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NONOSCILLATION THEOREMS FOR SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

JAMES S. W. WONG

(Communicated by Hal L. Smith)

Abstract. We prove nonoscillation theorems for the second order Emden-
Fowler equation (E): y′′ + a(x)|y|γ−1y = 0, γ > 0, where a(x) ∈ C(0,∞)

and γ 6= 1. It is shown that when x(γ+3)/2+δa(x) is nondecreasing for any
δ > 0 and is bounded above, then (E) is nonoscillatory. This improves a well-

known result of Belohorec in the sublinear case, i.e. when 0 < γ < 1 and
0 < δ < (1− γ)/2.

1.

We consider the second order Emden-Fowler equation

y′′(x) + a(x)|y(x)|γ−1y(x) = 0, γ > 0,(1)

on (0,∞), where a(x) is a positive continuous function. Equation (1) is called su-
perlinear if γ > 1 and sublinear if 0 < γ < 1. It is known that the superlinear
equation has unique solution for any set of given initial conditions and that every
solution of the sublinear equation is continuable to the right on (0,∞). Under the
additional assumption that a(x) is locally of bounded variation on (0,∞), then both
the superlinear and the sublinear equations have uniqueness and continuability of
solutions. See, e.g., Heidel [9] and Coffman and Wong [4]. To simplify our discus-
sion, we shall assume in this paper that a(x) satisfies this additional assumption
so that solutions to equation (1) are unique for given initial conditions and also
continuable to the right on (0,∞).

A solution y(x) of (1) is said to be oscillatory if it has arbitrarily large zeros on
(0,∞), i.e., for any x0 ∈ (0,∞), there exists x1 > x0 such that y(x1) = 0. Equation
(1) is called oscillatory if every solution y(x) has arbitrarily large zeros. On the
other hand, equation (1) is called nonoscillatory if every solution has only a finite
number of zeros. In view of the nonlinear character of equation (1) when γ 6= 1
and hence the lack of Sturm’s Separation Theorem, this equation may possess both
oscillatory and nonoscillatory solutions simultaneously. Here we are concerned with
sufficient conditions on the coefficient a(x) so that equation (1) is nonoscillatory.
The opposite of nonoscillation of equation (1) is the existence of at least one oscil-
latory solution. The subject of oscillation for the nonlinear equation has received
much attention in the last 40 years; see, e.g., [13] and [17].
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To prove the existence of oscillatory solutions of equation (1), it involves mono-
tonicity conditions of the function ϕ(x) = x(γ+3)/2a(x). The well known results
are:

Theorem I. If ϕ(x) is nondecreasing in x, then equation (1) with γ 6= 1 has
oscillatory solutions.

Theorem II. If ϕ(x) is nonincreasing in x and is also bounded below, then equa-
tion (1) with γ 6= 1 has oscillatory solutions.

Theorem I in the superlinear case, i.e. γ > 1, was first proved by Jasny [11]; a
simple proof was later given by Kurzweil [14]. Theorem II in the superlinear case
was proved by Erbe and Muldowney [6] as a corollary of a more general theorem
which also includes Theorem I for γ > 1. Both Theorems I and II in the sublinear
case were proved by Chiou [3].

For nonoscillation results concerning equation (1), sufficient conditions involve
the monotonicity of a similar function ψ(x) = ϕ(x)xδ = x[(γ+3)/2+δ]a(x) where
δ > 0. However, in this case results are not as complete as Theorems I and II. In
fact, the following two results on superlinear and sublinear equations which were
proved 30 years ago still remain to be improved upon:

Theorem III (Kiguradze 1967 [12]). Let γ > 1. If ψ(x) = x[(γ+3)/2+δ]a(x) where
δ > 0 is nonincreasing in x, then equation (1) is nonoscillatory.

Theorem IV (Belohorec 1967 [2]). Let 0 < γ < 1. If ψ(x) = x[(γ+3)/2+δ]a(x)
where 0 < δ < (1 − γ)/2 is nondecreasing in x and is also bounded above, then
equation (1) is nonoscillatory.

To bring the above theorems in line with the same degree of generality as Theo-
rems I and II, it would be necessary to remove all restrictions on δ and γ. Indeed,
Kiguradze in his well known survey article [13] proposed his first and major open
problem is to extend Theorem III to the sublinear case. Likewise, Erbe and Mul-
downey called for further improvement on Theorem IV in the sublinear case in the
closing remarks of [7].

The purpose of this paper is to give new results on nonoscillation. Our main
result is the complete removal of restrictions of δ and γ in Theorem IV, thereby
bringing it to the same degree of generality as Theorems I and II. We have not
succeeded in obtaining a similar result for Theorem III, so Kiguradze’s problem
remains open in the sublinear case. However, we are able to establish its validity
when δ ≥ (1−γ)/2. Furthermore, when 0 < δ < (1−γ)/2, we show that oscillatory
solutions, if they exist, must exhibit certain asymptotic behaviour which lends
credence to extending the validity of Theorem III to the sublinear case 0 < γ < 1.
For results related to the nonoscillation theorems discussed in this paper, we also
refer the reader to [1], [4], [5], [6], [8], [15] and [18].

2.

We shall prove nonoscillation theorems concerning equation (1) by studying the
transformed equation:

ẅ + (2µ− 1)ẇ + f(t)|w|γ−1w + µ(µ− 1)w = 0,(2)
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where ‘dot’ denotes differentiation with respect to t, µ is a real number µ = 1
2 −

δ/(1− γ) and {
w(t) = y(x)

xµ , t = log x,
f(t) = a(x)x2+µ(γ−1) = a(x)x

γ+3
2 +δ.

(3)

Note that µ < 1
2 if 0 < γ < 1 and µ > 1

2 if γ > 1. Since the transformation (3)
is “oscillation” invariant, to show that equation (1) is nonoscillatory it is sufficient
to prove that the existence of an oscillatory solution w(t) of (2) would lead to a
contradiction. Let w(t) be an oscillatory solution of (2), and let {tn} and {tn}
be sequences of consecutive zeros of w(t) and ẇ(t) respectively. Introduce the
Pohozaev energy function [16], a technique also used by Heidel and Hinton [10] to
study oscillation, as follows:

H(w(t)) =
ẇ2

2
+ f(t)

|w|γ+1

γ + 1
+ µ(µ− 1)

w2

2
.(4)

If w(t) is a solution of (2), then we have

d

dt
H(w(t)) = (1− 2µ)ẇ2 + ḟ(t)

|w|γ+1

γ + 1
.(5)

We are now ready to improve Theorem IV for the sublinear case:

Theorem 1. Let 0 < γ < 1. If ψ(x) = x(γ+3)/2+δa(x) where δ > 0 is non-
decreasing in x and is also bounded above, then equation (1) is nonoscillatory.

Proof. Let w(t) be an oscillatory solution of (2), and let {tn} and {tn} be sequences
of zeros of w(t) and ẇ(t). Note that f(t) = ψ(x) and µ < 1

2 , so H(w(t)) is
nondecreasing by (5). Denote limt→∞H(w(t)) = L where L could be +∞. Since
H(w(tn)) = 1

2 ẇ
2(tn), L must be nonnegative. We now show that 0 < γ < 1 implies

L is finite.
Return to equation (1) and set w(t) = x−µy(x) to obtain ẇ(t) = x1−µy′(x) −

µx−µy(x). Denote by {xn} the sequence of zeros of y(x) which corresponds to {tn}
for w(t). Integrating (1) from xn to xn where y′(xn) = 0, we find

y′(xn) =
∫ xn

xn

a(x)y(x)γ dx.(6)

Without loss of generality, we may assume y(x) > 0 on (xn, xn) and y′(xn) > 0.
Since a(x) > 0, we have y′′(x) < 0 and y(x) ≤ y′(xn)(x − xn) on (xn, xn). Using
this estimate in (6), we obtain

y′(xn)1−γ ≤
∫ xn

xn

a(x)xγ dx ≤ K

∫ ∞

xn

x
γ−3

2 −δ dx = K1x
γ−1

2 −δ
n(7)

where K = limx→∞ ψ(x) = limt→∞ f(t) and K = K1[δ + (1 − γ)/2]. Multiplying
(7) by x(1−µ)(1−γ)

n , we find

ẇ(tn)1−γ = x(1−µ)(1−γ)
n y′1−γ(xn) ≤ K1x

1−γ
2 +δ

n x
γ−1

2 −δ
n = K1.(8)

This together with H(w(tn)) = 1
2 ẇ

2(tn) shows that limt→∞H(w(t)) = L is finite.
Having established that L is finite, we integrate (5) from t0 to an arbitrary t and

find

H(w(t)) −H(w(t0)) = (1− 2µ)
∫ t

t0

ẇ2 +
∫ t

t0

ḟ
|w|γ+1

γ + 1
.(9)
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Since L is finite, µ < 1
2 and ḟ(t) ≥ 0, equation (9) shows that

∫∞
ẇ2 < ∞.

For δ ≥ (1 − γ)/2 we have µ(µ − 1) ≥ 0, so f(t) ≥ f(t0) ≥ 0 together with L
finite imply from (4) that ẇ and w are bounded which in turn yields by (2) the
boundedness of ẅ. Also, ẇ ∈ L2(0,∞) and |ẅ| ≤ B implies limt→∞ ẇ(t) = 0.
However, d

dtH(w) ≥ 0 implies that H(w(tn)) = 1
2 ẇ(tn)2 is nondecreasing which is

the desired contradiction.
For 0 < δ < (1 − γ)/2, this is Belohorec’s Theorem IV. However, for the

sake of completeness, we shall follow the same argument above, hence providing an
alternative proof of his result. Letm0 = µ(1−µ) > 0. Returning to the transformed
equation (2), we observe that the related maxima |ẇ(tn)| satisfies

ẅ(tn) + w(tn)[f(tn)|w(tn)|γ−1 −m0] = 0.(10)

Now maxima ẅ(tn) ≤ 0 and (10) give that

|w(tn)| ≤
[
f(tn)
m0

] 1
1−γ

≤
(
K

m0

) 1
1−γ

.(11)

Using (11) and the fact that limt→∞H(w(t)) exists, we again conclude that ẇ and
ẅ are bounded. Hence by repeating the same argument as in the last five lines of
the preceding paragraph, we obtain the desired contradiction. The proof is now
complete.

3.

In this section we prove the analogue of Theorem 1 for the superlinear case,
namely,

Theorem 2. Let γ > 1. If x(γ+3)/2+δa(x) where δ > 0 is nondecreasing in x and
is also bounded above, the equation (1) is nonoscillatory.

Proof. We proceed in the same manner as in the proof of Theorem 1. Here γ > 1,
so µ > 1

2 and 1− 2µ < 0. Note that µ(µ− 1) ≥ 0 if δ ≥ (γ − 1)/2 and µ(µ− 1) < 0
whenever 0 < δ < (γ− 1)/2. We shall aim to prove the fact that for any oscillatory
solution w(t), limt→∞H(w(t)) = L exists firstly as a finite nonnegative number
and in fact must be zero.

We first begin by proving that H(w(t)) is bounded from below. When
µ(µ − 1) ≥ 0, we note that all three terms on the right hand side of equation
(4) are nonnegative, hence H(w(t)) is nonnegative and is bounded from below. De-
note m0 = µ(1− µ) > 0, and write f0 = f(t0) > 0. From its definition (4), we note
that

H(w(t)) ≥ f0
wγ+1

γ + 1
− m0

2
w2 = Φ(w(t)).(12)

Since γ > 1, Φ(w) attains its minimum when w(t) = (m0/f0)1/(γ−1), namely

inf
t≥0

Φ(w(t)) = Φ

([
m0

f0

] 1
γ−1
)

=
[

1− γ

2(γ + 1)

] [
m0

f0

] 1+γ
γ−1

,

which is negative but a finite number. This proves that H(w(t)) is bounded below
for all t ≥ t0.

Next to show that H(w(t)) is also bounded above, we again consider the two
separate cases µ(µ− 1) ≥ 0 and µ(µ− 1) < 0.
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In the first instance, we have from (4) and (5)

d

dt
H(w(t)) = (1 − 2µ)ẇ2 + ḟ

wγ+1

γ + 1
≤ ḟ

f
H(w(t)).(13)

Since limt→∞ f(t) = K <∞, (13) yields boundedness from above of H(w(t)). Let
m0 = µ(1 − µ) > 0. We wish to estimate Φ(w) from below and note that

Φ(w) ≥ f0
wγ+1

γ + 1
− m0

2
w2 ≥ f1w

γ+1 − γ + 1
2

f1w
γ+1 −m1,(14)

where f1 = f0(γ + 1)−1, m1 = [(γ − 1)/(γ + 1)]f2/(1−γ)
1 . Inequality (14) is derived

from an application of Young’s inequality to the term (m0/2)w2 with exponent
(γ + 1)/2 > 1 as follows:

m0

2
w2 =

(
m0

2
f
− 2

γ+1
1

)(
f

2
γ+1
1 w2

)
≤ 2f1
γ + 1

wγ+1 +
γ − 1
γ + 1

f
2

1−γ

1

(m0

2

) 1+γ
γ−1

.

From (14), it is easy to choose suitable positive constants m2 and m3 such that

wγ+1 ≤ m1H(w) +m2.(15)

Using (15) in (13), one can upon integration easily deduce that H(w(t)) is bounded
above for all t. Boundedness of H(w(t)) implies by (15) that |w(t)| ≤ B0, hence by
(4) we also have |ẇ(t)| ≤ B1, for all t ≥ t0 which yields |ẅ(t)| ≤ B2 by using the
transformed equation (2).

Note that
∫∞

ḟwγ+1/(γ+1) <∞ since ḟ ≥ 0 and limt→∞ f(t) = K. Returning
to (5), it follows from the boundedness of H(w(t)) that

∫∞
ẇ2 < ∞. This in

turn implies that limt→∞H(w(t)) exists as a nonnegative finite number L. Since
|w| ≤ B0, |ẇ| ≤ B1 and |ẅ| ≤ B2, we again conclude from

∫∞
ẇ2 < ∞ that

ẇ(t) → 0 as t→∞. Thus, limt→∞H(w(t)) = L = 0.
To establish a desired contradiction, one needs to exhibit a sequence {ξn} at

which points ẇ(ξn) 9 0 as ξn → ∞. To this end, we need to introduce a special
case of equation (2), i.e. when µ = 1/2,

ü+ g(t)u|u|γ−1 − 1
4
u = 0,(16)

where u(t) = y(x)/
√
x. Corresponding to (16), we also introduce the energy func-

tion

G(u(t)) =
u̇2

2
+ g(t)

uγ+1

γ + 1
− u2

8
.(17)

Let σ = δ/(γ − 1) > 0. Then u(t) = xσw(t) and u̇(t) = xσ(ẇ + σw). We can now
relate G(u(t)) to H(w(t)) by the following identity:

x−2σG(u(t)) = H(w(t)) + σwẇ.(18)

Recall that |w| ≤ B0, ẇ(t) → 0, and H(w(t)) → 0 as t→∞, hence by (18) we have

lim
t→∞x

−2σG(u(t)) = 0.(19)
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Let ξn be relative maxima of u(t) on (tn, tn−1), i.e. u̇(ξn) > 0 and u(ξn) > 0 with
ü(ξn) ≤ 0. Using equation (16), we have

g(ξn)|u(ξn)|γ−1 ≥ 1
4
,

which becomes

f(ξn)|w(ξn)|γ−1 ≥ 1
4
.(20)

Since limt→∞ f(t) = K, (21) implies |w(ξn)| ≥ (1/4K)1/(γ−1). Evaluating (18) at
t = ξn, we find

e−2σξnG(u(ξn)) = H(w(ξn)) + σw(ξn)ẇ(ξn) = H(w(ξn))− σ2w2(ξn).
(21)

Since H(w(ξn)) → 0 as n→∞, putting (20) in (21) yields

lim
n→∞ e

−2σξnG(u(ξn)) ≤ −σ2

(
1

4K

)2/(γ−1)

< 0,

which contradicts (19). This completes the proof.

4.

In this section, we shall prove an analogue of Theorem III in the sublinear case
for δ ≥ (1 − γ)/2. Our result is the following:

Theorem 3. Let 0 < γ < 1. If ψ(x) = x(γ+3)/2+δa(x) where δ ≥ (1 − γ)/2 is
nonincreasing in x, the equation (1) is nonoscillatory.

Proof. Let y(x) be an oscillatory solution of (1) and {xn} be the sequence of con-
secutive zeros of y(x). Using (7), we can estimate as follows:

(y′(xn))1−γ ≤
∫ ∞

xn

a(x)xγ dx ≤ c1ψ(xn)x(γ−1)/2−δ
n ,(22)

where c1 = [δ + (1− γ)/2]−1 > 0, since ψ(x) is nonincreasing. Note that ψ′(x) ≤ 0
also implies a′(x) ≤ 0. We now consider the energy function:

E(y(x)) =
y′2

a
+

2yγ+1

γ + 1
.(23)

It is easy to see that for solution y(x) of (1) the derivative d
dxE(y(x)) is

d

dx
E(y(x)) = − a

′

a2
y′2 ≥ 0.(24)

From (24), it follows that {y′(xn)/
√
a(xn)} forms a nondecreasing sequence, and

in particular,

y′(xn) ≥ c0a
1
2 (xn)(25)

where c0 = y′(x0)/
√
a(x0) > 0. Substituting (25) into (22), we find

c1−γ
0 a

1−γ
2 (xn) ≤ c1ψ(xn)x

γ−1
2 −δ

n .(26)

Multiplying x( γ+3
2 +δ)( 1−γ

2 )
n through (26), we obtain

c1−γ
0 (ψ(xn))

1−γ
2 ≤ c1ψ(xn)x( 1+γ

2 )( 1−γ
2 −δ)

n .(27)
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Since ψ(xn) is nonincreasing, letting n→∞ in (27) gives the desired contradiction
when δ > (1− γ)/2.

We now turn to the case when δ = (1− γ)/2. Here µ = 0 and ψ(x) = x2a(x). If
limt→∞ ψ(x) = 0, then (27) yields c1−γ

0 ≤ c1ψ(xn)(1+γ)/2, which gives the desired
contradiction. The more difficult case is when limt→∞ ψ(x) = k > 0. We need to
return to the transformed equation (2) and consider the energy function (4) and
its derivative (5) with µ = 0, namely,

H(w(t)) =
ẇ2

2
+ f(t)

wγ+1

γ + 1
,

and

d

dt
H(w(t)) = ẇ2 + ḟ(t)

wγ+1

γ + 1
.(28)

Next we compute the derivative of f−1H as follows:

d

dt
f(t)−1H(w(t)) = ẇ2

[
f(t)−1 − 1

2
ḟ(t)f(t)−2

]
≥ 0

which implies f−1H(w) is nondecreasing and limt→∞ f−1H(w) exists possibly in-
finite.

Recall that f(t) = ψ(x), w(t) = y(x) and in this case ẇ(t) = xy′(x). Returning
to (22), we would then have

[ẇ(tn)]1−γ = xny
′(x)1−γ ≤ c1x

γ1
2 −δ

n = c1,

since δ = (1− γ)/2. As f(t) is bounded away from zero, we have

ẇ(tn)2

f(tn)
≤ 1
k
ẇ2(tn) ≤ c

2/(1−γ)
1

k
<∞.(29)

Hence (29) implies limt→∞ f−1H(w) exists as a finite number. Now limt→∞ f(t) =
k implies limt→∞H(w) exists as a finite positive number L.

Boundedness of H(w(t)) implies |w(t)| ≤ B0 which together with |ẇ(t)| ≤
B1 implies by (2) that |ẅ(t)| ≤ B2. Furthermore, we also have from (29) that
| ∫∞ ḟwγ+1/(γ+1)| <∞ and

∫∞
ẇ2 <∞. This implies that limt→∞ ẇ(t) = 0 and

limt→∞H(w(t)) = L = 0.
The fact f−1H(w) is nondecreasing shows that f−1(tn)ẇ2(tn) is also nondecreas-

ing. Thus ẇ2(tn) ≥ c1f(tn) ≥ c1k where c1 = f−1(t0)w2(t0), which contradicts the
fact that H(w(t)) → 0 as t→∞. The proof of Theorem 3 is now complete.

Our last result deals with the other remaining part of Theorem 3, i.e. when ψ(x)
is nonincreasing and 0 < δ < (1 − γ)/2. In this case, we are able to prove the
following.

Theorem 4. Let 0 < γ < 1. If ψ(x) = x(γ+3)/2+δa(x) where 0 < δ < (1− γ)/2 is
nonincreasing, then any oscillatory solution y(x) satisfies

lim
x→∞ y(x)x

−µ = lim
x→∞x

1−µy′(x) = 0,(30)

where µ = 1
2 − [δ/(1− γ)].
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Proof. We again work with the transformed equation (2) and let w(t) be an os-
cillatory solution with {tn}, {t̄n} its sequences of consecutive zeros and relative
maximas and minimas. Denote m0 = µ(1−µ) > 0. Since ẇ(t̄n) = 0 and ẅ(t̄n) ≤ 0,
it follows from (2) that

|w(t̄n)| ≤
(
f(t̄n)
m0

) 1
1−γ

,

similarly, when w(t̄n) < 0 and ẅ(t̄n) ≥ 0, then the above also holds. Hence w(t)
is bounded, say |w| ≤ B0. Furthermore, we note that H(w(t̄n)) is bounded from
above by

H(w(t̄n)) =
f(t̄n)
γ + 1

|w(t̄n)|γ+1 − m0

2
|w(t̄n)|2 ≤

(
f(t̄n)
m0

) 2
1−γ

{
1− γ

2(γ + 1)
m0

}
.

(31)

Note that |w| ≤ B0 implies | ∫∞ ḟ(t)wγ+1/(γ + 1)| < ∞. It follows from (31)
and (9) that limt→∞H(w(t)) = L exists where L is a nonnegative finite number.
This further implies that sup |ẇ(tn)| ≤ B0, and also that

∫∞
ẇ2 <∞. Once again

|w| ≤ B0, |ẇ| ≤ B1, and by (2) |ẅ| ≤ B2 imply limt→∞ ẇ(t) = 0. Note that
H(w(tn)) = 1

2 ẇ(tn) → 0 as n→∞, so L = 0. Since ẇ(t) → 0 as t→∞ and L = 0,
we have

lim
t→∞

|w(t)|2
γ + 1

(
f(t)|w(t)|γ−1 − (γ + 1)m0

2

)
= 0.(32)

We now consider two separate cases: (a) limt→∞ f(t) = 0 and (b) limt→∞ f(t) =
k > 0. We suppose there exists a sequence {ηk}, ηk → ∞ as k → ∞, such that
limk→∞ |w(ηk)| = α > 0. In that case, we evaluate t in (32) at ηk and find

lim
k→∞

f(ηk)|w(ηk)|γ−1

γ + 1
=
m0

2
> 0,(33)

which is incompatible with the assumption that limt→∞ f(t) = 0.
Next we consider case (b), and observe from (33) that αγ−1 = (γ + 1)m0/2k.

Returning to equation (2), and noting that limt→∞ ẇ(t) = 0, we find

− lim
t→∞ ẅ(t) = lim

t→∞ f(ηk)wγ(ηk)−m0 lim
k→∞

w(ηk)

= kαγ −m0α

= α[(γ − 1)/2]m0 < 0,

which is incompatible with limt→∞ ẇ(t) = 0. This shows that limt→∞ w(t) = 0
and the proof is completed.

We remark that Belohorec [2] reported that Theorem III remains valid in the
sublinear case for all δ > 0 provided that limx→∞ ψ(x) = k > 0. The proof of
Theorem 3 when δ = (1 − γ)/2 showed that it is easier to deduce nonoscillation
when in fact limx→∞ ψ(x) = 0. This is because the decreasing nature of a(x) is
faster than when ψ(x) is bounded away from zero as compared to when ψ(x) → 0
as x→∞. Indeed, in such case nonoscillation of equation (1) follows from another
result of this author [18]; see also [15]. It should perhaps be pointed out that in case
δ = 0, i.e. when ψ(x) = ϕ(x) is nonincreasing and bounded away from zero, Chiou
[3] had in fact established the existence of oscillatory solutions. Thus, it remains
an open problem to prove nonoscillation of equation (1), for 0 < δ < (1− γ)/2 and
ψ(x) nonincreasing, regardless of whether ψ(x) is bounded away from zero or not.
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