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POLYNOMIALLY CONVEX HULLS
OF GRAPHS ON THE SPHERE

TOSHIYA JIMBO AND AKIRA SAKAI
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Abstract. Let Σ be the graph of a continuous map of the unit sphere of Cn

into Cm, and h(Σ) the polynomially convex hull of Σ. Several examples of
h(Σ) for n = m > 1 are given, which have different properties from the known
ones for n > m.

Let E be a compact subset of CN . The polynomially convex hull of E is, by
definition, the set h(E) of the points z of CN for which

|p(z)| ≤ sup{|p(ζ)| : ζ ∈ E}
holds for all polynomials p. If h(E) = E, then E is said to be polynomially convex.

Let B be the open unit ball in Cn :
n∑

k=1

|zk|2 < 1, and let S be the boundary of

B. Consider a continuous map

f = (f1, . . . , fm) : S → Cm.

The graph of f is denoted by Σ. The polynomially convex hulls of Σ, especially
in the case that n = m = 1 or n > m, have been studied by several authors (J.
Wermer [7], H. Alexander [2], P. Ahern and W. Rudin [1], J. Anderson [3], and
others). The following theorem for n = m = 1 is Wermer’s maximality theorem [7].

Theorem W. When n = m = 1, only two cases occur:
(a) Σ is polynomially convex or;
(b) h(Σ) is a graph of a function of C(B) which is holomorphic in B.

We denote by π the projection of Cn+m onto Cn. If E is a subset of Cn+m such
that π(E) = B, we say that E covers B. When n > 1, Alexander [2] proved the
following theorem.

Theorem A. (1) If n > m, then h(Σ) covers B.
(2) If m = 1 and if F is continuous on B and is pluriharmonic in B, then h(Σ)

is the graph of F .
(3) If F = |g| for some holomorphic function g with no zeros, then h(Σ) is the

graph of F .

In the case that n = m > 1, the situation is somewhat different. For example, if
fj(z) = zj , j = 1, . . . , n, Σ is polynomially convex, by Weierstrass’ approximation
theorem. In this paper, we give some examples in this case.
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1.

In the first example, h(Σ) is not polynomially convex and does not cover B.

Example 1. We consider

fk(z) = (z1 − a)zk, 0 < |a| < 1, k = 1, . . . , n.

Then h(Σ) contains an (n− 1)-ball and π(h(Σ)) does not contain the origin. That
is, Σ is not polynomially convex and h(Σ) does not cover B.

Proof. We consider

Σ0 = {(a, z2, . . . , zn, 0, . . . , 0) ∈ C2n :
n∑

k=2

|zk|2 = 1− |a|2}.

This set is the intersection of Σ and the complex subspace z1 = a, w1 = · · · = wn =
0. Hence h(Σ) contains an (n− 1)-ball

{(a, z2, . . . , zn, 0, . . . , 0) :
∑

|zk|2 < 1− |a|2},
and hence h(Σ) 6= Σ.

We next consider the polynomial

p(z1, . . . , zn, w1, . . . , wn) = 1 + a(
n∑

k=1

zkwk − z1).

Then, we have p(0, . . . , 0, w1, . . . , wn) = 1 for all (w1, . . . , wn) ∈ Cn.
If (z1, . . . , zn, w1, . . . , wn) ∈ Σ, then wk = fk(z), and hence, we have p(z, w) =

1− |a|2. This shows that the point (0, . . . , 0, w1, . . . , wn) does not belong to h(Σ)
for every (w1, . . . , wn).

2.

In this section, we deal with the case that f is the restriction on S of F =
(F1, . . . , Fm) with Fj ∈ C(B), j = 1, . . . , m. The graph of F on B will be denoted
by G(F ).

We first prove the following

Lemma 1. Let K be a compact polynomially convex subset of CN . If Fj , j =
1, . . . , m, are pluriharmonic in an open neighborhood U of K, then the graph G(F )
of F = (F1, . . . , Fm) on K is polynomially convex.

Proof. Since K is polynomially convex, it is sufficient to show that, for any point
(z0, w0) with z0 ∈ K and w0 6= F (z0), there exists a function q(z, w) which is
holomorphic in U × Cm and satisfies |q(z0, w0)| > ‖q‖G(F ). We may assume that
Re(Fk(z0)−w0

k) > 0, for some k. We can write Fk = gk + hk, where gk and hk are
holomorphic in U . We set

q(z, w) = exp(gk(z) + hk(z)− wk).

Then q is holomorphic on B. Since ReFk = Re(gk + hk) = Re(gk + hk), we have
|q(z, w)| = 1 if w = F (z), and |q(z0, w0)| = exp(Re(Fk(z0)− w0

k)) > 1.

Corollary. If Fj are pluriharmonic on B, then h(Σ) ⊂ G(F ). If, in addition, h(Σ)
covers B, then we have h(Σ) = G(F ).
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When m < n, (2) of Theorem A follows from this Corollary and (1) of Theorem
A.

The following question naturally arises: Does h(Σ) = G(F ) hold when Fj are
pluriharmonic and h(Σ) 6= Σ ? The following example shows it is not true for
n = m.

Example 2. For the pluriharmonic functions

f1(z1, z2) = z1, f2(z1, z2) = z1z2,

we have Σ $ h(Σ) $ G(F ). In fact, we have

h(Σ) = Σ ∪ {(0, z2, 0, 0) : |z2| ≤ 1}.
Proof. h(Σ) contains the disk

D = {(0, z2, 0, 0) : |z2| ≤ 1}.
We show that h(Σ) = Σ∪D. Let a and b be any complex numbers with |a|2+|b|2 < 1
and a 6= 0. We set

M = max{|z1 − a|2 + |z1|2|z2 − b|2 : (z1, z2) ∈ S},
m = min{|z1 − a|2 + |z1|2|z2 − b|2 : (z1, z2) ∈ S}.

Then we have m > 0. Consider the polynomial

P (z1, z2, w1, w2) = 1− α{(z1 − a)(w1 − a) + z1(z2 − b)(w2 − bw1)},
with 0 < α < 2/M .

If wk = fk(z), z ∈ S, k = 1, 2, then we have

P (z1, z2, w1, w2) = 1− α(|z1 − a|2 + |z1|2|z2 − b|2),
and hence |P | < 1. Since P (a, b, w1, w2) = 1, the point (a, b, w1, w2) does not belong
to h(Σ) for any (w1, w2), that is, (a, b) /∈ π(hΣ)).

3. Joint spectrum

Let K be a compact subset of Cn and u1, . . . , uk functions of C(K). We denote
by [u1, . . . , uk; K] the algebra of uniform limits on K of polynomials of u1, . . . , uk.
In particular, [z1, . . . , zn; B] is the uniform algebras of all continuous functions on
B which are holomorphic in B and is denoted by A(B).

To show further examples we need a lemma on the joint spectrum. Let A be
a uniform algebra on K, and MA the maximal ideal space of A. For functions
f1, . . . , fk of A, the joint spectrum is, by definition,

σ(f1, . . . , fk) = {(ϕ(f1), . . . , ϕ(fk)) ∈ Ck : ϕ ∈ MA}.
It is known that if A is generated by f1, . . . , fk, then σ(f1, . . . , fk) is polynomially
convex. We set

K∗ = {(f1(z), . . . , fk(z)) : z ∈ K}.
If p is a polynomial in Ck, then we have

p(ϕ(f1), . . . , ϕ(fk)) = ϕ(p(f1, . . . , fk)).
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Therefore we have

Lemma 2. If f1, . . . , fk ∈ A, then

σ(f1, . . . , fk) ⊂ h(K∗).

If A is generated by f1, . . . , fk, then

σ(f1, . . . , fk) = h(K∗).

Proposition 1. If f1, . . . , fn−1 ∈ C(S) and fn ∈ [f1, . . . , fn−1; S], then

π(h(Σ)) = B.

Let F1, . . . , Fn−1 be functions of C(B), and let f1, . . . , fn−1 be the restriction of
F1, . . . , Fn−1 on S, restrictively. We denote by Σ1 the graph of f ′ = (f1, . . . , fn−1)
on S.

Proposition 2. If fn ∈ [f1, . . . , fn−1; S] and if h(Σ1) = G(F1, . . . , Fn−1), then
there exists a function Fn of C(B) such that h(Σ) is the graph G(F1, . . . , Fn) of
(F1, . . . , Fn) on B.

4.

Let g1(z1, z2) and g2(z1, z2) be holomorphic functions on B which have no zeros.
Set F = (|g1|, |g2|) and f = F |S . We consider the problems asking if h(Σ) = G(F ).
We give two counter-examples. In the first example, h(Σ) = Σ, in the second one,
Σ $ h(Σ) $ G(F ). We also give an example in which g1 and g2 have zeros and
G(F ) $ h(Σ).

Example 3. Let h1(ζ) and h2(ζ) be holomorphic on the unit disk D such that
h′1, h

′
2 have no zeros on D. We set

g1(z1, z2) = eh1(z1), g2(z1, z2) = eh2(z2).

Then h(Σ) = Σ.

Proof. For any pair u = (u1, u2) of real numbers, we set

lk = {ζ ∈ D : Rehk(ζ) = uk}, k = 1, 2,

Lu = {(z1, z2) ∈ D ×D : |g1| = eu1 , |g2| = eu2}.
For each k, Rehk is harmonic. Hence lk does not divide the plane and hence
is polynomially convex. Since moreover ∂hk 6= 0, it is a totally real set. Since
Lu = l1×l2, Lu is a polynomially convex totally real set of C2. This implies P (Lu) =
C(Lu) (cf. [6]). By Theorem 3 of [6], which is a generalization of Merglyan’s theorem
[5], we have

[z1, z2, |g1|, |g2|; D ×D] = C(D ×D),

which implies P (Σ) = C(Σ). Therefore Σ is polynomially convex.

Example 4. We consider g1(z1, z2) = e2z1 and g2(z1, z2) = e2z1z2 . Then Σ $
h(Σ) $ G(F ). In fact, we have

h(Σ) = Σ ∪ {(0, z2, 1, 1) : |z2| ≤ 1}.
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Proof. We consider three algebras

A1 = [z1, z2, z1, z1z2; S],

A2 = [z1, z2, e
z1 , ez1z2 ; S],

A3 = [z1, z2, e
z1+z1 , ez1z2+z1z2 ; S].

We denote by Σ1, Σ2 and Σ3 the graphs on S of (z1, z1z2), (ez1 , ez1z2) and
(ez1+z1 , ez1z2+z1z2) respectively. By Example 2 and Lemma 2, we have

σ(z1, z2, z1, z1z2) = h(Σ1) = Σ1 ∪ {(0, z2, 0, 0) : |z2| ≤ 1}.
If we can prove that these algebras are the same, then so are the maximal ideal
spaces of these algebras and hence, by Lemma 2, we have

h(Σ3) = σ(z1, z2, e
z1+z1 , ez1z2+z1z2) = Σ3 ∪ {(0, z2, 1, 1) : |z2| ≤ 1}.

We show A1 = A2. Evidently we have A2 ⊂ A1. Consider the algebra [ζ, eζ ; D]
on the unit disk D. Since eζ is pluriharmonic, the graph G on D is polynomially
convex, by Corollary of Lemma 1. G is a totally real set, since ∂

∂ζ
eζ 6= 0. Hence we

have P (G) = C(G) and [ζ, eζ ; D] = C(D). We have ζ ∈ [ζ, eζ ; D], which implies

z1 ∈ [z1, e
z1 ; D ×D]and z1z2 ∈ [z1z2, e

z1z2 ; D ×D].

Therefore, we have

[z1, z2, z1, z1z2; D ×D] ⊂ [z1, z2, e
z1 , ez1z2 ; D ×D].

It follows that A1 ⊂ A2.
Evidently, we have A3 ⊂ A1. Since e−z1 and e−(z1+z2) are approximated by

polynomials of z1, z2, we have A2 ⊂ A3. Therefore, we have A1 = A2 = A3.

In the following example, g1 and g2 have zeros and h(Σ) covers B.

Example 5. If
g1(z1, z2) = z2

1 , g2(z1, z2) = z2
2 ,

then h(Σ) covers B. But h(Σ) is not a graph of the function F = (|g1|, |g2|). In
fact, h(Σ) coincides with a closed manifold

M ={(z1, z2, w1, w2) : Imw1 =Imw2 =0, |z1|2 ≤ Rew1 ≤ 1−|z2|2, Rew2 =1−Rew1}.
The real dimension of M is 5.

Proof. Set Σ1 = {(z1, z2, |z1|2) ∈ C3 : (z1, z2) ∈ S}. For any point (a, b, t2) with
|a|2 + |b|2 < 1, |a|2 < t2 ≤ 1− |b|2, t > 0, we consider the map

F = (F1, F2, F3) : λ 7→
(

t(tλ + a)
t + aλ

,

√
1− t2(

√
1− t2λ + b)√

1− t2 + bλ
, t2

)
of the disk |λ| ≤ 1 into C3. If |λ| = 1, then |F1(λ)|2 + |F2(λ)|2 = 1. Hence
(a, b, t2) ∈ h(Σ1).

By taking appropriate polynomials, it follows that other points do not belong to
h(Σ1). Hence we have h(Σ1) = {(z1, z2, w1) : |z1|2 ≤ Rew1 ≤ 1− |z2|2, Imw1 = 0}.

Since h(Σ) = σ(z1, z2, |z1|2, 1− |z1|2), we have h(Σ) = M .
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