The final step in the proof of the main theorem is the following lemma.

Lemma 6. Suppose S is the convex hull of the vertices e0, . . . , em ∈ N and suppose
the interior of S is nonempty. Then

lim
x 7→e0, x∈S

∫
y∈Rn

|F (x + iy)− f(e0 + iy)|p dy = 0 if 1 ≤ p < ∞,

lim
x 7→e0, x∈S

F (x + iy) = f(e0 + iy) if p = ∞.

Since S and e0 ∈ N are arbitrarily chosen, this lemma will complete the proof
of our main theorem.
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Proof. First assume 1 ≤ p < ∞. The arguments in the proof of the previous lemma
(see (4) or (5)) yield the following estimate:∫

y∈Rn

|Fε(x + iy)− Fε(e0 + iy)|p dy

≤
m∑

j=0

∫
y∈Rn

∫
t∈Ij

|Fε(ej + i(T (u(λ))(t) + y))− Fε(e0 + iy)|p dtdy

for each x ∈ N̂ . In view of (1) and the Approximation Theorem, the above estimate
holds in the limit as ε 7→ 0. After separating the integral over I0 on the right, we
obtain ∫

y∈Rn

|F (x + iy)− f(e0 + iy)|p dy

≤
∫

y∈Rn

∫
t∈I0

|f(e0 + i(T (u(λ)(t) + y))− f(e0 + iy)|p dy

+2
m∑

j=1

λj ||f ||pp(M).

We will let x = λ0e0 +
∑m

j=1 λjej approach e0 by letting λ0 7→ 1 and
∑m

j=1 λj 7→
0. The sum on the right clearly converges to zero as x 7→ e0. Also, u(λ) 7→ e0, and
hence T (u(λ)) 7→ T (e0) = 0 in L2([0, 1)) as λ0 7→ 1. Since u(λ) = e0 on I0 = [0, λ0)
and the kernel for the Hilbert transform has diagonal singularities, the following
fact is true: for each fixed 0 < η < 1, |T (u(λ))| 7→ 0 uniformly on [0, η] as λ0 7→ 1.

The integral (over I0) on the right side of the last inequality can now be split into
two: one over I0 ∩ [0, η] and the other over I0 ∩ (η, 1]. The integral over I0∩ (η, 1] is
dominated by 2(1− η)||f ||p(M) which can be made as small as desired by choosing
η close to 1. The integral over [0, η] converges to zero since T (u(λ)) 7→ 0 uniformly
on [0, η] and because small translates of the Lp function y → f(e0 + iy) are close
(in Lp-norm) to the function itself.

Thus,
∫

y∈Rn |F (x + iy) − f(e0 + iy)|p dy 7→ 0 as x 7→ e0. This completes the
proof of the lemma and of our Extension Theorem for the case 1 ≤ p < ∞.

For the case p = ∞, the same arguments as above can be used to show that
F (x + iy) converges to f(e0 + iy) weakly in y ∈ Rn as x 7→ e0, i.e.

lim
x 7→e0, x∈S

∫
y∈Rn

|F (x + iy)− f(e0 + iy)|g(y) dy = 0

for each smooth, compactly supported function g. |F | is bounded on M̂ (true
when p = ∞) and so |F | is non-tangentially bounded. Therefore the non-tangential
boundary limits of F (x + iy) exist as x 7→ e0 for almost every y ∈ Rn by standard
Hp-Theory. This limit clearly must be f(e0+iy) in view of the weak limit mentioned
above.

4. Uniqueness

Of course, the estimate ||F ||p(M̂) = ||f ||p(M) implies that the Hp-extension of
f ∈ CRp(M) given in the Extension Theorem is unique. It is also easy to show
that there is only one Hp-extension of a given element f ∈ CRp(M) (regardless of
whether or not the extension satisfies the estimate ||F ||p(M̂) ≤ ||f ||p(M)). Indeed,
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let x be a point in N̂ and let A(λ, y)(·) be the analytic disc given in Lemma 3. Write
A(λ, y)(·) as A0(λ)(·) + iy where A0 is independent of y. The image of A0(λ)(·) is
contained in the tube over the complex simplex S. For any F ∈ Hp(M̂) and any
0 < r < 1 ∫

y∈Rn

|F (x + iy)| dy ≤
∫

y∈Rn

∫ 1

0

|F (A0(λ)(re2πit) + iy)| dt dy

by the Subaveraging Principle for subharmonic functions. The inner integral on
the right side is a monotonically increasing function of r. Since the boundary of
A0(λ)(·) is contained in M = N + iRn, we conclude (by the Monotone Convergence
Theorem) that if F vanishes on M , then the right side converges to zero as r
increases to 1.
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