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ABSTRACT. We consider the set of CR functions on a connected tube subman-
ifold of C™ satisfying a uniform bound on the LP-norm in the tube direction.
We show that all such CR functions holomorphically extend to HP functions
on the convex hull of the tube (1 < p < 00). The HP-norm of the extension
is shown to be the same as the uniform LP-norm in the tube direction of the
CR function.

1. DEFINITIONS AND MAIN RESULTS

Recently, Boivin and Dwilewicz [BD] have generalized Bochner’s Tube Theorem
by showing that continuous CR functions on a tube-submanifold of C™ holomor-
phically extend to its convex hull. In this manuscript, we show that on a tube-
submanifold, CR functions that satisfy a uniform LP-estimate in the tube direction
extend to an H? function on the tube over the convex hull (here, 1 < p < o0). In
addition, we show the HP-norm on the convex hull of the holomorphic extension is
bounded by the HP-norm of the CR function.

We will be working in C™ = R™ +iR"™ with coordinates x + iy, x € R™, y € R™.
Let N be a connected submanifold of R and let M = N +iR" be the (connected)
tube over N. For 1 < p < oo, let CRP(M) denote the space of CR functions
(solutions to the tangential Cauchy-Riemann equations) on M which satisfy

WA lpan = sug/lf($+iy)|pdy§x4p<oo if 1 <p < oo,
xrec

[flloo(ary = su}l\)[”fHL“’(Tz) < Aw <00 ifp =00,
xrec

where T,, = {z} + ¢R"™ (the tube over z).

If 1 <p<ooandT is any tube of the form T'= U + iR"™ with U an open set
in R™, then H?(T) will denote the usual space of HP-functions on the tube T with
the usual HP-norm (defined as above with N replaced by U).

Our main theorem is the following.

Theorem 1 (Extension Theorem). Suppose N is a connected submanifold of R™,

and let M = N + iR"™ be the tube over N. Let N and /]\z = N +iR"™ denote the
interior of the convex hull of N and M, respectively. If M is nonempty and if 1 <
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—

p < oo, then each element f € CRP(M) extends to a unique element F € HP(M)
with ||F||p(]\7) = [fllpary- If 1 < p < 00, then for each xo € N and each closed,

convex simplex S C N with x¢ as a vertex

lim S/|F(a:+iy)—f(:co+iy)|pdy =0.

r—2xo, TE

If p = 00, then for each x¢g € N and almost every y € R"
lim F(x+iy) = f(zo + iy).

T—To, TE

Remark 1. If f is continuous and bounded, then the above convergence result for
p = oo is true for every y € R™. This result is contained in [BD]. An earlier result
along these lines is contained in [Kaz]. Microlocal results for the tube case are
contained in [BTa], [K] and [T].

—~

Remark 2. Since the extension, F, in this theorem is an element of HP (M), all the
boundary value results from HP-Theory also apply. In particular, the pointwise,
non-tangential boundary values within convex simplicies contained in M exist at
every x € N and almost every y € R™. For more details on these results see Stein
and Weiss [SW].

A key result that is used in the proof of the above theorem is the following global
HP-version of Baouendi and Treves’ Approximation Theorem for CR functions on
tubes.

Theorem 2 (Approximation Theorem [BT]). Let N be a connected submanifold
of R™ and let M = N + iR™ be the tube over N. If f is an element of CRP(M),
then there exists a sequence of entire functions F, on C™ such that for each xy € N

lirr(l) |Fe(xo +iy) — f(xo+iy)|Pdy =0 for1l<p< oco.

If p = oo, then for each xyg € N, hH(l) Fo(zo + 1y) = f(zo + iy) for almost every
ye€ R". Forl <p<oo, [|[Fe|lpiary < || fllpary for each € > 0.
Remark. If f is continuous, then the proof given below can be modified to show

that the approximating sequence converges uniformly on the compact subsets of
M.

2. PROOF OF THE APPROXIMATION THEOREM

The following proof is based on ideas set forth in [BT].
For any z = zg + iy, let
T, = {xo + it; t € R"}
(i.e. the tube over the point z¢ passing through z). For z = z¢ + iyp € M, let
1 / -2 2
- f(O)es [¢—2] d¢
e(m)"/? Jeer. ©

where d{ = d(; A --- A d(, and where for w € C", [w]? = w} 4 --- +w?. Another
description of G, is given by

1 -2 2
G(2)= —— it)e~c 1tvol” gy,
)= T2 e 040

Ge(2) =
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Viewed this way, G, is the convolution of f in the tube-direction with an approxi-
mation to the identity (given by the spatial slices of the heat kernel). The following
lemma can easily be established using standard techniques.

Lemma 1. For each fixed xg € N
111% |Ge(zo +iy) — f(xo +iy)[Pdy =0 for 1 <p < oc.

If p = oo, then for each o € N, lirr(l) Ge(xo + 1y) = f(xo + iy) for almost every
(A
ye€ R". Forl<p<oo, [|Gellpary < || fllpary for each e > 0.

Since the domain of integration defining G(z) depends on z, this function is not,
in general, analytic in z. However, if f is CR on M, then the domain of integration
can be made independent of z as the next lemma shows. By a translation, assume
that the origin 0 belongs to V.

Lemma 2. For z € C", let
1
e(m)"/? Jeer,

For each ¢ > 0, F, is entire. If f is CR on M, then F.(z) = G¢(z) for z € M.

Fe(z) = F(Qee == gc.

Proof. F.(z) is analytic in z in view of the following observations: the domain of
integration, Ty = {0 + it; ¢t € R"}, is independent of z; the kernel e¢ [=2" ig
analytic in z and has exponential decay in ¢ uniformly in z belonging to a compact
set in C™; and the function ¢ — f(0 + it) belongs to LP(R™).

Now assume f is CR on M. We will show that F.(z) = Ge(z) for z = z+iy € M.
For R > 0, let gr(z + it) be a smooth function which is independent of z, equal to
one on the set {t € R™; |t| < R} and supported in the set {t € R™; |¢t| < R+ 1}.
Let

FRE) = Gy [, 9w Qe ac

Define G® analogously (replacing Ty with 7). For each fixed z € M, clearly
limp. . FI(2) = F.(2) and limp_.o, GE(2) = G(2).

Let 7 : [0,1] — N be a smooth path which connects 0 = v(0) to z = Re(z) = (1)
(recall, by assumption that N is connected). Let

T, = {y(u)+it; te R", 0<u <1}
The (manifold) boundary of T, is T, — Ty. So by Stokes theorem

1 e
/2 /Ceidc{gpz(of(oe [C==1" 4¢3

R(,) — GR(,
FA ) = GRG) + s

€
We must show the integral on the right converges to zero as R +— oo. In view of the
presence of d¢ = d(; A - -+ Ad(,, the d; reduces to . in the last integral. Since f is
CR, the J¢ only applies to gr(¢) which has support in the set R < [Im(| < R+1. In
view of the exponential decay of e =" as |Im(| — oo and the fact that f(z+it)
is an LP-function in ¢, the above integral on the right converges to zero as R — oo.
This completes the proof of the lemma and hence the proof of the Approximation
Theorem.
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Technically speaking, the proof of the above lemma assumes that f is continu-
ously differentiable for the Stokes theorem step. However, Stokes’ theorem applies
to currents (in fact Stokes’ theorem becomes the definition of the exterior derivative
of a current; see [B] for more details) and so the above argument can be dualized
and applied to our context where f is assumed to be a distribution given by a
locally integrable function with a uniform bound on its LP norm over tube-slices.

3. PROOF OF THE EXTENSION THEOREM

Suppose f is an element of CR?(M). To extend f to an analytic function in
M , the interior of the convex hull of M, we first show that this set can be realized
as the set of centers of analytic discs with boundaries in M. Then we show, by
a subaveraging technique on the boundaries of these discs, that the sequence of
entire functions that converges to f on M (from the Approximation Theorem) also
converges uniformly on compact subsets of M. We carry out this outline in a series
of lemmas.

An analytic disc is an analytic map A : D = {¢ € C; [¢|] < 1} — C™ with
boundary values A|g¢j=1y in L2({|¢| = 1}).

Lemma 3. Suppose eq, ..., e, are vectors in N that span a convex simplex S with
nonempty interior in R™, (m > n). Then, each point z = x + iy with x € S and
y € R™ can be realized as the center of an analytic disc, z = A(C = 0), whose
boundary is contained in M. If

z=Y Ne; €S withAj>0and Y N\ =1
Jj=0 J

then the boundary of the analytic disc A(-) = A(\,y)(-) depends continuously on
A= (Ao, Am) and y in the L*({|¢| = 1})-norm.

Proof. To establish this lemma, we will specify the desired analytic disc A = u+iv :
D +— C™, by specifying A on the boundary {e?™; 0 < ¢t < 1} which we identify
with the unit interval I = [0,1). Partition the unit interval I into a disjoint union
of intervals, I, of length A;, j = 0,...,m where Iy = [0, Xo), I1 = [Xo, Ao + A1), etc.
Let x1, be the characteristic function on the interval I; (one on I}, zero everywhere
else). Define u: I — N by

u(t) = Z ejxi; (t).
=0

Since the length of I; is A\j, u = u(\) depends continuously on A = (Ao, ..., Ap,) in
the L?(I)-norm.
For y € R", let

v=0v(Ay) =T(u)+y

where T is the Hilbert transform. Since T : L?(I) — L?(I) is continuous, v(\,y)
depends continuously on A and y in the L?(I)-norm. Note, however, that T is not
continuous in the sup-norm and so even though u is bounded, T'u is unbounded (in
fact T'u grows logarithmically at the endpoints of the I;, where u is discontinuous).

Now let A(X, y)(e2 ) = u(\)(t) +iv(\,y)(t). AN, y)(-) extends analytically to
the unit disc D (by the definition of the Hilbert transform). Its boundary lies in M
since ReA = u takes values in N. We claim A(¢ = 0) = z +1iy, where z = 3, Aje;.
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Since v = T'(u) + y and since the Hilbert transform produces the unique harmonic
conjugate which vanishes at the origin, clearly Im(A)(¢ = 0) = y. The real part,
ReA(0), is given by averaging its boundary values.

1
mmmzmzzéummﬁ
mo .

EO/O er]j dt
= i/\jej
=0

= X.

This completes the proof of the lemma.

We wish to show that the sequence of entire functions F¢, which converges to our
given CR function f on M (in the LP-norm on tube slices) also converges uniformly
on a neighborhood of each point zg = z¢ + iyy with yg € R™ and xg in the interior
of the convex hull of N. The next lemma contains the key subaveraging step. For
a point x € R™, let B(z,r) denote the open ball in R™ centered at x of radius r.
Lemma 4. Suppose F is analytic on M (the interior of the convex hull of M) and

continuous on M. Let 1 < p < oo. For a given zg = xo + 1Yo € ]/\4\, there exists an
r >0, and a constant C = C(p,r) (depending only on r and p) such that for each
Z =12+ 1y € B(xg,7r) +1B(yo,7)

|F(2)] < C// / AN, ) (2™ ) [P dy X dt
AES J|y— yo\<2r

Proof. Fix xg € N. Choose a convex simplex S with vertices eg,...,e,n € N so
that xg belongs to the nonempty interior of S. S contains a ball, of radius 2r > 0
in R™ about zo. F' is analytic, and so for Z = & +ig € B(zo,r) + iB(yo,7)

FG)| < mw/ / \F(z + iy)| dy dz
|le—zo|<L2r J|y—yo|<2r

1/p
< anﬂ</ / |Fm+wwme>
|z—20]|<2r J|y—yo| <21

where the last inequality follows from Holder’s inequality.
Let A = A(\,y) be the analytic disc given in Lemma 3. The map

A y) = Qose s Amsy) = AN Y)(C = 0) =Y Njej +iy € S+iR"
j=0
is a linear map whose image contains all of S + ¢R™ which in turn contains
{|lz — zo| < 2r} +iR™.
So

Fep<e| [ FA0w)E = 0)P dyix
A€S Jy—yo|<2r
for all Z € B(xzo,r) +iB(yo, 7).
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The proof of the lemma is now completed by using the following inequality which
is a consequence of the fact that |F(A(\, y)(¢))[P is subharmonic in ¢ for || < 1
and continuous up to [{| =1

F(AOL9)(C = )P < / F(AQ, 1) ()P dt.

Lemma 5. For 1 < p < oo, the sequence F, from the Approximation Theorem
converges uniformly on the compact subsets of M (the interior of the convex hull
of the tube M) to an analytic function F with ||F||p(ﬁ) < fllpary. In addition,

for each x € N

(1) lim |Fe(z+iy) — Flz+iy)|P =0 o1 <p<oo.
e—0 yERN

Proof. First assume 1 < p < co. Choose any zp = xg + iyg € M. Applying Lemma
4 to the entire function Fy, — F,,, yields

1
=@ [ i B A dyi

for Z € B(xzo,r) + iB(yo,r). The boundary of the real part of the analytic disc
A constructed in Lemma 3 is u(\)(t) = Z;io e;x1,- The imaginary part of A is
T'(u(N))+y, which is finite everywhere on [0, 1) except the endpoints of the intervals
I;. Therefore for Z € B(xo,r) + iB(yo,T)

(2) |(F61 _Fﬁz)(2)|

<c [ ] - R @) O + )P dyar

T=0\eSLEL |y—yo|<2r

(3) SCZ/)\j||F51—FEz||iP(TEj)d)‘
7=0Oxes

where T¢; is the tube over e;. By the Approximation Theorem, the L” norm of
Fe — f over T¢, converges to zero as € — 0. So the right side converges to zero as
€1, €2 +— 0. Therefore F.(z) is uniformly Cauchy on B(zo,r) + iB(yo, ). Since
To € N was arbitrarily chosen, we conclude that F. converges uniformly to an
analytic function F' defined on M.

To prove estimate (1), fix any 2 € N. Choose S and A = (Ag, ..., Am) € S as
in the proof of Lemma 4 with A(\,y)(¢ = 0) = z + iy. By subaveraging over the
boundary of the disc A:

1
(4) \(F. - Fy)(@ +ip)P” < / (F. — Fy) (A p) (™) P d
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and then integrating y:

/ (F. — Fy)(x + ig)|P dy
yeER™

<3 Loy ] 10— Bty 0@+ )y

= Z/\j”Fe _F6||Z£p(Tej)'
j=0

Equation (1) is now established by letting § — 0 and then € — 0 and by using the
Approximation Theorem.
The estimate on [|F||,(ar) is established in a similar manner by first showing

1 .
(5) IFe($+iy)|”S/O [Fe(AQ\ ) (€™))|7 dt

and then integrating y
/ F(o+iy)Pdy <Y / / IFu(e; + i(T(u(N)(E) + 9))P dy dt.
yeRn =0 Jter; Jyern

After taking limits as € — 0, the above inequality holds with F' on the left (in view
of (1)) and f on the right (by the Approximation Theorem). The right side is then
dominated by

DNy = I
J=0

(since -, Aj = 1), as desired.

If p = oo, then we use (2) with p = 1. The integrand on the right side of (2)
is dominated by 2|| f||oo(ar) < 00 by Lemmas 1 and 2. The domain of integration
on the right side of (2) is bounded. In view of the Approximation Theorem (for
the case p = c0) and the Dominated Convergence Theorem, we conclude that F.
is uniformly Cauchy on B(xg,r) 4+ iB(yo,r). The estimate ||F||p(]\7) = || fllp(ary for
p = oo follows easily from (5) with p = 1, and the inequality |[Fe||oo(ar)y < ||f|loo(ar)
(Lemmas 1 and 2).

The final step in the proof of the main theorem is the following lemma.

Lemma 6. Suppose S is the convex hull of the vertices eq, . .., e, € N and suppose
the interior of S is nonempty. Then

x—eg, TES

lim / |F(x+iy) — fleo +iy)|Pdy = 0 if1<p<oo,
YyeER™

lim Fz+iy) = fleo+iy) if p=oo.

THeo, TE

Since S and ey € N are arbitrarily chosen, this lemma will complete the proof
of our main theorem.
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Proof. First assume 1 < p < co. The arguments in the proof of the previous lemma
(see (4) or (5)) yield the following estimate:

/ |Fe(z + iy) — Fe(eo +iy) [P dy
yeER™

< JZO /y . /t _,, VFules + AT +0) = Felea + in) dtdy

for cach z € N. In view of (1) and the Approximation Theorem, the above estimate
holds in the limit as € — 0. After separating the integral over Iy on the right, we
obtain

/ F(o +iy) — fleo + i)l dy
yeRn

< / / [Fleo + (T @M@ + 1)) — Fleo + iy)P dy
yeR™ Jtely

+23 NI
j=1

We will let = Aoeo + 372, Aje; approach eg by letting Ag = 1 and 77" ) A;j
0. The sum on the right clearly converges to zero as x — eg. Also, u(\) — e, and
hence T'(u(\)) — T(eg) = 0 in L2([0,1)) as A\g — 1. Since u(A\) = eg on Iy = [0, \g)
and the kernel for the Hilbert transform has diagonal singularities, the following
fact is true: for each fixed 0 < n < 1, |T(u(X))| — 0 uniformly on [0,7] as Ao — 1.

The integral (over Iy) on the right side of the last inequality can now be split into
two: one over IpN[0,n] and the other over Iy N (n, 1]. The integral over Iy N (n,1] is
dominated by 2(1 —n)|| f|[p(ar) which can be made as small as desired by choosing
7 close to 1. The integral over [0, 7] converges to zero since T'(u(A)) — 0 uniformly
on [0,7] and because small translates of the L? function y — f(ep + iy) are close
(in LP-norm) to the function itself.

Thus, fyeR" |F(z +iy) — f(eo + 1y)|Pdy — 0 as x — eg. This completes the
proof of the lemma and of our Extension Theorem for the case 1 < p < 0.

For the case p = oo, the same arguments as above can be used to show that
F(x + iy) converges to f(eg + iy) weakly in y € R™ as x — eg, i.e.

lim / |F (2 +1iy) — f(eo +iy)lg(y) dy =0
T—eg, TES yERN

for each smooth, compactly supported function g. |F| is bounded on M (true

when p = 00) and so |F| is non-tangentially bounded. Therefore the non-tangential

boundary limits of F(x + iy) exist as x +— ¢g for almost every y € R"™ by standard

HP-Theory. This limit clearly must be f(eg+iy) in view of the weak limit mentioned

above.

4. UNIQUENESS

Of course, the estimate ||F||p(ﬁ) = [|fllp(a) implies that the HP-extension of
f € CRP(M) given in the Extension Theorem is unique. It is also easy to show
that there is only one HP-extension of a given element f € CRP(M) (regardless of
whether or not the extension satisfies the estimate ||F||p(1\7) < ||fllpcary)- Indeed,
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let z be a point in N and let A(X, y)(+) be the analytic disc given in Lemma 3. Write
AN y)(+) as Ag(AN) () + iy where Ay is independent of y. The image of Ag(\)(+) is
contained in the tube over the complex simplex S. For any F € HP(M) and any
0<r<l1

1
[ rerwlas [ [P e il diy
yeR™ yeER™ 0

by the Subaveraging Principle for subharmonic functions. The inner integral on
the right side is a monotonically increasing function of . Since the boundary of
Ap(N)(+) is contained in M = N +iR"™, we conclude (by the Monotone Convergence
Theorem) that if F' vanishes on M, then the right side converges to zero as r
increases to 1.
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