PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 5, Pages 1473–1482 S 0002-9939(99)05016-9 Article electronically published on January 29, 1999

COMPLETENESS OF EIGENVECTORS OF GROUP REPRESENTATIONS OF OPERATORS WHOSE ARVESON SPECTRUM IS SCATTERED

SEN-ZHONG HUANG

(Communicated by David R. Larson)

ABSTRACT. We establish the following result.

Theorem. Let $\alpha: G \to \mathcal{L}(X)$ be a $\sigma(X, X_*)$ integrable bounded group representation whose Arveson spectrum $\operatorname{Sp}(\alpha)$ is scattered. Then the subspace generated by all eigenvectors of the dual representation α^* is w^* dense in X^* . Moreover, the $\sigma(X, X_*)$ closed subalgebra W_{α} generated by the operators α_t $(t \in G)$ is semisimple.

If, in addition, X does not contain any copy of c_0 , then the subspace spanned by all eigenvectors of α is $\sigma(X, X_*)$ dense in X. Hence, the representation α is almost periodic whenever it is strongly continuous.

1. Spectral theory for integrable bounded group representations

Throughout this paper G will denote a locally compact abelian (LCA) group with identity e and \widehat{G} will denote the dual group of G. The multiplication on LCA groups will be written by addition. Let $L^1(G)$ (resp. M(G)) be the usual group algebra (resp. measure algebra) with convolution as product operation. We refer to [11] or [21] for basic knowledge of Harmonic Analysis on LCA groups.

Given a complex Banach space X, let $\mathcal{L}(X)$ be the Banach algebra of all bounded linear operators on X. Take a LCA group G. A bounded group representation α of G on X is a mapping $\alpha: G \to \mathcal{L}(X)$ satisfying the following properties:

- (a) **Group property:** $\alpha_e = I_X$ the identity operator on X and $\alpha_{s+t} = \alpha_s \alpha_t$ for all $s, t \in G$;
 - (b) Boundedness: $\|\alpha\| := \sup_{t \in G} \|\alpha_t\| < \infty$.

Moreover, α is called *strongly* (resp. weakly) continuous if for each $x \in X$ the mapping $t \mapsto \alpha_t x$ is norm (resp. weakly) continuous. We need a further notion.

Definition 1.1. A bounded group representation $\alpha: G \to \mathcal{L}(X)$ of G on X is called *integrable* if there exists a subspace $X_* \subset X^*$ satisfying the following

Received by the editors September 1, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A67, 47A10.

Key words and phrases. Spectrum of group representation, almost periodicity.

requirements:

(i) X_* is a norm determining subspace of X^* , i.e., the following

$$||x||_1 := \sup\{|\rho(x)| : \rho \in X_*, ||\rho|| \le 1\}, \ x \in X,$$

defines an equivalent norm on X;

(ii) The group representation α is $\sigma(X, X_*)$ continuous and for each $\mu \in M(G)$ there exists an operator $\tilde{\alpha}_{\mu} \in \mathcal{L}(X)$ such that

$$\rho(\tilde{\alpha}_{\mu}x) = \int_{G} \rho(\alpha_{t}x) \, d\mu(t) \text{ for all } (x,\rho) \in X \times X_{*}.$$

In this case we say that α is $\sigma(X, X_*)$ integrable and the operators $\tilde{\alpha}_{\mu}$ are written as

$$\tilde{\alpha}_{\mu} = \sigma - \int_{G} \alpha_t \, d\mu(t), \quad \mu \in M(G).$$

It is easily verified that the extension $\tilde{\alpha}: M(G) \to \mathcal{L}(X)$ is a bounded algebra homomorphism, i.e.,

$$\tilde{\alpha}_{\mu*\nu} = \tilde{\alpha}_{\mu}\tilde{\alpha}_{\nu}, \quad \mu, \nu \in M(G).$$

Moreover, $\alpha_t = \tilde{\alpha}_{\delta_t}$ $(t \in G)$, where δ_t is the Dirac measure at the point t.

In the sequel $\tilde{\alpha}$ will denote the algebra homomorphism which is obtained by integrating a group homomorphism α .

That all weakly continuous bounded group representations are integrable is well-known; see [1].

Let $\alpha: G \to \mathcal{L}(X)$ be an integrable bounded group representation. For $f \in L^1(G)$, let $\tilde{\alpha}_f$ be the image of the measure $d\mu_f(t) := f(t)dt$ under $\tilde{\alpha}$. It is clear that $\tilde{\alpha}: L^1(G) \to \mathcal{L}(X)$ is also a bounded algebra homomorphism. Let $I_{\alpha} := \{f \in L^1(G) : \tilde{\alpha}_f = 0\}$. The Arveson spectrum of α , denoted by $\mathrm{Sp}(\alpha)$, is defined as the hull of I_{α} , i.e.,

$$\operatorname{Sp}(\alpha) := \{ \gamma \in \widehat{G} : \widehat{f}(\gamma) = 0 \text{ for all } f \in I_{\alpha} \}.$$

For $x \in X$, let $I_x := \{ f \in L^1(G) : \tilde{\alpha}_f x = 0 \}$ and define

$$\operatorname{Sp}_{\alpha}(x) := \{ \gamma \in \widehat{G} : \widehat{f}(\gamma) = 0 \text{ for all } f \in I_x \}$$

to be the spectrum of α at the point x. For a closed subset Λ of $\widehat{G},$ define

$$X^{\alpha}(\Lambda) := \{ x \in X : \operatorname{Sp}_{\alpha}(x) \subseteq \Lambda \}$$

to be the spectral subspace corresponding to Λ . A $\gamma \in \widehat{G}$ is called an eigenvalue if the eigenspace $\{x \in X : \alpha_t x = \gamma(t)x \ \forall t \in G\}$ is non-trivial. Eigenvectors are defined similarly.

We need the following basic facts established by the author in [14, Chapter I], cf. [1], [3], [4] and [7]. A complete summary of [14] appeared in "Dissertation Summary in Mathematics" 1 (1996), 171-178.

Theorem 1.2. Assume $X \neq \{0\}$. Let $\alpha : G \to \mathcal{L}(X)$ be a $\sigma(X, X_*)$ integrable bounded group representation. Then,

(i) The Arveson spectrum $\operatorname{Sp}(\alpha)$ is a non-empty closed subset of \widehat{G} . Assume $\gamma \in \widehat{G}$. Then, $\gamma \in \operatorname{Sp}(\alpha)$ if and only if there exists a net (x_i) of norm-one vectors in X such that $\|\alpha_t x_i - \gamma(t) x_i\| \to 0$ $(i \to \infty)$ uniformly for t in every compact subset of G.

- (ii) The group representation α is norm continuous if and only if its Arveson spectrum $Sp(\alpha)$ is compact.
- (iii) Assume that $\operatorname{Sp}(\alpha)$ is decomposed into disjoint closed subsets E and F where E is compact. Then there exists a projection $P \in \{\tilde{\alpha}_f : f \in L^1(G)\}$ such that

$$X^{\alpha}(E) = PX$$
 and $X^{\alpha}(F) = (I_X - P)X$.

For the subspace representations $\alpha \circ P$ and $\alpha \circ (I_X - P)$ obtained by restricting α in PX and $(I_X - P)$ there holds

$$\operatorname{Sp}(\alpha \circ P) = E \quad and \quad \operatorname{Sp}(\alpha \circ (I_X - P)) = F.$$

(iv) The following spectral mapping theorem holds:

$$\sigma(\alpha_t) = \overline{\{\gamma(t) : \gamma \in \operatorname{Sp}(\alpha)\}} \text{ for all } t \in G.$$

- (v) Let $K(G) := \{ f \in L^1(G) : \hat{f} \text{ has compact support} \}$. Then, the subspace generated by all vectors $\tilde{\alpha}_f x$ $(f \in K(G) \text{ and } x \in X) \text{ is } \sigma(X, X_*) \text{ dense in } X.$
- (vi) If $G := \mathbb{Z}$ and $T \in \mathcal{L}(X)$ is the generator of the representation $\alpha : \mathbb{Z} \to \mathcal{L}(X)$, then $\operatorname{Sp}(\alpha) = \sigma(T)$, where $\sigma(T)$ is the spectrum of the operator T.
- (vii) If $G := \mathbb{R}$ and A is the infinitesimal generator of the one-parameter group $(\alpha_t)_{t \in \mathbb{R}}$, then $\operatorname{Sp}(\alpha) = i\sigma(A)$, where $\sigma(A)$ is the spectrum of the closed operator A.

As a remark we point out that a weakly continuous bounded group representation $\alpha:G\to \mathcal{L}(X)$ is in fact strongly continuous. To see this, take $f\in K(G)$ and let $X_f:=\overline{\alpha_fX}$. Consider the restriction of α in X_f , denoted by β . To estimate the spectrum of β , let $\gamma\in\widehat{G}\setminus \mathrm{supp}\widehat{f}$. Then, by the regularity of $L^1(G)$ there exists $g\in L^1(G)$ such that $\widehat{g}(\gamma)=1$ and $\mathrm{supp}\widehat{g}\subseteq\widehat{G}\setminus \mathrm{supp}\widehat{f}$. It follows that g*f=0 and thus $\widetilde{\beta}_g\widetilde{\alpha}_f=\widetilde{\alpha}_g\widetilde{\alpha}_f=\widetilde{\alpha}_{g*f}=0$. This implies by definition of $\mathrm{Sp}(\beta)$ that $\gamma\notin\mathrm{Sp}(\beta)$ and thus $\mathrm{Sp}(\beta)$ is contained in the compact subset $\mathrm{supp}\widehat{f}$. By Theorem 1.2 (ii) β is norm continuous. This implies that the function $t\mapsto \alpha_t x$ is norm continuous for each $x\in X$ which can be written as $x=\widetilde{\alpha}_f y$ for some $y\in X$ and $f\in K(G)$. As claimed by Theorem 1.2 (v), such vectors generate a weakly dense and hence norm dense subspace of X. In conclusion, α is strongly continuous.

We need also two auxiliary results.

Proposition 1.3. Let $\alpha: G \to \mathcal{L}(X)$ be an integrable bounded group representation. Assume γ to be an isolated point of $\mathrm{Sp}(\alpha)$. Then, there exists a projection $0 \neq P_{\gamma} \in \{\tilde{\alpha}_f : f \in L^1(G)\}$ such that

$$\alpha_t P_{\gamma} = \gamma(t) P_{\gamma}$$
 for all $t \in G$.

In particular, γ is an eigenvalue of α .

Proof. Let P_{γ} be the spectral projection corresponding to the set $\{\gamma\}$ for which we have

$$\operatorname{Sp}(\alpha \circ P_{\gamma}) = \{\gamma\}.$$

The existence of P_{γ} is guaranteed by Theorem 1.2 (iii). Applying Theorem 1.2 (iv) to the group representation $\alpha \circ P_{\gamma}$ we find that $\sigma((\alpha \circ P_{\gamma})_t) = \{\gamma(t)\}$ for all $t \in G$. It follows from Gelfand's theorem (see [10] or [13]) that $(\alpha \circ P_{\gamma})_t = \gamma_0(t)I_{P_{\gamma}X}$ for all $t \in G$. Clearly, $P_{\gamma}X \neq \{0\}$.

The following "lifting property" should be compared with a similar result in [15].

Proposition 1.4. Let $\alpha: M(G) \to \mathcal{L}(X)$ be a bounded group representation. Let $Y \subseteq Z$ be two α -invariant closed subspaces of X. Assume that $\gamma_0 \in \operatorname{Sp}(\alpha)$ and $\psi \in (Z/Y)^*$ satisfy

$$\langle \psi, \alpha_t(z) + Y \rangle = \gamma_0(t) \langle \psi, z + Y \rangle$$
 for all $t \in G$, $z \in Z$.

Then, there exists $x_0^* \in X^*$ such that $\alpha_t^* x_0^* = \gamma_0(t) x_0^*$ for all $t \in G$ and $\langle x_0^*, z \rangle = \langle \psi, z + Y \rangle$ for all $z \in Z$.

Proof. Define $\psi_1 \in Z^*$ by $\psi_1(z) := \psi(z+Y)$, $z \in Z$. By Hahn-Banach theorem we extend ψ_1 to an element $\psi_2 \in X^*$, such that $\|\psi_2\| = \|\psi_1\|$. Since G is abelian, there exists an invariant mean ϕ on $l^{\infty}(G)$. For each $x \in X$, define

$$F(x;t) := \gamma_0(-t)\psi_2(\alpha_t x), \quad t \in G.$$

This is a function in $l^{\infty}(G)$. It follows that

$$x_0^*(x) := \phi(F(x;\cdot)), \quad x \in X,$$

well defines a linear functional on X with $||x_0^*|| \le ||\alpha|| \cdot ||\psi||$. For $s, t \in G$ and $x \in X$ we have

$$F(\alpha_s(x);t) = \gamma_0(-t)\psi_2(\alpha_{s+t}x) = \gamma_0(s)F(x;s+t).$$

It follows that

$$x_0^*(\alpha_s x) = \gamma_0(s)\phi(F(x; \cdot + s)) = \gamma_0(s)x_0^*(x),$$

where for the last identity we use the translation-invariance of ϕ . Therefore, $\alpha_s^* x_0^* = \gamma_0(s) x_0^*$ for all $s \in G$. Consider $z \in Z$. Then,

$$F(z;t) = \gamma_0(-t)\psi(\alpha_t(z) + Y) = \gamma_0(-t)\gamma_0(t)\psi(z + Y) = \psi(z + Y).$$

This implies that $x_0^*(z) = \phi(F(z;\cdot)) = \psi(z+Y)\phi(\mathbf{1}) = \psi(z+Y)$, completing the proof.

2. Completeness of eigenvectors of dual representations

Recall that a closed subset Λ of \widehat{G} is called *scattered* if each closed subset of Λ contains an isolated point. Every closed countable subset of \widehat{G} is scattered and, moreover, if \widehat{G} satisfies the second axiom of countability, then a closed subset of \widehat{G} is scattered if and only if it is countable.

Our main result in this section reads as follows.

Theorem 2.1. Let $\alpha: G \to \mathcal{L}(X)$ be an integrable bounded group representation whose Arveson spectrum $\mathrm{Sp}(\alpha)$ is scattered. Then the subspace

$$X_{\alpha^*} := \inf\{x^* \in X^* : there \ exists \ \gamma \in \operatorname{Sp}(\alpha) \ such \ that$$

$$\alpha_t^* x^* = \gamma(t) x^* \ for \ all \ t \in G\}$$

generated by all eigenvectors of α^* is w^* -dense in X^* . Moreover, there exists a uniformly bounded, mutually orthogonal system of projections $\{E_{\gamma}: \gamma \in \operatorname{Sp}(\alpha)\}$ such that $E_{\gamma}X^* = \{x^* \in X^*: \alpha_t^*x^* = \gamma(t)x^* \text{ for all } t \in G\}$ for all $\gamma \in \operatorname{Sp}(\alpha)$.

Proof. Let $Y := \{y \in X : x^*(y) = 0 \text{ for all } x^* \in X_{\alpha^*}\}$. Then, Y is an α -invariant closed subspace of X. We have to show $Y = \{0\}$. To this end, let β_t $(t \in G)$ be the restriction of α_t in Y. Then, β is also an integrable bounded group representation. By Theorem 1.2 (i), it is sufficient to prove that $\operatorname{Sp}(\beta) = \emptyset$ in order to obtain $Y = \{0\}$.

Assume conversely that $Y \neq \{0\}$. Let $X_* \subset X^*$ be such that α is $\sigma(X, X_*)$ integrable. Let $Y_* := \{x_{|Y}^* : x^* \in Y\}$. Then, β is $\sigma(Y, Y_*)$ integrable. Let V be the norm closure of Y_* in Y^* . Then, β is also integrable with respect to the weak topology $\sigma(Y, V)$. We have $V \neq \{0\}$ and $\beta_t^* V \subset V$ for each $t \in G$. This implies that

$$\Phi_t := \text{the restriction of } \beta_t^* \text{ in } V, t \in G,$$

defines a $\sigma(V,Y)$ integrable bounded group representation. To compute the spectrum of Φ , consider $f \in I_{\alpha}$, i.e., $\tilde{\alpha}_f = 0$. Then, for all $y \in Y$ and $\rho \in Y_*$ we have

$$\langle y, \tilde{\Phi}_f \rho \rangle = \int_G \langle y, \Phi_t \rho \rangle f(t) dt = \int_G \langle \rho, \alpha_t y \rangle f(t) dt = \rho(\tilde{\alpha}_f y) = 0.$$

Therefore, $\tilde{\Phi}_f = 0$ and thus $I_{\Phi} \supseteq I_{\alpha}$. By definition of spectrum we find that $\operatorname{Sp}(\Phi) \subseteq \operatorname{Sp}(\alpha)$. Since $\operatorname{Sp}(\alpha)$ is scattered, so is $\operatorname{Sp}(\Phi)$. The non-empty scattered set $\operatorname{Sp}(\Phi)$ contains an isolated point, γ_0 say. By Proposition 1.3 γ_0 is an eigenvalue of Φ . Choose $0 \neq y_0^* \in V \subseteq Y^*$ to be an eigenvector for γ_0 . Then, for all $y \in Y$ and $t \in G$ we have

$$y_0^*(\alpha_t y) = \Phi_t y_0^*(y) = \gamma_0(t) y_0^*(y).$$

Applying Proposition 1.4 to α with the case $Z=\{0\}$ we obtain an extension $0 \neq x_0^* \in X^*$ of y_0^* such that $\alpha_t^* x_0^* = \gamma_0(t) x_0^*$ for all $t \in G$. It follows that $x_0^* \in X_{\alpha^*}$. Hence, we have for all $y \in Y$ that $y_0^*(y) = x_0^*(y) = 0$, a contradiction.

To show the "Moreover" part, let ϕ be an invariant mean on $l^{\infty}(G)$. Let $\gamma \in \operatorname{Sp}(\alpha)$. For each pair $(x, \rho) \in X \times X^*$ the function $t \mapsto \langle \rho, \gamma(-t)\alpha_t x \rangle$ belongs to $l^{\infty}(G)$. Thus,

$$\langle E_{\gamma}\rho, x\rangle := \phi_t(\langle \rho, \gamma(-t)\alpha_t x\rangle, \ x \in X, \ \rho \in X^*,$$

defines an operator E_{γ} on X^* , where ϕ_t means that the invariant mean is applied to the corresponding function of t. It is evident that $\|E_{\gamma}\| \leq \|\alpha\|$. The translation-invariance of ϕ implies that $\alpha_t^* E_{\gamma} = \gamma(t) E_{\gamma}$ for all $t \in G$. From this we see further that each E_{γ} is a projection. To prove the mutual orthogonality, let $\gamma_1, \gamma_2 \in \operatorname{Sp}(\alpha)$ be two different elements. Clearly, E_{γ_1} and E_{γ_2} are commuting. Therefore, for all $t \in G$

$$\begin{array}{rcl} \gamma_{1}(t)E_{\gamma_{1}}E_{\gamma_{2}} & = & \alpha_{t}^{*}E_{\gamma_{1}}E_{\gamma_{2}} = \alpha_{t}^{*}E_{\gamma_{2}}E_{\gamma_{1}} \\ & = & \gamma_{2}(t)E_{\gamma_{2}}E_{\gamma_{1}} = \gamma_{2}(t)E_{\gamma_{1}}E_{\gamma_{2}}. \end{array}$$

Since $\gamma_1 \neq \gamma_2$, this implies that $E_{\gamma_1} E_{\gamma_2} = 0$. The proof is finished.

Consider a representation α given as in Theorem 2.1 which is $\sigma(X, X_*)$ integrable. Let W_{α} be the $\sigma(X, X_*)$ closed subalgebra of $\mathcal{L}(X)$ generated by all operators $\tilde{\alpha}_{\mu}$ ($\mu \in M(G)$). Assume $T \in W_{\alpha}$. Then, there exists a net (μ_i) $\subset M(G)$ such that $\tilde{\alpha}_{\mu_i} \stackrel{\sigma}{\longrightarrow} T$. For $\gamma \in \operatorname{Sp}(\alpha)$ consider the projection E_{γ} given in Theorem 2.1. Fix

 $(x,\rho) \in X \times X_*$. Then, from the definition of $\tilde{\alpha}_{\mu_i}$ we have

$$\langle E_{\gamma}\rho, \tilde{\alpha}_{\mu_{i}} x \rangle = \int_{G} \langle \alpha_{t}^{*} E_{\gamma}\rho, x \rangle d\mu_{i}(t)$$
$$= \int_{G} \langle \gamma(t) E_{\gamma}\rho, x \rangle d\mu_{i}(t) = \widehat{\mu}_{i}(\gamma) \langle E_{\gamma}\rho, x \rangle.$$

By taking limit we find

$$\langle E_{\gamma}\rho, Tx \rangle = \lim_{i} \widehat{\mu}_{i}(\gamma) \langle E_{\gamma}\rho, x \rangle.$$

Since this identity holds for all $x \in X$ and $\rho \in X_*$, it follows that the limit $\lim_i \widehat{\mu_i}(\gamma)$ exists; denoted by c_{γ} . Then we have $T^*E_{\gamma} = c_{\gamma}E_{\gamma}$. Therefore, the subspace generated by all eigenvectors of T^* is w^* -dense in X^* . As a consequence, the zero operator is the unique nilpotent operator in W_{α} and thus W_{α} is a semisimple Banach algebra.

This has established the following Theorem 2.2 which refines [20, Theorem 7] where the corresponding result is given for weakly continuous representations. Note that our proof is completely different from that of [20].

Theorem 2.2. Let $\alpha: G \to \mathcal{L}(X)$ be a $\sigma(X, X_*)$ integrable bounded group representation whose Arveson spectrum $\mathrm{Sp}(\alpha)$ is scattered. Then the $\sigma(X, X_*)$ closed subalgebra W_{α} of $\mathcal{L}(X)$ is semisimple.

Moreover, for each $T \in W_{\alpha}$ there exists a set $\{c_{\gamma} : \gamma \in \operatorname{Sp}(\alpha)\} \subset \mathbb{C}$ such that $T^*E_{\gamma} = c_{\gamma}E_{\gamma}$ for all $\gamma \in \operatorname{Sp}(\alpha)$, where $\{E_{\gamma} : \gamma \in \operatorname{Sp}(\alpha)\}$ is the set of projections given in Theorem 2.1. As a result, the subspace generated by all eigenvectors of T^* is w^* -dense in X^* .

As consequences of Theorems 2.1 and 2.2 we have:

Corollary 2.3. Let $T \in \mathcal{L}(X)$ be a doubly power bounded operator with countable spectrum $\sigma(T)$. Then the subspace generated by all eigenvectors of T^* is w^* -dense in X^* . Moreover, the weakly closed subalgebra generated by T is semisimple.

Proof. Let $\alpha: \mathbb{Z} \to \mathcal{L}(X)$ be the group representation given by

$$\alpha_n := T^n \text{ for all } n \in \mathbb{Z}.$$

 α is norm continuous and bounded. Moreover, by Theorem 1.2 (vi) we have $\operatorname{Sp}(\alpha) = \sigma(T)$. Hence, Theorems 2.1 and 2.2 are applicable to α and yields the desired result.

Corollary 2.4. Let $(e^{tA})_{t\in\mathbb{R}}$ be a strongly continuous bounded group of operators on X such that the spectrum $\sigma(A)$ of the infinitesimal generator A is countable. Then the subspace generated by all eigenvectors of the dual operator A^* is w^* -dense in X^* . Moreover, the smallest weakly closed subalgebra of $\mathcal{L}(X)$ containing all operators e^{tA} $(t \in \mathbb{R})$ is semisimple.

Proof. Let $\alpha : \mathbb{R} \to \mathcal{L}(X)$ be the strongly continuous bounded group representation given by

$$\alpha_t := e^{tA}$$
 for all $t \in \mathbb{R}$.

Then $\operatorname{Sp}(\alpha) = i\sigma(A)$ by Theorem 1.2 (vii). Hence $\operatorname{Sp}(\alpha)$ is countable. If $\lambda \in \sigma(A)$ and $x^* \in X^*$ satisfy $\alpha_t^* x^* = e^{\lambda t} x^*$ for all $t \in \mathbb{R}$, then x^* belongs to the definition domain of A^* and $A^* x^* = \lambda x^*$. Thus, the result follows by using Theorems 2.1 and 2.2.

Recall that an operator $T \in \mathcal{L}(X)$ is called *hermitian* if $||e^{itT}|| = 1$ for all $t \in \mathbb{R}$. From Corollary 2.4 we derive immediately the following analogue of Corollary 2.3.

Corollary 2.5. Let $T \in \mathcal{L}(X)$ be a hermitian operator with countable spectrum $\sigma(T)$. Then the subspace generated by all eigenvectors of T^* is w^* -dense in X^* . Moreover, the weakly closed subalgebra generated by T is semisimple.

We remark that the semisimplicity in Corollary 2.3 and Corollary 2.5 has been proved by Feldman [9] and Sinclair [22, Theorem 3.1], respectively. Their methods are completely different from that of [20] and ours.

3. Completeness of eigenvectors

The completeness of eigenvectors of integrable group representations with discrete spectrum is guaranteed by the following result.

Theorem 3.1. Let $\alpha: G \to \mathcal{L}(X)$ be an $\sigma(X, X_*)$ integrable bounded representation with discrete Arveson spectrum. Then the subspace

$$X_{\alpha} := \lim\{x \in X : there \ exists \ \gamma \in \operatorname{Sp}(\alpha) \ such \ that$$

$$\alpha_t x = \gamma(t) x \ for \ all \ t \in G\}$$

generated by all eigenvectors of α is $\sigma(X, X_*)$ dense in X. Moreover, there exists a uniformly bounded, mutually orthogonal system of projections $\{P_{\gamma} : \gamma \in \operatorname{Sp}(\alpha)\}$ such that $P_{\gamma}X = \{x \in X : \alpha_t x = \gamma(t)x \text{ for all } t \in G\}$ for all $\gamma \in \operatorname{Sp}(\alpha)$.

Proof. Applying Proposition 1.3 to α we find that for each $\gamma \in \operatorname{Sp}(\alpha)$ there exists a projection $P_{\gamma} \in \{\tilde{\alpha}_f : f \in L^1(G)\}$ satisfying

$$\alpha_t P_{\gamma} = \gamma(t) P_{\gamma}$$
 for all $t \in G$.

Thus.

$$X_{\alpha} = \bigvee_{\gamma \in \operatorname{Sp}(\alpha)} P_{\gamma} X.$$

Consider $f \in K(G)$, i.e., \hat{f} has compact support. Let $X_f := \overline{\tilde{\alpha}_f X}$ and β be the restriction of α in X_f . Then, β is integrable and

$$\operatorname{Sp}(\beta) \subseteq \operatorname{Sp}(\alpha) \cap \operatorname{supp} \hat{f}$$
.

Note that the set $\operatorname{Sp}(\alpha) \cap \operatorname{supp} \hat{f}$ is compact and discrete; hence it contains at most finitely many points. Therefore, $\operatorname{Sp}(\beta)$ is a finite subset of $\operatorname{Sp}(\alpha)$. It follows from Theorem 1.2 (iii) combining with Proposition 1.3 that X_f is decomposed into finite sum of eigenspaces of β . Thus, X_f is contained in X_α . By Theorem 1.2 (v), the subspace generated by all of the subsets X_f $(f \in K(G))$ is $\sigma(X, X_*)$ dense in X. Consequently, X_α is $\sigma(X, X_*)$ dense in X.

A more general result of Theorem 3.1 is given in [14, Theorem 3.1.2].

In what follows we will study the almost periodicity of representations. Let BUC(G; X) be the Banach space of all bounded and uniformly continuous functions $h: G \to X$ with the norm

$$||h|| := \sup_{t \in G} ||h(t)||_X.$$

For each $t \in G$ let T_t be the translation on BUC(G; X) given by

$$T_t h(\cdot) := h(\cdot + t)$$
 for all $h \in BUC(G; X)$.

A function $h \in BUC(G; X)$ is called almost periodic if the set $\{T_th : t \in G\}$ is relatively compact in BUC(G; X). Let AP(G; X) be the subspace of all almost periodic functions in BUC(G; X) and denote by AP(G) the space $AP(G; \mathbb{C})$. A function $h \in BUC(G; X)$ is called scalar almost periodic if for each $x^* \in X^*$ the scalar function $t \mapsto x^*(h(t))$ is almost periodic. Let $h \in BUC(G; X)$. It is well known that $h \in AP(G; X)$ if and only if h is scalar almost periodic and the range $\{h(t) : t \in G\}$ is relatively compact in X (cf. [19, pp. 70-72]).

The Beurling spectrum of $h \in BUC(G; X)$, denoted by $\sigma(h)$, is defined to be the local spectrum of T at h, i.e.,

$$\sigma(h) := \operatorname{Sp}_{T}(h) = \{ \gamma \in \widehat{G} : f \in L^{1}(G), \widetilde{T}_{f}h = 0 \Longrightarrow \widehat{f}(\gamma) = 0 \}.$$

If $h \in BUC(G; \mathbb{C})$ has scattered spectrum, then a theorem of Loomis [17, Theorem 5] asserts that h is almost periodic. The extension of Loomis's theorem to vector-valued functions is given by Baskakov [2, Theorem 2] as follows. Recall that c_0 is the Banach space of all convergent sequences $(a_n)_{n\in\mathbb{N}}$ with limit zero.

Theorem 3.2. Assume that $h \in BUC(G; X)$ has scattered spectrum. If X does not contain any copy of c_0 , then h is almost periodic.

We call a strongly continuous bounded group representation $\alpha: G \to \mathcal{L}(X)$ almost periodic if for each $x \in X$ the function $t \mapsto \alpha_t x$ is almost periodic. It follows from the Jocob-deLeeuw-Glicksberg theory that the subspace generated by all eigenvectors of an almost periodic representation is norm dense in the defining Banach space, see [6, Theorem 4.11], [16] or the Basic Theorem in [18, p.150].

Let $\alpha: G \to \mathcal{L}(X)$ be a $\sigma(X, X_*)$ integrable bounded group representation whose Arveson spectrum is scattered. Assume further that the Banach space X does not contain any copy of c_0 . For $f \in K(G)$, let $X_f := \overline{\tilde{\alpha}_f X}$ and let β be the restriction of α in X_f . As seen in the proof of Theorem 3.1, we have

$$\operatorname{Sp}(\beta) \subseteq \operatorname{Sp}(\alpha) \cap \operatorname{supp} \hat{f}$$
.

Hence, the representation β has compact spectrum and thus is norm continuous by Theorem 1.2 (ii). Given $x_0 \in X_f$, let

$$h(t) := \beta_t x_0 = \alpha_t x_0, \quad t \in G.$$

Then, the norm continuity of β implies that $h \in BUC(G; X_f)$. Let $g \in L^1(G)$. For $s \in G$ we have

$$\tilde{T}_g h(s) = \int_G T_t h(s) g(t) dt = \int_G h(s+t) g(t) dt = \int_G \alpha_{s+t} x_0 g(t) dt = \alpha_s \tilde{\alpha}_g x_0.$$

It follows that $\tilde{T}_a h = 0 \iff \tilde{\alpha}_a x_0$. By definition we find

$$\sigma(h) = \operatorname{Sp}_{\alpha}(x_0) \subseteq \operatorname{Sp}(\alpha).$$

Therefore, h has scattered spectrum. It follows from Theorem 3.1 that h is almost periodic. By definition, β is almost periodic and thus by the Jacob-deLeeuw-Glicksberg theory [6] the subspace generated by all eigenvectors of β is norm dense in X_f . Note that the subspace generated by the subspaces X_f ($f \in K(G)$) is $\sigma(X, X_*)$ dense in X by Theorem 1.2 (v). We have proved the following result.

Theorem 3.3. Let $\alpha: G \to \mathcal{L}(X)$ be a $\sigma(X, X_*)$ integrable bounded group representation whose Arveson spectrum $\mathrm{Sp}(\alpha)$ is scattered. Assume that X does not

contain any copy of c_0 . Then the subspace

$$X_{\alpha} := \lim\{x \in X : there \ exists \ \gamma \in \operatorname{Sp}(\alpha) \ such \ that$$

$$\alpha_t x = \gamma(t) x \ for \ all \ t \in G\}$$

generated by all eigenvectors of α is $\sigma(X, X_*)$ dense in X.

As a result, if α is strongly continuous, then α is almost periodic.

The following refines Corollaries 2.3, 2.4 and 2.5.

Corollary 3.4. Assume that X does not contain any copy of c_0 . Then

- (i) If $T \in \mathcal{L}(X)$ is a doubly power bounded operator with countable spectrum $\sigma(T)$, then the subspace generated by all eigenvectors of T is norm dense in X.
- (ii) If $(e^{tA})_{t\in\mathbb{R}}$ is a strongly continuous bounded group of operators on X such that the spectrum $\sigma(A)$ is countable, then the subspace generated by all eigenvectors of A is norm dense in X.
- (iii) If $T \in \mathcal{L}(X)$ is a hermitian operator with countable spectrum $\sigma(T)$, then the subspace generated by all eigenvectors of T is norm dense in X.

References

- ARVESON, W., On groups of automorphisms of operator algebras. J. Funct. Anal. 15 (1974), 217-243. MR 50:1016
- [2] BASKAKOV, A.G., Spectral criteria for almost periodicity of solutions of functional equations. Math. Notes of Acad. Sci. USSR 24 (1978), 606-612.
- [3] BRATTELI, O. AND ROBINSON, D.W., Operator Algebras and Quantum Statistical Mechanics I. Springer-Verlag, New York-Heidelberg-Berlin (1979). MR 81a:46070
- [4] CONNES, A., Une classification des facteurs de type III. Ann. Sci. l'École Norm. Sup. 6 (1973), 133-245. MR 49:5865
- [5] COROJOARĂ, I. AND FOIAŞ, C., Theory of Generalized Spectral Operators. Gordon and Breach, New York, 1968. MR 52:15085
- [6] DELEEUW, K. AND GLICKSBERG, L., Applications of almost periodic compactifications. Acta Math. 105 (1961), 63-97. MR 24:A1632
- [7] D'Antoni, C., Longo, C., and Zsidó, L., A spectral mapping theorem for locally compact groups of operators. *Pacific J. Math.* 103 (1982), 17-24. MR 84e:47058
- [8] DUGUNDJI, J., Topology, 4th. ed. Allyn and Bacon Inc., Boston, 1968.
- [9] FELDMAN, G.M., The semisimplicity of an algebra generated by an isometric operator, Funct. Anal. Appl. 8(1974), 93-94. MR 50:14245
- [10] GELFAND, I.M., Ideale und primäre Ideale in normierten Ringen. Mat. Sb. 9 (1941), 41-47.
- [11] HEWITT, E. AND ROSS, R., Abstract Harmonic Analysis I. Springer-Verlag, Berlin-Heidelberg-New York, 1963. MR 28:158
- [12] HILLE, E. AND PHILLIPS, R. S., Functional Analysis and Semi-Groups, 3rd ed. Rhode Island, Amer. Math. Soc. Colloq. Publ. XXXI, 1968. MR 54:11077
- [13] HUANG, S.-Z., Characterizing spectra of closed operators through existence of slowly growing solutions of their Cauchy problems. Studia Math. 116 (1995), 23-41. MR 96i:47068
- [14] HUANG, S.-Z., Spectral Theory for Non-Quasianalytic Representations of Locally Compact Abelian Groups. Thesis, Universität Tübingen, 1996. A complete summary is given in "Dissertation Summaries in Mathematics" 1 (1996), 171-178.
- [15] HUANG, S.-Z., VAN NEERVEN, J. AND RÄBIGER, F., Ditkin's condition for certain Beurling algebras. Proc. Amer. Math. Soc. 126 (1998), 1397-1407. CMP 97:11
- [16] Krengel, U., Ergodic Theorems. de Gruyter, Berlin, New York (1985). MR 87i:28001
- [17] LOOMIS, L. H., The spectral characterization of a class of almost periodic functions. Ann. Math. 72 (1960), 362-368. MR 22:11255
- [18] LYUBICH, YU. I., Introduction to the Theory of Banach Representations of Groups. Birkhäuser-Verlag, Basel (1988). MR 90i:22001
- [19] LEVITAN, B.M. AND ZHIKOV, V.V., Almost Periodic Functions and Differential Equations. Cambridge Univ. Press, Cambridge (1982). MR 84g:34004

- [20] MURAZ, G. AND VŨ, QUÔC PHÓNG, Semisimple Banach algebras generated by strongly continuous representations of locally compact abelian groups. J. Funct. Anal. 126 (1994), 1-6. MR 95k:43006
- [21] Rudin, W., Fourier Analysis on Groups. Interscience, New York, 1962. MR 27:2808
- [22] SINCLAIR, A.M., The Banach algebra generated by a hermitian operator, Proc. London Math. Soc. 24 (1972), 681-691. MR 46:4198

Mathematisches Institut, Friedrich-Schiller-Universität Jena, Ernst-Abbe-Platz 1-4, D-07743 Jena, Germany

 $Current\ address:$ Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 18055 Rostock, Germany

 $E\text{-}mail\ address: \verb|huang@sun.math.uni-rostock.de|$