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ON REAL QUADRATIC FUNCTION FIELDS
OF CHOWLA TYPE WITH IDEAL CLASS NUMBER ONE

KEQIN FENG AND WEIQUN HU

(Communicated by David E. Rohrlich)

Abstract. Let Fq be the finite field with q elements, (26 |q), k = Fq(x), K =

k(
√

D) where D = D(x) = A(x)2 + a is a square-free polynomial in Fq[x]
with deg A(x) ≥ 1 and a ∈ F∗q . In this paper several equivalent conditions for

the ideal class number h(OK) to be one are presented and all such quadratic
function fields with h(OK) = 1 are determined.

1. Introduction

Let d = a2 + 1 ≥ 2 be a square-free integer. R.A.Mollin [8] presented
several equivalent conditions for the class number of real quadratic number field
K = Q(

√
d) to be one. S.Chowla conjectured that there are exactly 6 such fields

with class number one. R.A.Mollin and H.C.Williams [9] proved this conjecture
under the assumption of the Riemann hypothesis for ζK(s).

In this paper we will present an analogy of Mollin’s sufficient conditions for ideal
class number h(OK) of real quadratic function field K to be one. We will show
that the quadratic function field K = k(

√
D(x))(k = Fq(x), 2 6 |q) satisfying these

conditions has to be of Chowla type: D(x) = A(x)2 + a where A(x) ∈ Fq[x] and
a ∈ F∗q . Since the Riemann hypothesis for function fields is true (A.Weil’s theorem),
we can determine all such quadratic function fields K with h(OK) = 1.

2. Preliminary lemmas

A systematic research on quadratic the function fields was initiated by
E.Artin [1] in 1924, who gave the analytic formula for the class number (see section
4) and made a small table of class numbers. Let k = Fq(x) be the rational function
field (2 6 |q), D = D(x) a square-free polynimial in Fq[x] with deg D ≥ 1, sgnD the
leading coefficient of the polynomial D(x).Without loss of generality we can assume
sgnD = 1 or g where g is a fixed generator of cyclic group F∗q . The quadratic func-
tion field K = k(

√
D) is called (by E.Artin) real if 2 | deg D and sgnD = 1 since√

D ∈ k∞ = Fq(( 1
x )) (the completion of k at the infinite prime divisor ∞ =

(
1
x

)
).

Otherwise K is called imaginary.
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Let OK be the integral closure of Fq[x] in K, h(OK) the ideal class number of
OK . J.R.C.Leitzel, M.L.Madan, C.S.Queen and R.E.MacRae [5, 6, 7] determined all
imaginary quadratic function fields K (even for the case 2|q) with h(OK) = 1. For
the real case, we can ask the following question as an analogy of a Gauss conjecture:
Are there infinitely many of real quadratic function fields K with h(OK) = 1 for
any fixed q?

Let K = k(
√

D) be a real function field, deg D = 2d ≥ 2. The completion
of k = Fq(x) at ∞ = ( 1

x ) is the power series field k∞ = Fq(( 1
x)). Each element

0 6= a ∈ k∞ has the unique ( 1
x)-adic expansion

a =
∞∑

i=m

ci

(
1
x

)i

, ci ∈ Fq, cm 6= 0.

Let v∞(a) = m, and v∞(0) = ∞.v∞ is an extension of ( 1
x )-adic exponential val-

uation of k. Since
√

D ∈ k∞, K is a subfield of k∞, and the restriction of v∞ to
K is an exponential valuation of K. The galois group Gal (K/k) = {1, σ} where
σ(A + B

√
D) = A − B

√
D (A,B∈ k). We know that OK = Fq[x] ⊕ Fq[x]

√
D,

and the unit group UK of OK is F∗q × 〈ε〉 where ε is a generator of the free part
of UK . Let N = NK/k be the norm mapping for K/k. Since N(αε) = α2N(ε)
for α ∈ F∗q ,we can assume N(ε) = 1 or g. Since N(ε) = ε · σ(ε) ∈ F∗q , we have
0 = v∞(N(ε)) = v∞(ε)+v∞(σ(ε)), and ε is determined by the condition v∞(ε) < 0
up to factor (±1). We call this ε the fundamental unit of K.

At the first step, we give a criterion for h(OK) = 1. For each ideal a 6= (0), the
order of the finite quotient ring OK/a is a q-th-power. If |OK/a| = qm, the degree
of a is defined by deg a = m ≥ 1. In [4] we showed that the Minkowski constant for
real quadratic function field K = k(

√
D) is d− 1 which means that we have

Lemma 2.1. Let K = k(
√

D) be a real quadratic function field, deg D = 2d ≥
2.Then each fractional ideal class of OK contains an integral ideal a(⊆ OK) with
deg a ≤ d − 1. Therefore h(OK) = 1 if and only if all prime ideals of OK with
degree ≤ d− 1 are principal.

Next, we introduce a result of Xianke Zhang [10], who determined the 2-rank of
the ideal class group of K by calculating the number of ambiguous ideal classes.

Lemma 2.2. Let K = k(
√

D) be a real quadratic function field, C(K) the ideal
class group of OK ,r = dimF2 C(K)/C(K)2 the 2-rank of C(K), m the number of
monic irreducible polynomial factors of D = D(x). Then r = m − 2 if D has an
irreducible factor with odd degree, r = m−1 otherwise. Therefore 2 6 |h(OK) = |CK |
if and only if

(I) D is irreducible, or
(II) D = P1P2 where P1 and P2 are irreducible polynomials with odd degree.

Remark 2.3. Let ε be the fundamental unit of K. For the case (I) of lemma 2.2,
E.Artin [1] proved N(ε) = g. For the case (II) we have N(ε) = 1.

Proof. Let ε = A + B
√

D(A, B ∈ Fq[x]), P be an irreducible factor of D with
odd degree. If g = N(ε) = A2 − DB2, we have A2 ≡ g (mod P ) and ( g

P ) = 1
where ( g

P ) is the Legendre symbol. But 2 6 |deg P implies ( g
P ) = −1, so we have

contradiction (for more information on Legendre and Jacobi symbol in polynomial
case, see section 4).



REAL QUADRATIC FUNCTION FIELDS OF CHOWLA TYPE 1303

3. Real quadratic function fields of Chowla type

In this section we give an analogy of Mollin’s result ([8], theorem 1) for real
function field K = k(

√
D). At first we need some lemmas.

Definition 3.1. Let E ∈ Fq[x], E 6= 0. A solution (X, Y ) = (U, V ) of the equation

X2 −DY 2 = E,(∗)
in Fq[x] is called trivial if E = aM2, a ∈ F∗q , M ∈ Fq[x], and M |U, M |V .

Lemma 3.2. Let ε = A+B
√

D be the fundamental unit of K.A, B ∈ Fq[x]. If the
equation (∗) has a non-trivial solution in Fq[x], then deg E ≥ deg A− 2 deg B.

Proof. Let (U, V ) be a non-trivial solution of the equation (∗), then V 6= 0. We can
assume that (U, V ) is a non-trivial solution with minimal deg V . We have

N(ε)E = N [(A + B
√

D)(U ± V
√

D)]
= (AU ±DBV )2 −D(BU ±AV )2.

We claim that both of the solutions (X, Y ) = (AU±BDV, BU±AV ) are non-trivial.
If one of them is trivial, them E = aM2,a ∈ F∗q and

(1)
(2)

{
AU + DBV ≡ 0 (mod M)

BU + AV ≡ 0 (mod M) or
{

AU −DBV ≡ 0 (mod M)
BU −AV ≡ 0 (mod M).

But

(1) ·B − (2) · A ⇒ A2V −DB2V ≡ 0 (mod M) ⇒ V ≡ 0 (mod M),

(1) · A− (2) ·BD ⇒ A2U −DB2U ≡ 0 (mod M) ⇒ U ≡ 0 (mod M).

Therefore the solution (U, V ) is trivial. This contradiction implies that both of the
(X, Y ) = (AU ±DBV, BU ±AV ) are non-trivial solutions. Since deg V is minimal
we know that

min{deg(BU + AV )), deg(BU −AV )} ≥ deg V.(3)

On the other hand,

deg E = deg(U2 −DV 2) = deg(B2U2 −DB2V 2)− 2 deg B(4)
= deg(B2U2 −A2V 2 + V 2N(ε))− 2 degB.(5)

If deg BU > deg AV , then deg E = deg(B2U2)− 2 deg B > deg(A2V 2)− 2 deg B >
2 degA − 2 deg B. If deg BU < deg AV , then deg A2V 2 > deg B2U2, deg A2V 2 >
deg(V 2N(ε)), therefore deg E = deg(A2V 2)− 2 deg B ≥ 2 deg A− 2 deg B. Finally,
if deg BU = deg AV , then max(deg(BU + AV ), deg(BU − AV )) = deg AV . From
(3) we know that deg(B2U2 − A2V 2) ≥ deg AV 2 and from (5) we have deg E ≥
deg AV 2 − 2 deg B ≥ deg A− 2 deg B. Q.E.D.

Lemma 3.3. Let f be a positive integer. The following two conditions are equiva-
lent.

(1) For each monic irreducible polynomial P in Fq[x] with deg P ≤ f , we have
(D

P ) = −1(which means that P is inert in K).
(2) For each polynomial A and irreducible polynomial P in Fq[x] satisfying

deg A < deg P ≤ f(we assume deg 0 = −∞) we have A2 −D 6≡ 0 (mod P ).

Proof. It is obvious.



1304 KEQIN FENG AND WEIQUN HU

Remark 3.4. The conditions in lemma 3.3 can be satisfied only for f ≤ d− 1 (2d =
deg D) since there exists a monic irreducible polynomial P such that deg P ≤ d
and (D

P ) 6= −1.

Proof. D can always be expressed as D = A2+B with deg A = d and deg B ≤ d−1.
If deg B ≥ 1, we choose P as an irreducible factor of B, then D ≡ A2(mod P ) and
(D

P ) 6= −1. If B = b ∈ F∗q , it is easy to see that there exists a ∈ Fq such that a2 + b

is a square in Fq. Then D = A2 + b ≡ a2 + b(mod A − a). We choose P as an
irreducible factor of A− a. Then D ≡ a2 + b(mod P ) and (D

P ) 6= −1.

Now we come to our main result which shows that each condition in lemma 3.3
with f = d− 1 is equivalent to h(OK) = 1 and K is of Chowla type.

Theorem 3.5. Let K = k(
√

D) be a real quadratic function field, deg D = 2d ≥ 2,
k = Fq(x),2 6 |q. The following conditions are equivalent to each other.

(1) For any monic irreducible polynomial P in Fq[x] with deg P ≤ d−1, we have
(D

P ) = −1.
(2) For any A ∈ Fq[x] and irreducible polynomial P ∈ Fq[x] satisfying deg A <

deg P ≤ d− 1 we have D −A2 6≡ 0(mod P ).
(3) For any A ∈ Fq[x] with deg A ≤ d − 1, D − A2 is either irreducible or a

product of two irreducible polynomials with degree d.
(4) h(OK) = 1 and K is of Chowla type: D = A2 + b, A ∈ Fq[x], b ∈ F∗q.

Proof. (1)⇐⇒(2): By lemma 3.3.
(2)=⇒(3): If deg A ≤ d−1 and D−A2 has an irreducible factor P with deg P ≤

d − 1, we can assume that deg A < deg P by replacing A if necessary by its least
residue mod P . Therefore deg A < deg P ≤ d− 1 and D −A2 ≡ 0(mod P ) which
contradicts (2).

(3)=⇒(2): If deg A < deg P ≤ d− 1 and D −A2 ≡ 0(mod P ) ,then D −A2 has
the irreducible factor P with deg P ≤ d− 1 which contradicts (3).

(4)=⇒(1): We have ε = A+
√

D,deg A = d ≥ 1. If deg P ≤ d−1 and (D
P ) 6= −1,

then P either ramifies or splits in OK . Thus we have a prime ideal p in OK such
that p · σ(p) = P . From h(OK) = 1 we know that p is principal: p = (U + V

√
D),

therefore σ(p) = (U − V
√

D) and

U2 − V 2D = cP (c ∈ F∗q).

The solution (X, Y ) = (U, V ) of the equation X2 −DY 2 = cP is non-trivial since
E = cP does not have the form aM2. By lemma 3.2 we have deg P ≥ deg A−0 = d
which contradicts deg P ≤ d− 1.

(1)=⇒(4): h(OK) = 1 comes from lemma 2.1. Moreover, we have the expression
D = A2 + B with deg A = d and deg B ≤ d− 1,B 6= 0. If deg B ≥ 1,then B has an
irreducible factor P with deg P ≤ d− 1. We have (D

P ) 6= −1 which contracicts (1).
Therefore B ∈ F∗q and K is of Chowla type. Q.E.D.

Remark 3.6. In fact, we can say more for D if K = k(
√

D) satisfies the conditions
of theorem 3.5. From condition (4) we know D = A2 − a, a ∈ F∗q and deg A = d.
From condition (1), (2), or (3) we know that D has no irreducible factor P with
deg P ≤ d − 1. Therefore either D is irreducible (and a is not a square in F∗q)
or D = P1P2 where P1 and P2 are irreducible with deg P1 = deg P2 = d. Since
h(OK) = 1, the lemma 2.2 implies 2 6 |d in the case D = P1P2. From remark 2.3 we
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know that N(ε) = N(A+
√

D) = a is a square in F∗q . Therefore a = b2(b ∈ F∗q ) and
P1, P2 = A± b. Thus D = A2 − a has very special property:

(I) D = A2 − a is irreducible and a is not a square in F∗q; or
(II) D = (A + b)(A− b) = A2 − b2 and A± b are irreducible with odd degree d.

Suppose that K = k(
√

D) is a real quadratic function field and D satisfies the
condition (I) or (II) of remark 3.6. If D does not satisfy the condition (1) of theorem
3.5, then h(OK) > 1 and 2 6 |h(OK) (lemma 2.2). The following theorem presents a
better lower bound for h(OK).

Theorem 3.7. Suppose that K = k(
√

D) is a real quadratic function field and D
satisfies the condition (I) or (II) of remark 3.6. If there exists an irreducible P such
that deg P ≤ d− 1 and (D

P ) 6= −1 , then h(OK) ≥ 〈 d
deg P 〉 where < α > denotes the

smallest odd integer n such that n ≥ α.

Proof. From the assumption and lemma 2.2 we known that h(OK) is odd. From
(D

P ) 6= −1 we know that POK = p · σ(p) where p is a prime ideal of OK . Let n
be the order of the ideal class [p], then 2 6 |n|h(OK) and pn is a principal ideal. Let
pn = (U + V

√
D), U, V ∈ Fq[x], then U2 − V 2D = cPn,c ∈ F∗q . From 2 6 |n we know

that (X, Y ) = (U, V ) is a non-trivial solution of the equation X2 − DY 2 = cPn.
Lemma 3.2 implies that deg P n ≥ d. Therefore h(OK) ≥ n ≥ d

deg P . Since 2 6 |h(OK)
we know that h(OK) ≥ 〈 d

deg P 〉. Q.E.D.

4. Determination of all real quadratic function fields

of Chowla type with class number one

This task has essentially been done in [3] since the following theorem is
proved by using the Weil theorem and the Riemann-Roch theorem.

Theorem 4.1 ([3]). Suppose that k = Fq(x), 2 6 |q, K = k(
√

D) is a real quadratic
function field, D = A2 + a, a ∈ F∗q, deg A = d ≥ 1. If h(OK) = 1, then q = 3,
d ≤ 4; q = 5, d ≤ 2; or q ≥ 7, d = 1.

Proof. We rewrite the proof here for the reader’s convenience. The argument is
taken from [7], p. 424. We know that h(OK)RK = h(K) where RK = −v∞(ε) =
−v∞(A +

√
D) = d (the regulator of K) and h(K) is the divisor class number

of K(=the order of the divisor class group of degree zero). The genus of K is
gK = d− 1.

Let n = 2gk − 1,k̄ = Fqn(x). Then K̄ = k̄(
√

D) is a function field over Fqn and
gK̄ = gK = d− 1. Let N̄1 be the number of prime divisors of K̄ with degree 1. The
Weil theorem implies that

N̄1 ≥ qn + 1− 2gK̄ · qn/2.

K̄/K is a constant extension of degree n. Each prime divisor of K̄ with degree
e is a product of (e, n) distinct prime devisors of K with degree e/(e, n) (see [2],
p. 164). Therefore the prime divisors of K̄ with degree one come from the prime
divisors of K with degree e|n. And for e|n, a prime divisor p of K with degree e
give e(≤ n) prime divisors of K̄ with degree one and deg pn/e = n. Therefore the
number of integral divisors of degree n in K is at least N̄1/n. On the other hand,
the Riemann-Roch theorem says that the dimension of a divisor class C of degree
n = 2gK − 1 in K is

d(C) = deg C + 1− gK = gK = d− 1.
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There are precisely (qd(c)−1)/(q−1) integral divisors in each class C (see [2], p.64),
and we have h(K) divisor classes of degree n. Therefore

h(K)(qd−1 − 1)
q − 1

≥ N̄1

n
≥ qn + 1− 2(d− 1)qn/2

n

=
q2d−3 + 1− 2(d− 1)q

2d−3
2

2d− 3
,

and

h(OK) ≥ (q − 1)(q2d−3 + 1− 2(d− 1)q
2d−3

2 )
d(2d− 3)(qd−1 − 1)

.(∗)

A simple calculation shows that the right-hand side of (∗) is bigger than one if
q ≥ 7, d ≥ 2; q = 5, d ≥ 3; or q = 3, d ≥ 5. This completes the proof of theorem
4.1.

For the case of d = 1, we have gK = 0 and h(OK) is always one. The following
result gives all real quadratic function fields of Chowla type with h(OK) = 1 beside
the trivial case of d = 1.

Theorem 4.2. Suppose that k = Fq(x),2 6 |q,K = k(
√

D), D = A2 + a,a ∈ F∗q, A
is monic polynomial in Fq[x] and deg A = d ≥ 2. There are precisely following six
such fields with h(OK) = 1:

q = 3, D = A2 + 1 with A = x3 − x± 1, x2 + 1, x2 ± x− 1,
q = 5, D = x4 + 2.

Proof. From theorem 4.1 we know that there are only following finite cases to be
considered:q = 3, 2 ≤ d ≤ 4; and q = 5, d = 2. D has to satisfy the condition (I) or
(II) of remark 3.6.

(I) D is irreducible, D = A2 − a, a ∈ F∗q − (F∗q)2. In [3] a table of h(K) is
presented for all quadratic function fields K = k(

√
P ) where P is irreducible and

3 ≤ deg P ≤ 8 for q = 3; 3 ≤ deg P ≤ 5 for q = 5, and 3 ≤ deg P ≤ 4 for q = 7,11.
From this table we find exactly six fields K = k(

√
P ) mentioned in theorem 4.2

satisfying the condition (I) and h(OK) = h(K)
d = 1.

Our class number table was made by using the following analytic formula given
by E.Artin [1]:

h(K) = −
2d−1∑
i=1

iσi(D),(1)

where

σi(D) =
∑

A∈Fq [x]
monic

(A,D)=1
deg A=i

[
D

A

]
(2)

and [D
A ] is the Jacobi symbol for polynomials in Fq[x] which is a natural analogy

of the ordinary Jacobi symbol and has similar properties:
(1) (M1M2

N ) = (M1
N )(M2

N ) if M1, M2 ∈ Fq[x], N ∈ Fq[x] is monic, and (M1, N) =
(M2, N) = 1.

(2)( a
N ) = a

|N|−1
2 = a

q−1
2 deg N , if a ∈ F∗q , N ∈ Fq[x] is monic and |N | = qdeg N .

Particularly, ( g
N ) = (−1)deg N .
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(3) (Reciprocity law) (M
N )( N

M ) = (−1)
|M|−1

2 · |N|−1
2 = (−1)

q−1
2 deg M·deg N if M and

N are monic polynomials in Fq[x] and (M, N) = 1.
Moreover, we know that σ0 = 1, σ2d−1 = −qd−1 and

σ2d−i = qd−i[−σi−1 + (q − 1)(σi−2 + · · ·+ σ1 + σ0)] (2 ≤ i ≤ d).(3)

Therefore we need to compute σi(D) for 1 ≤ i ≤ d− 1 only.
For the condition (II),D = M2 − b2 = (M + b)(M − b), b ∈ F∗q , 2 6 |d = deg M ≥ 2

and M ± b are irreducible. The only case we need to consider is q = 3 and d = 3.
There is only one field: D = (x3 − x + 1)(x3 − x − 1). For this field we have
σ0 = 1, σ5 = −9. The formula (2) gives σ1 = −3 and σ2 = 9. Then from (3) we
have σ4 = 15 and σ3 = −13. Therefore from the analytic formula (1)

h(OK) =
h(K)

3
= −1

3
(−3 + 18− 39 + 60− 45) = 3 6= 1.

This completes the proof of theorem 4.2.
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