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REPRESENTING QUASI-ORDERS BY EMBEDDABILITY
ORDERING OF FAMILIES OF TOPOLOGICAL SPACES

A. E. McCLUSKEY AND T. B. M. McMASTER

(Communicated by Alan Dow)

Abstract. An elementary argument constructs, for each cardinal α, a topo-
logical space whose subspaces, ordered by homeomorphic embeddability, can
model every partial order on α-many points. We show how to modify this
procedure to deal also with quasi-orders (where the antisymmetry condition
may fail), obtaining an initial estimate of the cardinality of the space then
required.

1. Introduction

Of all the simple and elementary notions that lie at the heart of general topol-
ogy, perhaps the least well understood is ordering by embeddability, the relation
introduced into a family of topological spaces by writing X ↪→ Y whenever X is
homeomorphic to a subspace of Y . This ordering is, of course, reflexive and transi-
tive but it is not antisymmetric in general; thus it is a quasi-order but not (usually)
a partial order. To illustrate its subtlety and relative intractability, we refer to the
problem of recognising which order-types are those of collections of subspaces of
the real line: a complete answer to this natural question seems almost as far away
from achievement now as it did three quarters of a century ago, when it was first
examined by mathematicians of the stature of Banach, Kuratowski and Sierpiński
(see, for example, [1], [2], [8]). Recent years have seen a reawakening of interest
in problems of this sort, due in part to their connection with the study of total
negation ([3], [4]).

Let us agree to say that a quasi-ordered set Q is realized within a family F of
topological spaces whenever there is an injection θ : Q → F for which q ≤ q′ if and
only if θ(q) ↪→ θ(q′). Basic questions are:

(a) which quasi-ordered sets can be realized within the powerset of a given space?
(b) which quasi-ordered sets can be realized within the powerset of a suitably

chosen space?
(c) how can we relate the cardinality of the space in (b) to that of the ordered

sets?
In connection with (a), it is known that within the powerset of the real line R

one can realize
(i) the cardinal number c+ [2],
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(ii) the antichain of cardinality 2c [1],
(iii) the powerset of R ordered by set-inclusion [5],
(iv) any quasi-ordered set of cardinality c [6].

As to (b), it has recently been noted [4] that every quasi-ordered set is realized
by subspaces of some space: the argument depending on fairly sophisticated combi-
natorial and categorical material (see [7]). The main purpose of the present article
is to give a direct and self-contained proof of this result, in which the relationship
between set and space is sufficiently transparent to allow an initial answer to (c)
also to emerge. On the way to this conclusion we deal with the antisymmetric
case, where the arguments and conclusions are especially straightforward: every
finite poset can be realized by subspaces of a finite space, every poset of infinite
cardinality α can be realized within the powerset of a space on α-many points.

2. The partial order case

Lemma 2.1. Suppose given a family C of α-many connected spaces each with γ-
many points, none of which can be embedded into any other. Then there is a space
of αγ-many points whose subspaces realize all α-point posets.

Proof. Put X =
∑

C∈C C, the topological sum (= disjoint union) of the spaces in
C. Given a poset E with α-many points, first set up an injection y 7→ Cy from E
into C. Now for each x in E define

θ(x) =
∑
y≤x

Cy

and it is immediate that x1 ≤ x2 if and only if θ(x1) ↪→ θ(x2).

Corollary 2.2. Every finite poset is realizable by subspaces of a finite space. In-
deed, for each positive integer n there is a space on (at most) n2 points whose
subspaces realize all n-point posets.

Proof. For each n ≥ 1 it is easy to exhibit n non-homeomorphic connected topolo-
gies on an n-element set. This observation is ‘sharp’ for n = 1 and n = 2 but could
certainly be improved for larger values of n.

Corollary 2.3. There is a countable space whose subspaces realize all countable
partial orders.

Proof. By Lemma 2.1, it suffices to find ℵo-many countable connected spaces, none
of which is homeomorphic to a subspace of another. One way to do this uses the
Stone-Čech compactification βω of the countably infinite discrete space ω: we select
a sequence p1, p2, p3, . . . in βω\ω so that the subspaces ω∪{p1}, ω∪{p2}, ω∪{p3}, . . .
are pairwise non-embeddable, and then connectify each of these by adjoining a
point-at-infinity that lies in the closure of every subset. We shall next explain this
in more detail and in more generality.

Lemma 2.4. Let A be a discrete space of infinite cardinality α. There is a subset
K of βA\A such that

(i) card(K) = 22α

and
(ii) whenever k1 6= k2 in K, then neither A ∪ {k1} ↪→ A ∪ {k2} nor A ∪ {k2} ↪→

A ∪ {k1} is true.
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Proof. Fix p in βA\A. If A ∪ {p} embeds into A ∪ {q} (where q ∈ βA\A), then
the embedding must map p to q since the subspaces are discrete everywhere else,
and it will be determined by its restriction to the dense set A. Since there are
2α maps from A to A, there are at most that many choices of q that will permit
such embedding. For the same reason, each subset of A ∪ {p} that takes the form
A′ ∪ {p} where A′ ⊆ A and card(A′) = α can be homeomorphic to at most 2α-
many spaces of form A ∪ {r} where r ∈ βA\A; further, there are just 2α sets A′

as described, and so 2α is also an upper bound for the number of choices of r that
allow A ∪ {r} ↪→ A ∪ {p}.

For any subset S of βA\A whose cardinality is less than 22α

, it follows that

{x ∈ βA\A : ∃s ∈ S such that

either A ∪ {x} ↪→ A ∪ {s} or A ∪ {s} ↪→ A ∪ {x}}
also has cardinality less than that of βA\A, and therefore we can choose y in βA\A
so that A∪{y} is ‘incomparable’ with all the A∪{s}. A routine induction argument
now generates a transfinite sequence

(kε, ε < 22α

)

in βA\A whose range K satisfies conditions (i) and (ii).

Note. For each space X let us denote by Co(X) the connected one-point extension
X∪{∞} of X whose topology is merely that of X plus the single extra set X∪{∞}.
It is trivial that X ↪→ Y implies Co(X) ↪→ Co(Y ), and the converse is also true: if
θ embeds Co(X) into Co(Y ), then either θ(∞) = ∞ or θ(Co(X)) ⊆ Y , and in both
cases the restriction of θ to X embeds it into Y . Lemma 2.4 therefore provides
us with the makings of 22α

connected pairwise non-embeddable spaces on α points
each, and Lemma 2.1 shows how to form, for each cardinal γ between α and 22α

inclusive, a space on γ points whose subspaces realize every partially ordered set on
γ points. But our interest now lies in extending realizability to quasi-ordered sets
of arbitrary cardinality.

3. The quasi-order case

Given an infinite cardinal α, choose δ = δ(α) to be the smallest cardinal for
which there exist α-many distinct non-zero cardinals (not necessarily infinite) less
than δ, and index these in any fashion as

{ελ : λ < α}.
(For example, δ(ℵo) = ℵo, δ(ℵ1) = ℵω1 .) Then for each cardinal ε ≤ δ we define
D(ε) to be the space formed from the topological sum of δ-many copies of the
two-element trivial (= indiscrete) space by adjoining ε-many isolated points. It
is readily seen that ε < ε′ ≤ δ implies that D(ε) ↪→ D(ε′) and D(ε′) ↪→ D(ε)
but that D(ε) and D(ε′) are non-homeomorphic. These simple spaces can now be
used as ‘cloning agents’ to replicate each of the spaces that realize a poset on at
most α points, in such a way as to represent any quasi-ordered set of that order of
cardinality.

Proposition 3.1. Any quasi-ordered set Q of infinite cardinality α can be realized
within the subspaces of a space X whose cardinality does not exceed δ(α).



1278 A. E. McCLUSKEY AND T. B. M. McMASTER

Proof. First, abstract the ‘partially ordered skeleton’ P of Q by quotienting-out
the equivalence relation ∼ defined on Q by

q1 ∼ q2 if and only if q1 ≤ q2 and q2 ≤ q1,

the set P of equivalence classes being then (unambiguously) ordered by writing

p1 ≤ p2 if and only if ∃q1 ∈ p1, q2 ∈ p2 such that q1 ≤ q2.

Since P is then a poset on at most α elements, our previous discussion shows how
to realize it via an association

p 7→ θ(p) =
∑
y≤p

Cy

where each Cy is of the form Co(A ∪ {r(y)}) and r(y) ∈ βA\A. We also index the
elements of Q that belong to each element p of P :

p = {pλ : λ < ζ(p)}
where card(p) = ζ(p) ≤ α. Now let X be the topological sum∑

y∈P

(Cy ×D(δ))

which is a space of cardinality δ(α), and represent pλ by its subspace

φ(pλ) = θ(p)×D(ελ) =
∑
y≤p

(Cy ×D(ελ)).

Since each element of Q is uniquely expressible in the form pλ, φ is a mapping from
Q into the powerset of X ; we claim that it is one-to-one, and that

pλ ≤ p′λ′ ⇔ φ(pλ) ↪→ φ(p′λ′).

(1) If pλ ≤ p′λ′ then p ≤ p′ which implies that θ(p) ⊆ θ(p′). So both θ(p) ↪→ θ(p′)
and D(ελ) ↪→ D(ελ′) are satisfied, and it is immediate that φ(pλ) ↪→ φ(p′λ′).

(2) We begin the converse with the elementary observation that if T is a trivial
space, U is any space and A is a subset of the product U×T such that no two points
of A have the same first coordinate, then projection parallel to T homeomorphically
embeds A into U . Suppose now that there is an embedding e of φ(pλ) into φ(p′λ′).
The image under e of the connected subset K = Cp × {s} of φ(pλ), s being one of
the isolated points of D(ελ), must lie within one of the components of φ(p′λ′ ). This
component is of one of the two forms Cy × {t} or Cy × T , where y ≤ p′ and t is an
isolated point in D(ελ′ ) and T is a two-point trivial space. Since K is To, its copy
e(K) could not have two points in Cy×T with the same first coordinate, so in both
cases we deduce that Cp embeds into Cy, that is, Co(A∪{r(p)}) ↪→ Co(A∪{r(y)}).
As noted above, this forces A∪{r(p)} ↪→ A∪{r(y)} which in turn implies r(p) = r(y)
and p = y, yielding p ≤ p′. So indeed pλ ≤ p′λ′ follows.

(3) If φ(pλ) = φ(p′λ′) then (2) shows first that p = p′. But then the numbers
of components in φ(pλ) and φ(p′λ′ ) that are homeomorphic to Cp will have to be
equal, and these numbers are ελ and ελ′ . Thus λ = λ′, and pλ is indistinguishable
from p′λ′ .

This concludes the demonstration.

Corollary 3.2. There is a countable space whose subspaces permit the realization
of every countable quasi-ordered set. (Compare Corollary 2.3.)

Proof. δ(ℵo) = ℵo.
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Comments. It would be good to know:
(i) how much the n2 estimate in Corollary 2.2 could be reduced,
(ii) if more careful connectification would be enough to produce spaces with

better separation than To for the realization of posets,
(iii) where to find cloning agents with some separation and with lower cardinality

than δ(α).
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