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ON THE STRUCTURE OF THE SET OF BOUNDED
SOLUTIONS ON A PERIODIC LIÉNARD EQUATION

JUAN CAMPOS AND PEDRO J. TORRES

(Communicated by Hal L. Smith)

Abstract. We describe the dynamics of a class of second order periodic dif-
ferential equations whose main feature is a monotone nonlinearity. It is proved
that the set of bounded solutions is homeomorphic to the graph of a decreasing
function.

1. Introduction

In this paper, we are concerned with the periodic Liénard equation

x′′ + f(x)x′ + g(x) = p(t),(1.1)

where f, g : (a, b) → R,−∞ ≤ a < b ≤ +∞ are locally Lipschitz continuous
functions. Throughout the paper, we assume the following main assumptions:

i) g is strictly decreasing.
ii) f(x) ≥ 0 for all x ∈ (a, b).
iii) The function p : R → R is continuous and periodic with minimal period

T > 0.
We are interested especially in the case where (a, b) 6= R, since our original

intention was to consider singular nonlinearities as g(x) = 1
xα with α > 0, that

appears when electrostatic or gravitational forces are considered. The existence
of periodic solutions of this class of singular equations was started in [4] for the
undamped case and was continued in [3] for the Liénard equation.

In this paper we prove that the existence of a bounded solution implies the exis-
tence of a unique T -periodic solution that attracts all bounded solutions. Besides,
the set of initial conditions corresponding to bounded solutions is described as the
graph of a decreasing function.

These results are related to a recent paper [5], where the authors prove similar
results for equations with singular nonlinearities. However, the functions f and
g were assumed to be more smooth and f had to satisfy a quantitative estimate,
namely,

0 < m ≤ f(x) ≤M
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where m,M are constants such that

M ≤ 2 +
√

2
2−√2

m.(1.2)

This condition was required in order to use Massera’s convergence theorem due to
R. A. Smith (see [7]).

The novelty of the present paper is the use of topological tools, such as free
homeomorphisms (see [1]), together with truncation arguments, that allow us to
remove not only the smoothness condition, but also the condition (1.2) on the
friction term f , leaving only the non-negativity, a very reasonable hypothesis from
the point of view of Mechanics.

Now, we are going to describe the structure of the paper. In Section 2 we study
the monotonicity properties of equation (1.1) that will help us in the proof of the
main results. In Section 3 we prove a convergence result by using the theory of
free homeomorphisms together with a truncated argument. In Section 4 we prove a
description of the set of bounded solutions. The situation recalls the second section,
but in this case some technicalities are necessary when we go from the truncated
case to the general one.

2. Comparison of solutions

The following theorem is a key tool that we are going to use several times.
Denote by x(t; t0, x0, v0) the unique solution of the Cauchy problem with (w−, w+)
its maximal interval of definition.

Theorem 2.1. Let x(t) = x(t; t0, x0, v0), y(t) = x(t; t0, x1, v1) be different solutions
of (1.1) such that x0 ≤ x1 and v0 ≤ v1. Then,

x(t) < y(t), ∀t0 < t < min
i=0,1

w+(t0, xi, vi).

Proof. If the conclusion fails to hold, then there must be a first number t1 after
t0 such that x(t1) = y(t1). Set z(t) = y(t) − x(t). Then z(t) > 0, t ∈ (t0, t1) and
z(t1) = 0. Subtracting the respective equations and using the monotony of the
function g,

z′′(t) + f(y(t))y′(t)− f(x(t))x′(t) > 0, ∀t ∈ (t0, t1),

now an integration over (t0, t1) gives

z′(t1)− v1 + v0 +
∫ y(t1)

x1

f(s)ds−
∫ x(t1)

x0

f(s)ds > 0.

Thus, z′(t1) > v1 − v0 −
∫ y(t1)

x1
f(s)ds +

∫ x(t1)

x0
f(s)ds = v1 − v0 +

∫ x1

x0
f(s)ds ≥ 0,

but this is not possible.

Remark 2.2. This theorem does not imply that the Poincaré map is monotone with
respect to the usual order in R2.

This Theorem has two consequences that we emphasize.

Corollary 2.3. Any couple of different solutions of (1.1) has at most one point in
common, i.e. there exists at most a time t∗ such that

x(t∗) = y(t∗)

where x(t) and y(t) are solutions of (1.1).
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The proof is trivial.

Corollary 2.4. There exists at most one T -periodic solution of (1.1).

Proof. Suppose, by contradiction, that x1 and x2 are two different T -periodic so-
lutions of (1.1). By the last corollary x1(t) 6= x2(t) for all t ∈ [0, T ] and we can
assume that x1(t) < x2(t) for all t ∈ [0, T ]. If we subtract the respective equations
for x1 and x2, and use that g is strictly decreasing, then

x′′1 (t)− x′′2 (t) + f(x1(t))x′1(t)− f(x2(t))x′2(t) > 0, ∀t ∈ [0, T ]

and now we can integrate over [0, T ] obtaining a contradiction.

3. A convergence result

In accordance with the physical interpretation of t as the time variable, we state
the following definition.

Definition 3.1. A given function x : (w−,+∞) → R is said to be bounded in the
future if there exist r, s and t0 such that

a < r ≤ x(t) ≤ s < b, ∀t > t0.

The following theorem is the main result of this section.

Theorem 3.2. If there exists a solution that is bounded in the future, then there
exists exactly one T -periodic solution. Moreover, every bounded solution in the
future tends to the T -periodic one.

The proof of this theorem will require some previous results. The index consid-
ered in the next lemma is the Brouwer index.

Lemma 3.3. Let P : R2 → R2 be an orientation preserving homeomorphism with
a unique fixed point (xT , vT ) such that

index{I − P, (xT , vT )} 6= 1,

where I means the identity function. Then, for any (x0, v0) ∈ R2, one of these
possibilities holds:

i) Pn(x0, v0) → (xT , vT ) as n→ +∞,
ii) ‖Pn(x0, v0)‖ → +∞ as n→ +∞.

The proof of this lemma is a direct application of the results in [1]: Theorem
5.7 (of course of [1]) is applied in order to prove that P is free in the sense exposed
there. Now, we extend P to a free homeomorphism between Riemann spheres, with
P (∞) = ∞. Now, we can apply Lemma 3.4 of the cited paper and the Omega limit
set has to be a connected subset of the fixed point set. Then, the Omega limit set
has to be a singleton, (xT , vT ) or the infinite point.

Remark 3.4. Theorem 5.7 of [1] has been used several times in the literature in
order to obtain trivial dynamics (see [2] for a definition of trivial dynamics); it was
used in [6] (Remark 2 after Theorem 5.1) and in [2] (Remark 3 after Theorem 2.1).

Lemma 3.5. Let us suppose that a = −∞, b = +∞,f bounded, g(−∞) = +∞,
g(+∞) = −∞ and there exists two constants c, d > 0 such that

|g(x)| ≤ c+ d|x|, ∀x ∈ R.
With these assumptions, if x(t) is a solution of (1.1) bounded in the future, then
the derivative x′(t) is also bounded in the future.
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Proof. Since x is bounded in the future, we can find r, s, t∗ such that

r ≤ x(t) ≤ s, ∀t ≥ t∗.

Now we can take n0 such that n0T > t∗ and applying the Mean Value Theorem in
the interval (nT, (n+ 1)T ) with n ≥ n0, we obtain tn ∈ (nT, (n+ 1)T ) such that

x′(tn) =
x((n+ 1)T )− x(nT )

T
,

and then,

|x′(tn)| ≤ s− r

T

for all n ≥ n0. Let’s see that x′(t) is bounded in the interval [n0T,+∞). Choose
t ≥ n0T and n1 such that n1T ≤ t ≤ (n1 + 1)T . Then,

x(t) = x(t; tn1 , x(tn1), x
′(tn1)),

and since the equation is periodic,

x(t) = x(t− n1T ; tn1 − n1T, x(tn1), x
′(tn1)),

also

x′(t) = x′(t− n1T ; tn1 − n1T, x(tn1), x
′(tn1)),

then

x′(t) ∈ {x′(s; s0, x0, v0) : s ∈ [0, T ], s0 ∈ [0, T ], x0 ∈ [r, s], v0 ∈ [
r − s

T
,
s− r

T
]}

which is a compact set that does not depend on n1.

Proposition 3.6. In the assumptions of Lemma 3.5, every bounded solution in the
future tends to the T -periodic solution.

Proof. We verify the assumptions of Lemma 3.3 by considering P to be the Poincaré
map. The conditions on f and g imply that P is an orientation preserving homeo-
morphism from R2 onto R2.

We prove that there exists a unique fixed point with index −1. Take α < β
such that g(α) > p(t) > g(β) for all t. Then, x1(t) ≡ α and x2(t) ≡ β is a
couple of ordered strict lower and upper solutions, and it is a well known result (see
for instance Proposition 2.1 in [8]) that the method of upper and lower solutions
provides a T -periodic solution with index −1, and by Corollary 2.4 this solution is
unique. Now, the thesis of Lemma 3.3 implies that every solution with |x(t)|+|x′(t)|
bounded in the future tends to the periodic one, and finally, Lemma 3.5 ends the
proof.

Proof of Theorem 3.2. Let x(t) be a solution bounded in the future, and let r, s
and t∗ be three numbers such that

r ≤ x(t) ≤ s t ≥ t∗.(3.1)

Let f̂ and ĝ be extensions of f |[r,s] and g|[r,s] verifying the hypotheses of Lemma
3.5. Then, x(t) is a solution of the differential equation

x′′ + f̂(x)x′ + ĝ(x) = p(t),(3.2)

in [t∗,+∞), so by Proposition 3.6 x(t) tends to a T -periodic solution xT (t) of the
differential equation (3.2), but using (3.1) we have that xT (t) verifies r ≤ xT (t) ≤ s
for every t ∈ R, and therefore xT is a T -periodic solution of (1.1).
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In conclusion, equation (1.1) has a T -periodic solution and x tends to it. Now,
by Corollary 2.4 the T -periodic solution is unique, and we conclude the proof.

4. The set of bounded solutions

In this section, we are going to describe the geometry of the set of initial condi-
tions of the bounded solutions in the future. By Theorem 3.2 of the last section,
we know that this is the set of initial conditions of the global stable “manifold” of
the periodic solution. Therefore, we can define

W t0
s := {(x, v) : x(t; t0, x, v) is bounded in the future}.

The existence of the stable manifold locally near the T -periodic solution can be
deduced from general results on hyperbolic fixed points, since it is easy to prove
that the periodic solution is hyperbolic when the coefficients are smooth (also p has
to be nonconstant). Note that here we do not need smoothness on the coefficients.

Proposition 4.1. Consider (x1, v1), (x2, v2) ∈ W t0
s with v1 < v2. Then, x2 < x1.

Proof. Define x1(t) = x(t; t0, x1, v1) and x2(t) = x(t; t0, x2, v2). If the conclusion
fails to hold, by using Theorem 2.1 we have that x1(t) < x2(t) for all t > t0.
Moreover, by Theorem 3.2 both of the solutions tend to the periodic one, so
limt→+∞ x2(t)− x1(t) = 0 and limt→+∞ x′1(t)− x′2(t) = 0.

Now, subtracting the respective equations as in Theorem 2.1 and integrating
over (t0, t), we obtain that

x′2(t)− x′1(t)− (v2 − v1) +
∫ x2(t)

x2

f(s)ds−
∫ x1(t)

x1

f(s)ds > 0.

Taking limits when t tends to infinity and having in mind that∫ x2(t)

x2

f(s)ds−
∫ x1(t)

x1

f(s)ds =
∫ x2(t)

x1(t)

f(s)ds−
∫ x2

x1

f(s)ds,

we obtain that

−(v2 − v1)−
∫ x2

x1

f(s)ds ≥ 0,

which is a contradiction.

Remark 4.2. Since f can be unbounded is not so trivial that∫ x2(t)

x1(t)

f(s)ds

tends to zero, but this problem can be overcome if we observe that f is bounded in
a neighborhood of the range of the periodic solution (the set {xT (t) / t ∈ [0, T ]}).

An immediate consequence of this proposition is the following.

Corollary 4.3. Any couple of different solutions of (1.1) bounded in the future has
no points in common, that is, x1(t) 6= x2(t) for every time t where both solutions
are defined.

Now, the set W t0
s is described in a special case.
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Lemma 4.4. Suppose the conditions of Lemma 3.5 hold. Then, there exist −∞ ≤
ã < b̃ ≤ +∞ and a continuous decreasing function ϕ : (ã, b̃) → R such that

W t0
s = {(x, ϕ(x)) : x ∈ (ã, b̃)}.

Proof. Define

D+ = {(x0, v0) : lim
t→+∞x(t; t0, x0, v0) = +∞}

and

D− = {(x0, v0) : lim
t→+∞ x(t; t0, x0, v0) = −∞}.

By using Theorem 2.1, D+ has the following property:
(P1) “If (x, v) ∈ D+ and x̃ ≥ x, ṽ ≥ v, then (x̃, ṽ) ∈ D+.”

As a consequence D+ is a connected set of R2. Also, the symmetrical property
holds for D−:

(P2) “If (x, v) ∈ D− and x̃ ≤ x, ṽ ≤ v, then (x̃, ṽ) ∈ D−”
so D− is also connected. In this setting, we have the following:

Claim. D+ and D− are open sets and R2 = D+ ∪D− ∪W t0
s .

The proof of this Claim will be done at the end. By using the Claim and
properties (P1) and (P2), it is easy to prove that

Ĩ = {x ∈ R : ∃v− < v+ such that (x, v+) ∈ D+, (x, v−) ∈ D−}
is an open interval (ã, b̃) with −∞ ≤ ã < b̃ ≤ +∞.

Then, for each x ∈ Ĩ there exists v such that (x, v) ∈W t0
s , and by Corollary 4.3

this v is unique. We define ϕ(x) := v (see Figure 1).

Figure 1

By construction,

{(x, ϕ(x)) : x ∈ Ĩ} ⊂W t0
s .

Now, we prove the remaining inclusion. Let us take (x, v) ∈ W t0
s ; by the Claim

and taking into account Proposition 4.1 we have that (x, ṽ) ∈ D+ ∪D− for every
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ṽ 6= v. Moreover, by properties (P1) and (P2), (x, ṽ) ∈ D+ if ṽ > v and (x, ṽ) ∈ D−

if ṽ < v. Consequently, x ∈ Ĩ and v = ϕ(x).
Therefore, we have proved the existence of a function ϕ : (ã, b̃) → R such that

its graph is W t0
s . This function is decreasing by Proposition 4.1 and its graph

W t0
s = R2 −D+ ∪D− is closed, so this implies the continuity of ϕ.

Proof of the Claim. The hypotheses of Lemma 3.5 imply the existence of a couple
of ordered numbers α < β such that

g(α) > p(t) > g(β), ∀t ∈ [0, T ].

By using the monotonicity of g it is verified without difficulty that, if x(t) > β and
x′(t) = 0, then x′′(t) > 0, so every solution of (1.1) has no local maximum greater
than β. Similarly, every solution of (1.1) has no local minimum smaller than α. In
particular, unbounded solutions in the future are not oscillatory. We will refer to
these two properties as the non-oscillating property.

Figure 2. Region of oscillations

First, we are going to prove that R2 = D+ ∪ D− ∪W t0
s . If (x0, v0) ∈ R2 does

not belong to W t0
s , then by Theorem 3.2, the corresponding solution is unbounded.

By the non-oscillating property stated above, it follows that (x0, v0) ∈ D+ ∪D−.
Finally, let us prove that D+ is an open set (the proof for D− is analogous).

Let (x0, v0) ∈ D+. It is possible to take t1 such that x(t1; t0, x0, v0) > β and
x′(t1; t0, x0, v0) > 0. By continuous dependence, there exists an open ballBR(x0, v0)
such that x(t1; t0, x1, v1) > β and x′(t1; t0, x1, v1) > 0 for all (x1, v1) ∈ BR(x0, v0).
Now the non-oscillating property together with Theorem 3.2 assure that

lim
t→+∞x(t; t0, x1, v1) = +∞.

Therefore BR(x0, v0) ⊂ D+ and D+ is open.

Remark 4.5. From the argument used in Proposition 4.1, we deduce that if f(x) > 0
for all x ∈ R, the function ϕ is strictly decreasing. Also, it is deduced from the
proof that in this particular case we have a complete description of the asymptotic
behavior of the solutions.
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Now, a truncation argument is used in order to get the same result in the general
case. We consider the general case of the Liénard equation (1.1).

Theorem 4.6. Suppose the conditions for existence of a periodic solution. Then,
there exist a non-empty open interval I ⊂ (a, b) and a continuous decreasing function
ϕ : I → R such that

W t0
s = {(x, ϕ(x)) : x ∈ I}.

Proof. As usual, let xT (t) be the T -periodic solution, take (r, s) satisfying

r < xT (t) < s, ∀t ∈ [0, T ],(4.1)

and define

W t0
s (r, s) = {(x, v) ∈W t0

s /r < x(t; t0, x, v) < s, ∀t ≥ t0}.
It is clear from (4.1) that this set is not empty.

The next Lemma contains essentially the proof of the Theorem.

Lemma 4.7. There exist Ĩ an open subinterval of (a, b) and ψ : Ĩ → R a continu-
ous and decreasing function, such that

W t0
s (r, s) = {(x, ψ(x))/x ∈ Ĩ}.

With this lemma the proof of the theorem follows easily. We take two sequences
rn → a and sn → b, a < rn < sn < b such that (4.1) is satisfied for (rn, sn) and we
apply this Lemma to obtain ψn : Ĩn → R, such that

W t0
s (rn, sn) = {(x, ψn(x))/x ∈ Ĩn}.

Since

W t0
s =

∞⋃
n=1

W t0
s (rn, sn),

the conclusion of the theorem holds noting that

I =
∞⋃

n=1

Ĩn

and

ψ(x) = ψn(x)

where x ∈ Ĩn. Only remains to prove Lemma 4.7.

Proof of Lemma 4.7. First note that W t0
s (r, s) only depends on the values of f and

g over the compact set [r, s], then we can take two extensions f̂ and ĝ of f|[r,s] and
g|[r,s] satisfying the hypotheses of Lemma 3.5 and apply Lemma 4.4 to obtain a
function ϕ̂ : (â, b̂) → R such that Ŵ t0

s (the set of bounded solutions in the future
for the modified equation (3.2)) has the expression

Ŵ t0
s = {(x, ϕ̂(x)), x ∈ (â, b̂)}.

By Corollary 4.3, the set of bounded solutions in the future has to be ordered, then

Ĩ = {x / r < x̂(t; t0, x, v) < s, ∀t ≥ t0}



BOUNDED SOLUTIONS ON A LIÉNARD EQUATION 1461

is an interval (x̂ means the general solution for the modified equation (3.2)). Note
that if we prove that the interval Ĩ is open, then

W t0
s (r, s) = {(x, ϕ̂(x)) / x ∈ Ĩ}.

So we will finish the proof if we prove that Ĩ is open.
Take x ∈ Ĩ and â < x1 < x < x2 < b̂. By construction we can find a number t∗

such that for t ≥ t∗

r < x̂(t; t0, x1, ϕ̂(x1)) < x̂(t; t0, x2, ϕ̂(x2)) < s;

then by Corollary 4.3 the solutions bounded in the future are ordered, so for all
y ∈ (x1, x2) and t ≥ t∗

r < x̂(t; t0, y, ϕ̂(y)) < s.(4.2)

Now, if |y − x| is small, then |ϕ̂(y) − ϕ̂(x)| is also, and we can apply continuous
dependence to obtain ε > 0 such that if |y − x| < ε we have (4.2) for t0 ≤ t ≤ t∗.

Consequently, if |y − x| < ε and y ∈ (x1, x2) we have (4.2) for t ≥ t0 and, then
y ∈ Ĩ. Therefore Ĩ is open.

Remark 4.8. As before, if f(x) > 0 for all x ∈ R, the function ϕ is strictly decreas-
ing. Moreover, imposing additional restrictions on the nonlinearity g, it is possible
to get a more complete picture of the dynamics of the equation, as is done in [5].
However, our interest is focused on the study of a general case, more than a detailed
description in particular situations.

Remark 4.9. Minor modifications lead us to obtain similar results “in the past”,
that is, a description of the unstable manifold. In particular, the existence of a
solution such that

a < r ≤ x(t) ≤ s < b, ∀t < t0

for some constants (this solution can be called bounded in the past) implies the
existence of exactly one T -periodic solution. Also, every solution bounded in the
past comes from the periodic one, i.e.

lim
t→−∞ |x(t)− xT (t)|+ |x′(t)− x′T (t)| = 0,

since there is some type of reversibility in the argument (the main tool was the
freeness of the Poincaré map and P is free if and only if P−1 is, by definition).

Moreover, the set of initial conditions of the solutions bounded in the past can
be described in a similar way as Theorem 4.6, only changing that ϕ is in this case
an increasing function.

Note that the change of variables τ = −t lead to a differential equation of the
type (1.1) with negative friction term, so we can obtain the same results when the
friction term does not change the sign. Nevertheless, in the case of negative friction
term this equation does not seem to have physical meaning.
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