PERIODIC SOLUTIONS OF A PERIODIC DELAY PREDATOR-PREY SYSTEM

LI YONGKUN
(Communicated by Suncica Canic)

Abstract. The existence of a positive periodic solution for

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} H(t)}{\mathrm{d} t}=r(t) H(t)\left[1-\frac{H(t-\tau(t))}{K(t)}\right]-\alpha(t) H(t) P(t) \\
\frac{\mathrm{d} P(t)}{\mathrm{d} t}=-b(t) P(t)+\beta(t) P(t) H(t-\sigma(t))
\end{array}\right.
$$

is established, where r, K, α, b, β are positive periodic continuous functions with period $\omega>0$, and τ, σ are periodic continuous functions with period ω.

1. Introduction

As pointed out by Freedman and Wu [1] and Kuang [2], it would be of interest to study the global existence of periodic solutions for systems with periodic delays, representing predator-prey or competition systems. The purpose of this article is to consider the following periodic delay predator-prey model:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} H(t)}{\mathrm{d} t}=r(t) H(t)\left[1-\frac{H(t-\tau(t))}{K(t)}\right]-\alpha(t) H(t) P(t) \tag{1.1}\\
\frac{\mathrm{d} P(t)}{\mathrm{d} t}=-b(t) P(t)+\beta(t) P(t) H(t-\sigma(t))
\end{array}\right.
$$

where r, K, α, b, β are positive periodic continuous functions with period $\omega>0$, and τ, σ are periodic continuous functions with period $\omega>0$. The system (1.1) was introduced by May in [3, p. 103].

In Section 2, we will use the continuation theorem of coincidence degree theory, which was proposed in [4] by Gaines and Mawhin, to establish the existence of at least one positive ω-periodic solution of system (1.1).

First, consider an abstract equation in a Banach space X,

$$
\begin{equation*}
L x=\lambda N x, \quad \lambda \in(0,1) \tag{1.2}
\end{equation*}
$$

where L : $\operatorname{Dom} L \cap X \rightarrow X$ is a linear operator and λ is a parameter. Let P and Q denote two projectors,

$$
P: X \cap \operatorname{Dom} L \rightarrow \operatorname{Ker} L \quad \text { and } \quad Q: X \rightarrow X / \operatorname{Im} L
$$

[^0]For convenience we introduce a continuation theorem [4, p. 40] as follows.
Lemma 1.1. Let X be a Banach space and L a Fredholm mapping of index zero. Assume that $N: \bar{\Omega} \rightarrow X$ is L-compact on $\bar{\Omega}$ with Ω open bounded in X. Furthermore assume:
(a) for each $\lambda \in(0,1), x \in \partial \Omega \cap \operatorname{Dom} L$,

$$
L x \neq N x
$$

(b) for each $x \in \partial \Omega \cap \operatorname{Ker} L$,

$$
Q N x \neq 0
$$

and

$$
\operatorname{deg}\{Q N x, \Omega \cap \operatorname{Ker} L, 0\} \neq 0
$$

Then $L x=N x$ has at least one solution in $\bar{\Omega}$.

2. Main Result

In what follows, we use the following notation:

$$
\bar{u}=\frac{1}{\omega} \int_{0}^{\omega} u(t) \mathrm{d} t, \quad(u)_{M}=\max _{t \in[0, \omega]}|u(t)|, \quad(u)_{m}=\min _{t \in[0, \omega]}|u(t)|
$$

where u is a periodic continuous function with period ω.
Now we state our fundamental theorem about the existence of a positive ω periodic solution of system (1.1).

Theorem 2.1. Assume the following:
(i) $(b / \beta)_{M} e^{2 \bar{r} \omega}<(K)_{m}$;
(ii) $\bar{r}>(\overline{r / K}) \bar{b} / \bar{\beta}$.

Then system (1.1) has at least one positive ω-periodic solution.
Proof. Consider the system

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=r(t)\left[1-\frac{e^{x(t-\tau(t))}}{K(t)}\right]-\alpha(t) e^{y(t)} \tag{2.1}\\
\frac{\mathrm{d} y(t)}{\mathrm{d} t}=-b(t)+\beta(t) e^{x(t-\sigma(t))}
\end{array}\right.
$$

where $r, K, \alpha, b, \beta, \tau, \sigma$ are the same as those in system (1.1). It is easy to see that if the system (2.1) has an ω-periodic solution $\left(x^{*}(t), y^{*}(t)\right)$, then $\left(e^{x^{*}(t)}, e^{y^{*}(t)}\right)$ is a positive ω-periodic solution of system (1.1). Therefore, for (1.1) to have at least one positive ω-periodic solution it is sufficient that (2.1) has at least one ω-periodic solution. In order to apply Lemma 1.1 to system (2.1), we take

$$
X=\left\{(x(t), y(t))^{T} \in C\left(R, R^{2}\right): x(t+\omega)=x(t), y(t+\omega)=y(t)\right\}
$$

and

$$
\left\|(x, y)^{T}\right\|=\max _{t \in[0, \omega]}|x(t)|+\max _{t \in[0, \omega]}|y(t)| .
$$

With this norm, X is a Banach space. Let

$$
\begin{gathered}
N\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
r(t)\left[\begin{array}{c}
1-\frac{e^{x(t-\tau(t))}}{K(t)} \\
-b(t)+\beta(t) e^{x(t-\sigma(t))}
\end{array}\right] \\
L\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right], \quad P\left[\begin{array}{l}
x \\
y
\end{array}\right]=Q\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\omega} \int_{0}^{\omega} x(t) \mathrm{d} t \\
\frac{1}{\omega} \int_{0}^{\omega} y(t) \mathrm{d} t
\end{array}\right], \quad\left[\begin{array}{l}
x \\
y
\end{array}\right] \in X .
\end{array} . . \begin{array}{c}
\end{array} .\right.
\end{gathered}
$$

Since Ker $L=R^{2}$ and $\operatorname{Im} L$ is closed in X, L is a Fredholm mapping of index zero. Furthermore, we have that N is L-compact on $\bar{\Omega}$ [4]; here Ω is any open bounded set in X.

Corresponding to equation (1.2), we have

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x(t)}{\mathrm{d} t}=\lambda\left\{r(t)\left[1-\frac{e^{x(t-\tau(t))}}{K(t)}\right]-\alpha(t) e^{y(t)}\right\} \tag{2.2}\\
\frac{\mathrm{d} y(t)}{\mathrm{d} t}=\lambda\left[-b(t)+\beta(t) e^{x(t-\sigma(t))}\right]
\end{array}\right.
$$

Suppose that $(x(t), y(t))^{T} \in X$ is a solution of system (2.2) for a certain $\lambda \in(0,1)$. By integrating (2.2) over the interval $[0, \omega]$, we obtain

$$
\int_{0}^{\omega}\left\{r(t)\left[1-\frac{e^{x(t-\tau(t))}}{K(t)}\right]-\alpha(t) e^{y(t)}\right\} \mathrm{d} t=0
$$

and

$$
\int_{0}^{\omega}\left[-b(t)+\beta(t) e^{x(t-\sigma(t))}\right] \mathrm{d} x=0 .
$$

Thus

$$
\begin{equation*}
\int_{0}^{\omega}\left[\frac{r(t) e^{x(t-\sigma(t))}}{K(t)}+\alpha(t) e^{y(t)}\right] \mathrm{d} t=\int_{0}^{\omega} r(t) \mathrm{d} t \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\omega} \beta(t) e^{x(t-\sigma(t))} \mathrm{d} t=\int_{0}^{\omega} b(t) \mathrm{d} t \tag{2.4}
\end{equation*}
$$

From (2.2)-(2.4), it follows that

$$
\begin{aligned}
\int_{0}^{\omega}|\dot{x}(t)| \mathrm{d} t & \leq \lambda \int_{0}^{\omega}\left|r(t)\left[1-\frac{e^{x(t-\sigma(t))}}{K(t)}\right]-\alpha(t) e^{y(t)}\right| \mathrm{d} t \\
& <\int_{0}^{\omega} r(t) \mathrm{d} t+\int_{0}^{\omega}\left[\frac{r(t) e^{x(t-\tau(t))}}{K(t)}+\alpha(t) e^{y(t)}\right] \mathrm{d} t \\
& =2 \int_{0}^{\omega} r(t) \mathrm{d} t=2 \bar{r} \omega
\end{aligned}
$$

and

$$
\int_{0}^{\omega}|\dot{y}(t)| \mathrm{d} t \leq \lambda \int_{0}^{\omega}\left|-b(t)+\beta(t) e^{x(t-\sigma(t))}\right| \mathrm{d} t<2 \bar{b} \omega .
$$

That is,

$$
\begin{equation*}
\int_{0}^{\omega}|\dot{x}(t)| \mathrm{d} t<2 \bar{r} \omega \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\omega}|\dot{y}(t)| \mathrm{d} t<2 \bar{b} \omega . \tag{2.6}
\end{equation*}
$$

Moreover, (2.4) implies that there exists a point $\xi_{1} \in[0, \omega]$ such that

$$
x\left(\xi_{1}-\sigma\left(\xi_{1}\right)\right)=\log \frac{b\left(\xi_{1}\right)}{\beta\left(\xi_{1}\right)} \leq \log \left(\frac{b}{\beta}\right)_{M}
$$

hence

$$
\left|x\left(\xi_{1}-\sigma\left(\xi_{1}\right)\right)\right| \leq \max _{t \in[0, \omega]}\left|\log \frac{b(t)}{\beta(t)}\right| \stackrel{\text { def }}{=} M_{1} .
$$

Denote $\xi_{1}+\sigma\left(\xi_{1}\right)=t_{1}+n_{1} \omega, t_{1} \in[0, \omega]$, and n_{1} is an integer; then

$$
x\left(t_{1}\right) \leq \log \left(\frac{b}{\beta}\right)_{M} \quad \text { and } \quad\left|x\left(t_{1}\right)\right| \leq M_{1} .
$$

In view of this and (2.5), we have

$$
\begin{align*}
x(t) & \leq x\left(t_{1}\right)+\int_{0}^{\omega}|\dot{x}(t)| \mathrm{d} t \\
& \leq \log \left(\frac{b}{\beta}\right)_{M}+2 \bar{r} \omega \tag{2.7}
\end{align*}
$$

and

$$
\begin{aligned}
|x(t)| & \leq\left|x\left(t_{1}\right)\right|+\int_{0}^{\omega}|\dot{x}(t)| \mathrm{d} t \\
& \leq M_{1}+2 \bar{r} \omega \stackrel{\text { def }}{=} M_{2} .
\end{aligned}
$$

By (2.3), (2.7) and assumption (i), we find that there exists a point $\xi_{2} \in[0, \omega]$ such that

$$
\frac{r\left(\xi_{2}\right) e^{x\left(\xi_{2}-\tau\left(\xi_{2}\right)\right)}}{K\left(\xi_{2}\right)}+\alpha\left(\xi_{2}\right) e^{y\left(\xi_{2}\right)}=r\left(\xi_{2}\right),
$$

which implies that

$$
e^{y\left(\xi_{2}\right)}<\frac{r\left(\xi_{2}\right)}{\alpha\left(\xi_{2}\right)} \leq\left(\frac{r}{\alpha}\right)_{M}
$$

and

$$
\begin{aligned}
e^{y\left(\xi_{2}\right)} & =\frac{r\left(\xi_{2}\right)}{\alpha\left(\xi_{2}\right)}\left[1-\frac{e^{x\left(\xi_{2}-\tau\left(\xi_{2}\right)\right)}}{K\left(\xi_{2}\right)}\right] \\
& \geq \frac{r\left(\xi_{2}\right)}{\alpha\left(\xi_{2}\right)}\left[1-\frac{(b / \beta)_{M} e^{2 \bar{r} \omega}}{K\left(\xi_{2}\right)}\right] \\
& \geq\left(\frac{r}{\alpha}\right)_{m}\left[1-\frac{(b / \beta)_{M} e^{2 \bar{r} \omega}}{(K)_{m}}\right] \stackrel{\text { def }}{=} M_{3}>0 .
\end{aligned}
$$

Thus,

$$
\left|y\left(\xi_{2}\right)\right|<\max \left\{\left|\log \left(\frac{r}{\alpha}\right)_{M}\right|,\left|\log M_{3}\right|\right\} \stackrel{\text { def }}{=} M_{4} .
$$

In view of this and (2.6), we obtain that

$$
|y(t)| \leq y\left(\xi_{2}\right)\left|+\int_{0}^{\omega}\right| \dot{y}(t) \mid \mathrm{d} t<M_{4}+2 \bar{b} \omega \stackrel{\text { def }}{=} M_{5} .
$$

Clearly, $M_{i}(i=1,2,3,4,5)$ are independent of λ, and under the assumption (ii) of the theorem, the system of algebraic equations

$$
\left\{\begin{array}{l}
\bar{r}-\overline{\left(\frac{r}{K}\right)} u-\bar{\alpha} v=0 \tag{2.8}\\
-\bar{b}+\bar{\beta} u=0
\end{array}\right.
$$

has a unique solution $\left(u^{*}, v^{*}\right)$ which satisfies $u^{*}>0$ and $v^{*}>0$. Denote $M=M_{2}+$ $M_{5}+C$, where $C>0$ is taken sufficiently large so that the unique solution of system (2.8) satisfies $\left\|\left(u^{*}, v^{*}\right)^{T}\right\|=\left|u^{*}\right|+\left|v^{*}\right|<M$. Now we take $\Omega=\left\{(x(t), y(t))^{T} \in\right.$ $\left.X:\left\|(x, y)^{T}\right\|<M\right\}$. This satisfies condition (a) of Lemma 1.1. When $(x, y)^{T} \in$ $\partial \Omega \cap \operatorname{Ker} L=\partial \Omega \cap R^{2},(x, y)^{T}$ is a constant vector in R^{2} with $|x|+|y|=M$. Then

$$
Q N\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\bar{r}-\overline{\left(\frac{r}{K}\right)} e^{x}-\bar{\alpha} e^{y} \\
-\bar{b}+\bar{\beta} e^{x}
\end{array}\right] \neq\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Furthermore, it can easily be seen that

$$
\operatorname{deg}\left\{Q N(x, y)^{T}, \Omega \cap \operatorname{Ker} L,(0,0)^{T}\right\}=\operatorname{sign}\left[\bar{\alpha} \bar{\beta} u^{*} v^{*}\right] \neq 0
$$

By now we know that Ω verifies all the requirements of Lemma 1.1 and then (2.1) has at least one ω-periodic solution. This completes the proof.

Acknowledgment

The author is grateful to the referee for his/her careful reading of the manuscript and his/her suggestions for improving the presentation of its contents.

References

1. H. I. Freedman and J. Wu, Periodic solutions of single-species models with periodic delay, SIAM J. Math. Anal. 23 (1992), 689-701. MR 93e:92012
2. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, New York, 1993. MR 94f:34001
3. R. M. May, Stability and Complexity in Model Ecosystems, Princeton Univ. Press, Princeton, NJ, 1974.
4. R. E. Gaines and J. L. Mawhin, Coincidence Degree and and Non-linear Differential Equations, Springer, Berlin, 1977. MR 58:30551

Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, People's Republic of China

E-mail address: yklie@ynu.edu.cn

[^0]: Received by the editors March 5, 1997.
 1991 Mathematics Subject Classification. Primary 34K15, 34K20, 92A15.
 Key words and phrases. Delay equation, predator-prey system, periodic solution.
 The author was partially supported by the ABF of Yunnan Province of China.

