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FIXED POINTS FOR OPERATORS IN A SPACE
OF CONTINUOUS FUNCTIONS AND APPLICATIONS

BENDONG LOU

(Communicated by David R. Larson)

Abstract. This paper investigates the fixed points for self-maps of a closed
set in a space of abstract continuous functions. Our main results essentially
extend the Banach contracting mapping principle. An application to integro-
differential equations is given.

1. Introduction

Let E be a real Banach space with norm || · ||, I = [0, T ] (T > 0). Denote
C[I, E] = {u : I → E | u(t) is continuous on I}. It is easy to see that C[I, E] is a
Banach space with the norm ‖u‖C = max

t∈I
‖u(t)‖ for u ∈ C[I, E]. In this paper we

investigate the fixed points for self-maps of a closed set in C[I, E]. We show that
our main theorem extends the Banach contracting mapping principle in C[I, E].
Finally, an application to integro-differential equations is given.

2. Main results

Theorem 2.1. Let F be a closed subset of C[I, E] and A : F → F an operator. If
there exist α, β ∈ [0, 1), K ≥ 0 such that for any u, v ∈ F ,

‖Au(t)−Av(t)‖ ≤ β‖u(t)− v(t)‖ +
K

tα

∫ t

0

‖u(s)− v(s)‖ds, ∀ t ∈ (0, T ],

(2.1)

then A has exactly one fixed point u∗ in F . For any x0 ∈ F , the iterative sequence
xn = Axn−1 (n = 1, 2, 3, · · · ) converges to u∗ in F and for all s > 0,

‖xn − u∗‖C = o(n−s) (as n →∞).

Proof. For any u0 ∈ F , set un = Aun−1 (n = 1, 2, 3, · · · ). By (2.1) we get

‖u2(t)− u1(t)‖ ≤ (β + Kt1−α)‖u1 − u0‖C , ∀ t ∈ (0, T ].
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It follows by induction and (2.1) that, for any t ∈ (0, T ],

‖un+1(t)− un(t)‖ ≤
(

βn +
(

n
1

)
βn−1Kt1−α +

(
n
2

)
βn−2K2t2−2α

2− α
+ · · ·

+
Kntn−nα

(2− α)(3 − 2α) · · · (n− (n− 1)α)

)
‖u1 − u0‖C ,

n = 1, 2, 3, · · · . Therefore,

‖un+1 − un‖C ≤

βn +
(

n
1

)
βn−1h +

(
n
2

)
βn−2h2

2!
+ · · ·+ hn

n!

 ‖u1 − u0‖C ,

(2.2)

where h = KT 1−α(1− α)−1. It is easy to see that

lim
k→∞

(
βk−1k

(
k

k − 1

)k−1
)1/k

= β < 1,

hence we can choose a fixed integer k > 2 such that

(
βk−1k

(
k

k − 1

)k−1
)1/k

≡ g < 1.

For any n, set n = km + j (0 ≤ j < k), where k is given as above. Then whenever
n is sufficiently large, it follows from the Stirling formula that

S1 ≡ βn +
(

n
1

)
βn−1h +

(
n
2

)
βn−2h2

2!
+ · · ·+

(
n
m

)
βn−mhm

m!

≤ βn−m

(
n
m

)(
1 + h +

h2

2!
+ · · ·+ hm

m!

)
= O(1)βn−m

(
n
m

)
=

O(1)βn−mnn
√

2πn(1 + O( 1
m ))

mm
√

2πm
√

2π(n−m)(n−m)n−m
= O

(
km

√
m

)(
βn

n−m

)n−m

= O


(

βk−1k
(

k
k−1

)k−1
)m

√
m

 = O

(
gkm

√
m

)
= O

(
gn

√
n

)
.
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Similarly,

S2 ≡

(
n

m + 1

)
βn−m−1hm+1

(m + 1)!
+ · · ·+ hn

n!

≤

(
n

[n
2 ]

)
(m + 1)!

(
βn−m−1hm+1 + · · ·+ hn

)
=

O
(

2n√
n

)
em+1

(
βn−m−1hm+1 + · · ·+ hn

)√
2π(m + 1)(m + 1)m+1(1 + O( 1

m+1 ))

= o

(
1

(m + 1)s

)
= o

(
1
ns

)
(as n →∞),

where s > 1 can be any real constant.
Consequently, by (2.2) we have

‖un+1 − un‖C ≤ (S1 + S2)‖u1 − u0‖C(2.3)

= O

(
gn

√
n

)
+ o

(
1
ns

)
= o

(
1
ns

)
(as n →∞),

which implies that, for any fixed s > 0, there exists n0 > 0 such that

‖un+1 − un‖C <
1

ns+1
, ∀ n > n0.

Therefore, for any q > 0, n > n0, we have

‖un − un+q‖C ≤ ‖un − un+1‖C + · · ·+ ‖un+q−1 − un+q‖C <

∞∑
i=n

1
is+1

.

Since (see, e.g. [1])
∞∑

i=n

1
is+1

=
1

s(n− 1)s
+ o

(
1

(n− 1)s+1

)
(as n →∞),

we have ‖un − un+q‖C = O
(

1
ns

)
(∀ s > 0). Hence {un} is a Cauchy sequence and

there exists u∗ ∈ F such that ‖un − u∗‖C → 0 as n →∞. By (2.1),

‖Au∗(t)− u∗(t)‖ ≤ ‖Au∗(t)−Aun(t)‖ + ‖Aun(t)− u∗(t)‖
≤ (β + Kt1−α)‖un − u∗‖C + ‖un+1 − u∗‖C , ∀ t ∈ (0, T ],

and so
‖Au∗ − u∗‖C ≤ (β + KT 1−α)‖un − u∗‖C + ‖un+1 − u∗‖C ,

which implies by ||un − u∗||C → 0 (n →∞) that Au∗ = u∗.
For any x0 ∈ F , set xn = Axn−1 (n = 1, 2, 3, · · · ) . By (2.1) and using a similar

way as establishing (2.3) we can get, for any s > 0,

‖xn − u∗‖C = o

(
1
ns

)
(as n →∞),

which means that u∗ is the unique fixed point of A since x0 ∈ F is arbitrary. This
completes the proof.

Remark 2.1. We show that Theorem 2.1 is a generalization of the Banach contrac-
tion mapping principle in C[I, E].
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On one hand, it is easy to give some self-maps of a closed subset of C[I, E],
which satisfy (2.1) but are not contractions. For example, operator A : C[J, E] →
C[J, E] (J = [0, 1]) defined by

Au(t) =
1
2
u(t) + 2t−

1
2

∫ t

0

u(s)ds, ∀ t ∈ (0, 1], Au(0) =
1
2
u(0)

is such a map.
On the other hand, if F is a closed subset of a Banach space E, operator A :

F → F satisfies

‖Au−Av‖ ≤ α‖u− v‖, ∀ u, v ∈ F,(2.4)

where α ∈ [0, 1). Then Banach’s theorem shows that A has exactly one fixed point
in F . We assert that this conclusion can also be obtained by Theorem 2.1. In
fact, we can embed F into C[I, E] by regarding the elements of F as constant-value
functions of C[I, E]. Then F is a closed set in C[I, E] and A : F → F can be
regarded as a map in C[I, E]. So (2.4) implies that A satisfies (2.1) for K = 0 and
then, in the subset F of C[I, E], A has exactly one fixed point by Theorem 2.1,
which is the unique fixed point of A in the subset F of E.

Remark 2.2. Considering the inequality (2.1), it seems that the right side of (2.1)
may induce some new norms of C[I, E] such that the contraction mapping prin-
ciple can be applied in terms of such a new norm. We show that, even in special
cases when new norms can be found, Theorem 2.1 cannot yet be replaced by the
contraction mapping principle.

For example, let E = R1, β > 0, α = 0, K = 1. Then a natural norm of C[I, R1]
relative to the right side of (2.1) is || · ||X defined by

||u||X =
β

θ
||u||C +

1
θ

∫ t0

0

|u(s)|ds,

where 0 < θ < 1 may be any fixed real, 0 < t0 ≤ 1 is a constant. (Although
other norms can also be defined, the analogues of the following discussion are valid
for them.) There are examples to show that operator A may satisfy (2.1) and
consequently,

||Au −Av||C ≤ θ||u− v||X ,(2.5)

but does not satisfy

||Au−Av||X ≤ θ||u − v||X .(2.6)

Hence the contraction mapping principle cannot be applied to A in terms of || · ||X ,
but Theorem 2.1 can. The following is such an example:

Au(t) = βu(t) +
∫ t

0

u(s)ds, u ∈ C[I, R1],

where 1 > β > ((4t0 − t20)
1/2 − t0)/2. Clearly, A satisfies (2.1). But for any

u(t), v(t) ∈ C[I, R1] with u(t) ≡ u, v(t) ≡ v and u > v, we have

Au(t)−Av(t) = (β + t)(u− v).

So

||Au −Av||X =
1
θ
(β2 + β + βt0 +

t20
2

)(u− v), ||u− v||X =
β + t0

θ
(u− v).

Hence (2.6) is not satisfied for A in C[I, R1] since β > ((4t0 − t20)
1/2 − t0)/2.
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As we proved Theorem 2.1, we can similarly prove

Theorem 2.2. Let F ⊂ C[I, E] be a closed set and A : F → F an operator. If
there exist α, β ∈ [0, 1), K ≥ 0, where α satisfies (−1)α = −1, such that, for some
fixed η ∈ I = [0, T ] and for any u, v ∈ F ,

‖Au(t)−Av(t)‖ ≤ β‖u(t)− v(t)‖+
K

(t− η)α

∫ t

η

‖u(s)− v(s)‖ds, ∀ t ∈ I\{η},

then the conclusions of Theorem 2.1 hold.

3. An application

Consider the integro-differential equation of mixed type:

u′(t) = f(t, u, Tu, Su), t ∈ J ≡ [0, 1]; u(0) = u0,(3.1)

where f ∈ C[J ×R1 ×R1 ×R1, R1], u0 ∈ R1 and

Tu(t) =
∫ t

0

k(t, s)u(s)ds, Su(t) =
∫ 1

0

h(t, s)u(s)ds,

with k ∈ C[Ω, R+], Ω = {(t, s) ∈ R2|0 ≤ s ≤ t ≤ 1}, h ∈ C[J × J, R+]. Set
k0 = max

(t,s)∈Ω
k(t, s), h0 = max

t,s∈J
h(t, s). We will use the following conditions:

(H1) There exist p, q ∈ C1[J, R1], p(t) ≤ q(t) (t ∈ J) such that

p′ ≤ f(t, p, T p, Sp), p(t) ≤ u0; q′ ≥ f(t, q, T q, Sq), q(t) ≥ u0.

(H2) There exist M > 0, R ≥ 0 and Q ≥ 0 such that

f(t, u, v, w)− f(t, u, v, w) ≥ −M(u− u)−R(v − v)−Q(w − w)

for t ∈ J, p(t) ≤ u ≤ u ≤ q(t), T p(t) ≤ v ≤ v ≤ Tq(t), Sp(t) ≤ w ≤ w ≤ Sq(t).

Theorem 3.1. Suppose that (H1) and (H2) are satisfied and that

(Rk0 + Qh0)(eM − 1) ≤ M, Qh0(eM − 1) < M.(3.2)

Then there exist monotone sequences {pn(t)}, {qn(t)} ⊂ C1[J, R1] such that

p(t) = p0(t) ≤ p1(t) ≤ · · · ≤ pn(t) ≤ · · · ≤ qn(t) ≤ · · · ≤ q1(t) ≤ q0(t) = q(t)

and pn(t) → u∗(t), qn(t) → u∗(t) as n → ∞ uniformly in t ∈ J, u∗, u∗ ∈
C1[J, R1]. Moreover, u∗ and u∗ are minimal and maximal solutions of IVP (3.1)
on the interval [p, q], respectively.

Proof. For any η ∈ U ≡ {η(t) ∈ C[J, R1]|p ≤ η ≤ q}, consider the linear IVP

u′ = σ(t)−Mu−RTu−QSu, u(0) = u0,(3.3)

where σ(t) = f(t, η(t), T η(t), Sη(t)) + Mη(t) + RTη(t) + QSη(t). It is known that
u ∈ C1[J, R1] is a solution of (3.1) if and only if u is a solution in C[J, R1] of the
integral equation

u(t) = e−Mt

{
u0 +

∫ t

0

eMs(σ(s) −RTu(s)−QSu(s))ds

}
≡ Bu(t).

(3.4)



2264 BENDONG LOU

For any u, v ∈ C[J, R1],

|Bu(t)−Bv(t)| = e−Mt

∫ t

0

eMs|RTv(s)−RTu(s) + QSv(s)−QSu(s)|ds

≤ Re−Mt

∫ t

0

eMs

[∫ s

0

k(s, r)|v(r) − u(r)|dr

]
ds

+Q

∣∣∣∣e−Mt

∫ 1

0

(v(r) − u(r))H(t, r)dr

∣∣∣∣
≤ Rk0

eMt − 1
M

∫ t

0

|u(r)− v(r)|dr + |L(u(t)− v(t))|

≤ K

∫ t

0

|u(r)− v(r)|dr + |L(u(t)− v(t))|, ∀ t ∈ J,

where

H(t, r) =
∫ t

0

eMsh(s, r)ds, Lu(t) = Q

∫ 1

0

H(t, r)u(r)dr

and
K = Rk0(eM − 1)M−1.

By (3.2) we know that ‖L‖ < 1, and consequently Theorem 2.1 shows that B
has exactly one fixed point in C[J, R1], that is, (3.3) has exactly one solution
u ∈ C1[J, R1].

Define Aη = u, where u is the unique solution of (3.3). Then A : U →
C1[J, R1] ⊂ C[J, R1] and η is a solution of IVP (3.1) if and only if η = Aη.

Finally, a standard argument (see, e.g. [2, 3]) shows that the conclusions of
Theorem 3.1 hold. This completes the proof.

Remark 3.1. In order to guarantee the existence and uniqueness of the fixed point
of B defined by (3.4), we use Theorem 2.1 instead of Banach’s theorem, which is
widely used in most published papers (see, e.g. [2, 3]) but is invalid here.
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