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Abstract. We establish the following result.

Theorem. Let α : G → L(X) be a σ(X, X∗) integrable bounded group rep-
resentation whose Arveson spectrum Sp(α) is scattered. Then the subspace
generated by all eigenvectors of the dual representation α∗ is w∗ dense in X∗.
Moreover, the σ(X, X∗) closed subalgebra Wα generated by the operators αt

(t ∈ G) is semisimple.

If, in addition, X does not contain any copy of c0, then the subspace
spanned by all eigenvectors of α is σ(X, X∗) dense in X. Hence, the repre-
sentation α is almost periodic whenever it is strongly continuous.

1. Spectral theory for integrable bounded
group representations

Throughout this paper G will denote a locally compact abelian (LCA) group
with identity e and Ĝ will denote the dual group of G. The multiplication on LCA
groups will be written by addition. Let L1(G) (resp. M(G)) be the usual group
algebra (resp. measure algebra) with convolution as product operation. We refer
to [11] or [21] for basic knowledge of Harmonic Analysis on LCA groups.

Given a complex Banach space X, let L(X) be the Banach algebra of all bounded
linear operators on X. Take a LCA group G. A bounded group representation α of
G on X is a mapping α : G→ L(X) satisfying the following properties:

(a) Group property: αe = IX the identity operator on X and αs+t = αsαt for
all s, t ∈ G;

(b) Boundedness: ‖α‖ := supt∈G ‖αt‖ <∞.
Moreover, α is called strongly (resp. weakly) continuous if for each x ∈ X the

mapping t 7→ αtx is norm (resp. weakly) continuous. We need a further notion.

Definition 1.1. A bounded group representation α : G → L(X) of G on X
is called integrable if there exists a subspace X∗ ⊂ X∗ satisfying the following
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requirements:
(i) X∗ is a norm determining subspace of X∗, i.e., the following

‖x‖1 := sup{|ρ(x)| : ρ ∈ X∗, ‖ρ‖ ≤ 1}, x ∈ X,
defines an equivalent norm on X ;

(ii) The group representation α is σ(X,X∗) continuous and for each µ ∈ M(G)
there exists an operator α̃µ ∈ L(X) such that

ρ(α̃µx) =
∫

G

ρ(αtx) dµ(t) for all (x, ρ) ∈ X ×X∗.

In this case we say that α is σ(X,X∗) integrable and the operators α̃µ are written
as

α̃µ = σ −
∫

G

αt dµ(t), µ ∈M(G).

It is easily verified that the extension α̃ : M(G) → L(X) is a bounded algebra
homomorphism, i.e.,

α̃µ∗ν = α̃µα̃ν , µ, ν ∈M(G).

Moreover, αt = α̃δt (t ∈ G), where δt is the Dirac measure at the point t.
In the sequel α̃ will denote the algebra homomorphism which is obtained by

integrating a group homomorphism α.

That all weakly continuous bounded group representations are integrable is well-
known; see [1].

Let α : G → L(X) be an integrable bounded group representation. For f ∈
L1(G), let α̃f be the image of the measure dµf (t) := f(t)dt under α̃. It is clear
that α̃ : L1(G) → L(X) is also a bounded algebra homomorphism. Let Iα := {f ∈
L1(G) : α̃f = 0}. The Arveson spectrum of α, denoted by Sp(α), is defined as the
hull of Iα, i.e.,

Sp(α) := {γ ∈ Ĝ : f̂(γ) = 0 for all f ∈ Iα}.
For x ∈ X, let Ix := {f ∈ L1(G) : α̃fx = 0} and define

Spα(x) := {γ ∈ Ĝ : f̂(γ) = 0 for all f ∈ Ix}
to be the spectrum of α at the point x. For a closed subset Λ of Ĝ, define

Xα(Λ) := {x ∈ X : Spα(x) ⊆ Λ}
to be the spectral subspace corresponding to Λ. A γ ∈ Ĝ is called an eigenvalue
if the eigenspace {x ∈ X : αtx = γ(t)x ∀t ∈ G} is non-trivial. Eigenvectors are
defined similarly.

We need the following basic facts established by the author in [14, Chapter I], cf.
[1], [3], [4] and [7]. A complete summary of [14] appeared in “Dissertation Summary
in Mathematics” 1 (1996), 171-178.

Theorem 1.2. Assume X 6= {0}. Let α : G → L(X) be a σ(X,X∗) integrable
bounded group representation. Then,

(i) The Arveson spectrum Sp(α) is a non-empty closed subset of Ĝ. Assume
γ ∈ Ĝ. Then, γ ∈ Sp(α) if and only if there exists a net (xi) of norm-one vectors in
X such that ‖αtxi − γ(t)xi‖ → 0 (i→∞) uniformly for t in every compact subset
of G.
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(ii) The group representation α is norm continuous if and only if its Arveson
spectrum Sp(α) is compact.

(iii) Assume that Sp(α) is decomposed into disjoint closed subsets E and F where
E is compact. Then there exists a projection P ∈ {α̃f : f ∈ L1(G)} such that

Xα(E) = PX and Xα(F ) = (IX − P )X.

For the subspace representations α ◦ P and α ◦ (IX − P ) obtained by restricting α
in PX and (IX − P ) there holds

Sp(α ◦ P ) = E and Sp(α ◦ (IX − P )) = F.

(iv) The following spectral mapping theorem holds:

σ(αt) = {γ(t) : γ ∈ Sp(α)} for all t ∈ G.
(v) Let K(G) := {f ∈ L1(G) : f̂ has compact support}. Then, the subspace

generated by all vectors α̃fx (f ∈ K(G) and x ∈ X) is σ(X,X∗) dense in X.
(vi) If G := Z and T ∈ L(X) is the generator of the representation α : Z → L(X),

then Sp(α) = σ(T ), where σ(T ) is the spectrum of the operator T.
(vii) If G := R and A is the infinitesimal generator of the one-parameter group

(αt)t∈R, then Sp(α) = iσ(A), where σ(A) is the spectrum of the closed operator A.

As a remark we point out that a weakly continuous bounded group representation
α : G → L(X) is in fact strongly continuous. To see this, take f ∈ K(G) and let
Xf := α̃fX. Consider the restriction of α in Xf , denoted by β. To estimate the
spectrum of β, let γ ∈ Ĝ \ suppf̂ . Then, by the regularity of L1(G) there exists
g ∈ L1(G) such that ĝ(γ) = 1 and suppĝ ⊆ Ĝ \ suppf̂ . It follows that g ∗ f = 0 and
thus β̃gα̃f = α̃gα̃f = α̃g∗f = 0. This implies by definition of Sp(β) that γ /∈ Sp(β)
and thus Sp(β) is contained in the compact subset suppf̂ . By Theorem 1.2 (ii) β
is norm continuous. This implies that the function t 7→ αtx is norm continuous for
each x ∈ X which can be written as x = α̃fy for some y ∈ X and f ∈ K(G). As
claimed by Theorem 1.2 (v), such vectors generate a weakly dense and hence norm
dense subspace of X. In conclusion, α is strongly continuous.

We need also two auxiliary results.

Proposition 1.3. Let α : G → L(X) be an integrable bounded group representa-
tion. Assume γ to be an isolated point of Sp(α). Then, there exists a projection
0 6= Pγ ∈ {α̃f : f ∈ L1(G)} such that

αtPγ = γ(t)Pγ for all t ∈ G.
In particular, γ is an eigenvalue of α.

Proof. Let Pγ be the spectral projection corresponding to the set {γ} for which we
have

Sp(α ◦ Pγ) = {γ}.
The existence of Pγ is guaranteed by Theorem 1.2 (iii). Applying Theorem 1.2 (iv)
to the group representation α ◦ Pγ we find that σ((α ◦ Pγ)t) = {γ(t)} for all t ∈ G.
It follows from Gelfand’s theorem (see [10] or [13]) that (α ◦ Pγ)t = γ0(t)IPγX for
all t ∈ G. Clearly, PγX 6= {0}.
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The following “lifting property” should be compared with a similar result in [15].

Proposition 1.4. Let α : M(G) → L(X) be a bounded group representation. Let
Y ⊆ Z be two α−invariant closed subspaces of X. Assume that γ0 ∈ Sp(α) and
ψ ∈ (Z/Y )∗ satisfy

〈ψ, αt(z) + Y 〉 = γ0(t)〈ψ, z + Y 〉 for all t ∈ G, z ∈ Z.
Then, there exists x∗0 ∈ X∗ such that α∗tx

∗
0 = γ0(t)x∗0 for all t ∈ G and 〈x∗0, z〉 =

〈ψ, z + Y 〉 for all z ∈ Z.
Proof. Define ψ1 ∈ Z∗ by ψ1(z) := ψ(z + Y ), z ∈ Z. By Hahn-Banach theorem we
extend ψ1 to an element ψ2 ∈ X∗, such that ‖ψ2‖ = ‖ψ1‖. Since G is abelian, there
exists an invariant mean φ on l∞(G). For each x ∈ X, define

F (x; t) := γ0(−t)ψ2(αtx), t ∈ G.
This is a function in l∞(G). It follows that

x∗0(x) := φ(F (x; ·)), x ∈ X,
well defines a linear functional on X with ‖x∗0‖ ≤ ‖α‖ · ‖ψ‖. For s, t ∈ G and x ∈ X
we have

F (αs(x); t) = γ0(−t)ψ2(αs+tx) = γ0(s)F (x; s+ t).

It follows that

x∗0(αsx) = γ0(s)φ(F (x; · + s)) = γ0(s)x∗0(x),

where for the last identity we use the translation-invariance of φ. Therefore, α∗sx∗0 =
γ0(s)x∗0 for all s ∈ G. Consider z ∈ Z. Then,

F (z; t) = γ0(−t)ψ(αt(z) + Y ) = γ0(−t)γ0(t)ψ(z + Y ) = ψ(z + Y ).

This implies that x∗0(z) = φ(F (z; ·)) = ψ(z + Y )φ(1) = ψ(z + Y ), completing the
proof.

2. Completeness of eigenvectors of dual representations

Recall that a closed subset Λ of Ĝ is called scattered if each closed subset of Λ
contains an isolated point. Every closed countable subset of Ĝ is scattered and,
moreover, if Ĝ satisfies the second axiom of countability, then a closed subset of Ĝ
is scattered if and only if it is countable.

Our main result in this section reads as follows.

Theorem 2.1. Let α : G → L(X) be an integrable bounded group representation
whose Arveson spectrum Sp(α) is scattered. Then the subspace

Xα∗ := lin{x∗ ∈ X∗ : there exists γ ∈ Sp(α) such that
α∗tx

∗ = γ(t)x∗ for all t ∈ G}
generated by all eigenvectors of α∗ is w∗−dense in X∗. Moreover, there exists a
uniformly bounded, mutually orthogonal system of projections {Eγ : γ ∈ Sp(α)}
such that EγX

∗ = {x∗ ∈ X∗ : α∗tx∗ = γ(t)x∗ for all t ∈ G} for all γ ∈ Sp(α).
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Proof. Let Y := {y ∈ X : x∗(y) = 0 for all x∗ ∈ Xα∗}. Then, Y is an
α−invariant closed subspace of X. We have to show Y = {0}. To this end, let
βt (t ∈ G) be the restriction of αt in Y. Then, β is also an integrable bounded
group representation. By Theorem 1.2 (i), it is sufficient to prove that Sp(β) = ∅
in order to obtain Y = {0}.

Assume conversely that Y 6= {0}. Let X∗ ⊂ X∗ be such that α is σ(X,X∗)
integrable. Let Y∗ := {x∗|Y : x∗ ∈ Y }. Then, β is σ(Y, Y∗) integrable. Let V be
the norm closure of Y∗ in Y ∗. Then, β is also integrable with respect to the weak
topology σ(Y, V ). We have V 6= {0} and β∗t V ⊂ V for each t ∈ G. This implies that

Φt := the restriction of β∗t in V, t ∈ G,
defines a σ(V, Y ) integrable bounded group representation. To compute the spec-
trum of Φ, consider f ∈ Iα, i.e., α̃f = 0. Then, for all y ∈ Y and ρ ∈ Y∗ we
have

〈y, Φ̃fρ〉 =
∫

G

〈y,Φtρ〉f(t) dt =
∫

G

〈ρ, αty〉f(t) dt = ρ(α̃fy) = 0.

Therefore, Φ̃f = 0 and thus IΦ ⊇ Iα. By definition of spectrum we find that
Sp(Φ) ⊆ Sp(α). Since Sp(α) is scattered, so is Sp(Φ). The non-empty scattered set
Sp(Φ) contains an isolated point, γ0 say. By Proposition 1.3 γ0 is an eigenvalue of
Φ. Choose 0 6= y∗0 ∈ V ⊆ Y ∗ to be an eigenvector for γ0. Then, for all y ∈ Y and
t ∈ G we have

y∗0(αty) = Φty
∗
0(y) = γ0(t)y∗0(y).

Applying Proposition 1.4 to α with the case Z = {0} we obtain an extension
0 6= x∗0 ∈ X∗ of y∗0 such that α∗tx

∗
0 = γ0(t)x∗0 for all t ∈ G. It follows that x∗0 ∈ Xα∗ .

Hence, we have for all y ∈ Y that y∗0(y) = x∗0(y) = 0, a contradiction.
To show the “Moreover” part, let φ be an invariant mean on l∞(G). Let γ ∈

Sp(α). For each pair (x, ρ) ∈ X × X∗ the function t 7→ 〈ρ, γ(−t)αtx〉 belongs to
l∞(G). Thus,

〈Eγρ, x〉 := φt(〈ρ, γ(−t)αtx〉, x ∈ X, ρ ∈ X∗,

defines an operator Eγ on X∗, where φt means that the invariant mean is applied
to the corresponding function of t. It is evident that ‖Eγ‖ ≤ ‖α‖. The translation-
invariance of φ implies that α∗tEγ = γ(t)Eγ for all t ∈ G. From this we see further
that each Eγ is a projection. To prove the mutual orthogonality, let γ1, γ2 ∈ Sp(α)
be two different elements. Clearly, Eγ1 and Eγ2 are commuting. Therefore, for all
t ∈ G

γ1(t)Eγ1Eγ2 = α∗tEγ1Eγ2 = α∗tEγ2Eγ1

= γ2(t)Eγ2Eγ1 = γ2(t)Eγ1Eγ2 .

Since γ1 6= γ2, this implies that Eγ1Eγ2 = 0. The proof is finished.

Consider a representation α given as in Theorem 2.1 which is σ(X,X∗) integrable.
Let Wα be the σ(X,X∗) closed subalgebra of L(X) generated by all operators α̃µ

(µ ∈ M(G)). Assume T ∈ Wα. Then, there exists a net (µi) ⊂ M(G) such that
α̃µi

σ−→ T . For γ ∈ Sp(α) consider the projection Eγ given in Theorem 2.1. Fix
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(x, ρ) ∈ X ×X∗. Then, from the definition of α̃µi we have

〈Eγρ, α̃µix〉 =
∫

G

〈α∗tEγρ, x〉 dµi(t)

=
∫

G

〈γ(t)Eγρ, x〉 dµi(t) = µ̂i(γ)〈Eγρ, x〉.
By taking limit we find

〈Eγρ, Tx〉 = lim
i
µ̂i(γ)〈Eγρ, x〉.

Since this identity holds for all x ∈ X and ρ ∈ X∗, it follows that the limit limi µ̂i(γ)
exists; denoted by cγ . Then we have T ∗Eγ = cγEγ . Therefore, the subspace gen-
erated by all eigenvectors of T ∗ is w∗−dense in X∗. As a consequence, the zero
operator is the unique nilpotent operator in Wα and thus Wα is a semisimple Ba-
nach algebra.

This has established the following Theorem 2.2 which refines [20, Theorem 7]
where the corresponding result is given for weakly continuous representations. Note
that our proof is completely different from that of [20].

Theorem 2.2. Let α : G → L(X) be a σ(X,X∗) integrable bounded group repre-
sentation whose Arveson spectrum Sp(α) is scattered. Then the σ(X,X∗) closed
subalgebra Wα of L(X) is semisimple.

Moreover, for each T ∈ Wα there exists a set {cγ : γ ∈ Sp(α)} ⊂ C such that
T ∗Eγ = cγEγ for all γ ∈ Sp(α), where {Eγ : γ ∈ Sp(α)} is the set of projections
given in Theorem 2.1. As a result, the subspace generated by all eigenvectors of T ∗

is w∗−dense in X∗.

As consequences of Theorems 2.1 and 2.2 we have:

Corollary 2.3. Let T ∈ L(X) be a doubly power bounded operator with countable
spectrum σ(T ). Then the subspace generated by all eigenvectors of T ∗ is w∗−dense
in X∗. Moreover, the weakly closed subalgebra generated by T is semisimple.

Proof. Let α : Z → L(X) be the group representation given by

αn := T n for all n ∈ Z.
α is norm continuous and bounded. Moreover, by Theorem 1.2 (vi) we have Sp(α) =
σ(T ). Hence, Theorems 2.1 and 2.2 are applicable to α and yields the desired
result.

Corollary 2.4. Let (etA)t∈R be a strongly continuous bounded group of operators
on X such that the spectrum σ(A) of the infinitesimal generator A is countable.
Then the subspace generated by all eigenvectors of the dual operator A∗ is w∗−dense
in X∗. Moreover, the smallest weakly closed subalgebra of L(X) containing all op-
erators etA (t ∈ R) is semisimple.

Proof. Let α : R → L(X) be the strongly continuous bounded group representation
given by

αt := etA for all t ∈ R.
Then Sp(α) = iσ(A) by Theorem 1.2 (vii). Hence Sp(α) is countable. If λ ∈ σ(A)
and x∗ ∈ X∗ satisfy α∗tx

∗ = eλtx∗ for all t ∈ R, then x∗ belongs to the definition
domain of A∗ and A∗x∗ = λx∗. Thus, the result follows by using Theorems 2.1 and
2.2.
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Recall that an operator T ∈ L(X) is called hermitian if ‖eitT ‖ = 1 for all t ∈ R.
From Corollary 2.4 we derive immediately the following analogue of Corollary 2.3.

Corollary 2.5. Let T ∈ L(X) be a hermitian operator with countable spectrum
σ(T ). Then the subspace generated by all eigenvectors of T ∗ is w∗−dense in X∗.
Moreover, the weakly closed subalgebra generated by T is semisimple.

We remark that the semisimplicity in Corollary 2.3 and Corollary 2.5 has been
proved by Feldman [9] and Sinclair [22, Theorem 3.1], respectively. Their methods
are completely different from that of [20] and ours.

3. Completeness of eigenvectors

The completeness of eigenvectors of integrable group representations with dis-
crete spectrum is guaranteed by the following result.

Theorem 3.1. Let α : G → L(X) be an σ(X,X∗) integrable bounded representa-
tion with discrete Arveson spectrum. Then the subspace

Xα := lin{x ∈ X : there exists γ ∈ Sp(α) such that
αtx = γ(t)x for all t ∈ G}

generated by all eigenvectors of α is σ(X,X∗) dense in X. Moreover, there exists
a uniformly bounded, mutually orthogonal system of projections {Pγ : γ ∈ Sp(α)}
such that PγX = {x ∈ X : αtx = γ(t)x for all t ∈ G} for all γ ∈ Sp(α).

Proof. Applying Proposition 1.3 to α we find that for each γ ∈ Sp(α) there exists
a projection Pγ ∈ {α̃f : f ∈ L1(G)} satisfying

αtPγ = γ(t)Pγ for all t ∈ G.
Thus,

Xα =
∨

γ∈Sp(α)

PγX.

Consider f ∈ K(G), i.e., f̂ has compact support. Let Xf := α̃fX and β be the
restriction of α in Xf . Then, β is integrable and

Sp(β) ⊆ Sp(α) ∩ suppf̂ .

Note that the set Sp(α)∩ suppf̂ is compact and discrete; hence it contains at most
finitely many points. Therefore, Sp(β) is a finite subset of Sp(α). It follows from
Theorem 1.2 (iii) combining with Proposition 1.3 that Xf is decomposed into finite
sum of eigenspaces of β. Thus, Xf is contained in Xα. By Theorem 1.2 (v), the
subspace generated by all of the subsets Xf (f ∈ K(G)) is σ(X,X∗) dense in X.
Consequently, Xα is σ(X,X∗) dense in X.

A more general result of Theorem 3.1 is given in [14, Theorem 3.1.2].
In what follows we will study the almost periodicity of representations. Let

BUC(G;X) be the Banach space of all bounded and uniformly continuous functions
h : G→ X with the norm

‖h‖ := sup
t∈G

‖h(t)‖X .

For each t ∈ G let Tt be the translation on BUC(G;X) given by

Tth(·) := h(·+ t) for all h ∈ BUC(G;X).
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A function h ∈ BUC(G;X) is called almost periodic if the set {Tth : t ∈ G} is
relatively compact in BUC(G;X). Let AP (G;X) be the subspace of all almost
periodic functions in BUC(G;X) and denote by AP (G) the space AP (G; C). A
function h ∈ BUC(G;X) is called scalar almost periodic if for each x∗ ∈ X∗ the
scalar function t 7→ x∗(h(t)) is almost periodic. Let h ∈ BUC(G;X). It is well
known that h ∈ AP (G;X) if and only if h is scalar almost periodic and the range
{h(t) : t ∈ G} is relatively compact in X (cf. [19, pp. 70-72]).

The Beurling spectrum of h ∈ BUC(G;X), denoted by σ(h), is defined to be the
local spectrum of T at h, i.e.,

σ(h) := SpT (h) = {γ ∈ Ĝ : f ∈ L1(G), T̃fh = 0 =⇒ f̂(γ) = 0}.
If h ∈ BUC(G; C) has scattered spectrum, then a theorem of Loomis [17, Theorem
5] asserts that h is almost periodic. The extension of Loomis’s theorem to vector-
valued functions is given by Baskakov [2, Theorem 2] as follows. Recall that c0 is
the Banach space of all convergent sequences (an)n∈N with limit zero.

Theorem 3.2. Assume that h ∈ BUC(G;X) has scattered spectrum. If X does
not contain any copy of c0, then h is almost periodic.

We call a strongly continuous bounded group representation α : G → L(X)
almost periodic if for each x ∈ X the function t 7→ αtx is almost periodic. It
follows from the Jocob-deLeeuw-Glicksberg theory that the subspace generated by
all eigenvectors of an almost periodic representation is norm dense in the defining
Banach space, see [6, Theorem 4.11], [16] or the Basic Theorem in [18, p.150].

Let α : G→ L(X) be a σ(X,X∗) integrable bounded group representation whose
Arveson spectrum is scattered. Assume further that the Banach space X does not
contain any copy of c0. For f ∈ K(G), let Xf := α̃fX and let β be the restriction
of α in Xf . As seen in the proof of Theorem 3.1, we have

Sp(β) ⊆ Sp(α) ∩ suppf̂ .

Hence, the representation β has compact spectrum and thus is norm continuous by
Theorem 1.2 (ii). Given x0 ∈ Xf , let

h(t) := βtx0 = αtx0, t ∈ G.
Then, the norm continuity of β implies that h ∈ BUC(G;Xf ). Let g ∈ L1(G). For
s ∈ G we have

T̃gh(s) =
∫

G

Tth(s)g(t) dt =
∫

G

h(s+ t)g(t) dt =
∫

G

αs+tx0g(t) dt = αsα̃gx0.

It follows that T̃gh = 0 ⇐⇒ α̃gx0. By definition we find

σ(h) = Spα(x0) ⊆ Sp(α).

Therefore, h has scattered spectrum. It follows from Theorem 3.1 that h is al-
most periodic. By definition, β is almost periodic and thus by the Jacob-deLeeuw-
Glicksberg theory [6] the subspace generated by all eigenvectors of β is norm dense
in Xf . Note that the subspace generated by the subspaces Xf (f ∈ K(G)) is
σ(X,X∗) dense in X by Theorem 1.2 (v). We have proved the following result.

Theorem 3.3. Let α : G → L(X) be a σ(X,X∗) integrable bounded group rep-
resentation whose Arveson spectrum Sp(α) is scattered. Assume that X does not
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contain any copy of c0. Then the subspace

Xα := lin{x ∈ X : there exists γ ∈ Sp(α) such that
αtx = γ(t)x for all t ∈ G}

generated by all eigenvectors of α is σ(X,X∗) dense in X.
As a result, if α is strongly continuous, then α is almost periodic.

The following refines Corollaries 2.3, 2.4 and 2.5.

Corollary 3.4. Assume that X does not contain any copy of c0. Then
(i) If T ∈ L(X) is a doubly power bounded operator with countable spectrum

σ(T ), then the subspace generated by all eigenvectors of T is norm dense in X.
(ii) If (etA)t∈R is a strongly continuous bounded group of operators on X such

that the spectrum σ(A) is countable, then the subspace generated by all eigenvectors
of A is norm dense in X.

(iii) If T ∈ L(X) is a hermitian operator with countable spectrum σ(T ), then the
subspace generated by all eigenvectors of T is norm dense in X.
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(1973), 133-245. MR 49:5865
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[7] D’Antoni, C., Longo, C., and Zsidó, L., A spectral mapping theorem for locally compact
groups of operators. Pacific J. Math. 103 (1982), 17-24. MR 84e:47058

[8] Dugundji, J., Topology, 4th. ed. Allyn and Bacon Inc., Boston, 1968.
[9] Feldman, G.M., The semisimplicity of an algebra generated by an isometric operator, Funct.

Anal. Appl. 8(1974), 93-94. MR 50:14245
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