POLYNOMIALLY CONVEX HULLS OF GRAPHS ON THE SPHERE

TOSHIYA JIMBO AND AKIRA SAKAI
(Communicated by Theodore W. Gamelin)

Abstract

Let Σ be the graph of a continuous map of the unit sphere of \mathbb{C}^{n} into \mathbb{C}^{m}, and $h(\Sigma)$ the polynomially convex hull of Σ. Several examples of $h(\Sigma)$ for $n=m>1$ are given, which have different properties from the known ones for $n>m$.

Let E be a compact subset of \mathbb{C}^{N}. The polynomially convex hull of E is, by definition, the set $h(E)$ of the points z of \mathbb{C}^{N} for which

$$
|p(z)| \leq \sup \{|p(\zeta)|: \zeta \in E\}
$$

holds for all polynomials p. If $h(E)=E$, then E is said to be polynomially convex.
Let B be the open unit ball in $\mathbb{C}^{n}: \sum_{k=1}^{n}\left|z_{k}\right|^{2}<1$, and let S be the boundary of B. Consider a continuous map

$$
f=\left(f_{1}, \ldots, f_{m}\right): S \rightarrow \mathbb{C}^{m}
$$

The graph of f is denoted by Σ. The polynomially convex hulls of Σ, especially in the case that $n=m=1$ or $n>m$, have been studied by several authors (J. Wermer [7], H. Alexander [2], P. Ahern and W. Rudin [1], J. Anderson [3], and others). The following theorem for $n=m=1$ is Wermer's maximality theorem [7].
Theorem W. When $n=m=1$, only two cases occur:
(a) Σ is polynomially convex or;
(b) $h(\Sigma)$ is a graph of a function of $C(\bar{B})$ which is holomorphic in B.

We denote by π the projection of \mathbb{C}^{n+m} onto \mathbb{C}^{n}. If E is a subset of \mathbb{C}^{n+m} such that $\pi(E)=\bar{B}$, we say that E covers \bar{B}. When $n>1$, Alexander [2] proved the following theorem.
Theorem A. (1) If $n>m$, then $h(\Sigma)$ covers \bar{B}.
(2) If $m=1$ and if F is continuous on \bar{B} and is pluriharmonic in B, then $h(\Sigma)$ is the graph of F.
(3) If $F=|g|$ for some holomorphic function g with no zeros, then $h(\Sigma)$ is the graph of F.

In the case that $n=m>1$, the situation is somewhat different. For example, if $f_{j}(z)=\overline{z_{j}}, j=1, \ldots, n, \Sigma$ is polynomially convex, by Weierstrass' approximation theorem. In this paper, we give some examples in this case.

Received by the editors November 20, 1997.
1991 Mathematics Subject Classification. Primary 32E20.
1.

In the first example, $h(\Sigma)$ is not polynomially convex and does not cover \bar{B}.
Example 1. We consider

$$
f_{k}(z)=\left(z_{1}-a\right) \overline{z_{k}}, 0<|a|<1, k=1, \ldots, n .
$$

Then $h(\Sigma)$ contains an $(n-1)$-ball and $\pi(h(\Sigma))$ does not contain the origin. That is, Σ is not polynomially convex and $h(\Sigma)$ does not cover \bar{B}.

Proof. We consider

$$
\Sigma_{0}=\left\{\left(a, z_{2}, \ldots, z_{n}, 0, \ldots, 0\right) \in \mathbb{C}^{2 n}: \sum_{k=2}^{n}\left|z_{k}\right|^{2}=1-|a|^{2}\right\}
$$

This set is the intersection of Σ and the complex subspace $z_{1}=a, w_{1}=\cdots=w_{n}=$ 0 . Hence $h(\Sigma)$ contains an $(n-1)$-ball

$$
\left\{\left(a, z_{2}, \ldots, z_{n}, 0, \ldots, 0\right): \sum\left|z_{k}\right|^{2}<1-|a|^{2}\right\}
$$

and hence $h(\Sigma) \neq \Sigma$.
We next consider the polynomial

$$
p\left(z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{n}\right)=1+\bar{a}\left(\sum_{k=1}^{n} z_{k} w_{k}-z_{1}\right)
$$

Then, we have $p\left(0, \ldots, 0, w_{1}, \ldots, w_{n}\right)=1$ for all $\left(w_{1}, \ldots, w_{n}\right) \in C^{n}$.
If $\left(z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{n}\right) \in \Sigma$, then $w_{k}=f_{k}(z)$, and hence, we have $p(z, w)=$ $1-|a|^{2}$. This shows that the point $\left(0, \ldots, 0, w_{1}, \ldots, w_{n}\right)$ does not belong to $h(\Sigma)$ for every $\left(w_{1}, \ldots, w_{n}\right)$.
2.

In this section, we deal with the case that f is the restriction on S of $F=$ $\left(F_{1}, \ldots, F_{m}\right)$ with $F_{j} \in C(\bar{B}), j=1, \ldots, m$. The graph of F on \bar{B} will be denoted by $G(F)$.

We first prove the following
Lemma 1. Let K be a compact polynomially convex subset of \mathbb{C}^{N}. If $F_{j}, j=$ $1, \ldots, m$, are pluriharmonic in an open neighborhood U of K, then the graph $G(F)$ of $F=\left(F_{1}, \ldots, F_{m}\right)$ on K is polynomially convex.

Proof. Since K is polynomially convex, it is sufficient to show that, for any point $\left(z^{0}, w^{0}\right)$ with $z^{0} \in K$ and $w^{0} \neq F\left(z^{0}\right)$, there exists a function $q(z, w)$ which is holomorphic in $U \times \mathbb{C}^{m}$ and satisfies $\left|q\left(z^{0}, w^{0}\right)\right|>\|q\|_{G(F)}$. We may assume that $\operatorname{Re}\left(F_{k}\left(z^{0}\right)-w_{k}^{0}\right)>0$, for some k. We can write $F_{k}=g_{k}+\bar{h}_{k}$, where g_{k} and h_{k} are holomorphic in U. We set

$$
q(z, w)=\exp \left(g_{k}(z)+h_{k}(z)-w_{k}\right) .
$$

Then q is holomorphic on B. Since $\operatorname{Re} F_{k}=\operatorname{Re}\left(g_{k}+\bar{h}_{k}\right)=\operatorname{Re}\left(g_{k}+h_{k}\right)$, we have $|q(z, w)|=1$ if $w=F(z)$, and $\left|q\left(z^{0}, w^{0}\right)\right|=\exp \left(\operatorname{Re}\left(F_{k}\left(z^{0}\right)-w_{k}^{0}\right)\right)>1$.

Corollary. If F_{j} are pluriharmonic on \bar{B}, then $h(\Sigma) \subset G(F)$. If, in addition, $h(\Sigma)$ covers \bar{B}, then we have $h(\Sigma)=G(F)$.

When $m<n,(2)$ of Theorem A follows from this Corollary and (1) of Theorem A.

The following question naturally arises: Does $h(\Sigma)=G(F)$ hold when F_{j} are pluriharmonic and $h(\Sigma) \neq \Sigma$? The following example shows it is not true for $n=m$.

Example 2. For the pluriharmonic functions

$$
f_{1}\left(z_{1}, z_{2}\right)=\bar{z}_{1}, \quad f_{2}\left(z_{1}, z_{2}\right)=\bar{z}_{1} \bar{z}_{2}
$$

we have $\Sigma \varsubsetneqq h(\Sigma) \varsubsetneqq G(F)$. In fact, we have

$$
h(\Sigma)=\Sigma \cup\left\{\left(0, z_{2}, 0,0\right):\left|z_{2}\right| \leq 1\right\}
$$

Proof. $h(\Sigma)$ contains the disk

$$
D=\left\{\left(0, z_{2}, 0,0\right):\left|z_{2}\right| \leq 1\right\}
$$

We show that $h(\Sigma)=\Sigma \cup D$. Let a and b be any complex numbers with $|a|^{2}+|b|^{2}<1$ and $a \neq 0$. We set

$$
\begin{aligned}
M & =\max \left\{\left|z_{1}-a\right|^{2}+\left|z_{1}\right|^{2}\left|z_{2}-b\right|^{2}:\left(z_{1}, z_{2}\right) \in S\right\} \\
m & =\min \left\{\left|z_{1}-a\right|^{2}+\left|z_{1}\right|^{2}\left|z_{2}-b\right|^{2}:\left(z_{1}, z_{2}\right) \in S\right\}
\end{aligned}
$$

Then we have $m>0$. Consider the polynomial

$$
P\left(z_{1}, z_{2}, w_{1}, w_{2}\right)=1-\alpha\left\{\left(z_{1}-a\right)\left(w_{1}-\bar{a}\right)+z_{1}\left(z_{2}-b\right)\left(w_{2}-\bar{b} w_{1}\right)\right\}
$$

with $0<\alpha<2 / M$.
If $w_{k}=f_{k}(z), \quad z \in S, \quad k=1,2$, then we have

$$
P\left(z_{1}, z_{2}, w_{1}, w_{2}\right)=1-\alpha\left(\left|z_{1}-a\right|^{2}+\left|z_{1}\right|^{2}\left|z_{2}-b\right|^{2}\right)
$$

and hence $|P|<1$. Since $P\left(a, b, w_{1}, w_{2}\right)=1$, the point $\left(a, b, w_{1}, w_{2}\right)$ does not belong to $h(\Sigma)$ for any $\left(w_{1}, w_{2}\right)$, that is, $\left.(a, b) \notin \pi(h \Sigma)\right)$.

3. Joint spectrum

Let K be a compact subset of \mathbb{C}^{n} and u_{1}, \ldots, u_{k} functions of $C(K)$. We denote by $\left[u_{1}, \ldots, u_{k} ; K\right]$ the algebra of uniform limits on K of polynomials of u_{1}, \ldots, u_{k}. In particular, $\left[z_{1}, \ldots, z_{n} ; \bar{B}\right]$ is the uniform algebras of all continuous functions on \bar{B} which are holomorphic in B and is denoted by $A(B)$.

To show further examples we need a lemma on the joint spectrum. Let A be a uniform algebra on K, and M_{A} the maximal ideal space of A. For functions f_{1}, \ldots, f_{k} of A, the j oint spectrum is, by definition,

$$
\sigma\left(f_{1}, \ldots, f_{k}\right)=\left\{\left(\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{k}\right)\right) \in \mathbb{C}^{k}: \varphi \in M_{A}\right\}
$$

It is known that if A is generated by f_{1}, \ldots, f_{k}, then $\sigma\left(f_{1}, \ldots, f_{k}\right)$ is polynomially convex. We set

$$
K^{*}=\left\{\left(f_{1}(z), \ldots, f_{k}(z)\right): z \in K\right\}
$$

If p is a polynomial in \mathbb{C}^{k}, then we have

$$
p\left(\varphi\left(f_{1}\right), \ldots, \varphi\left(f_{k}\right)\right)=\varphi\left(p\left(f_{1}, \ldots, f_{k}\right)\right)
$$

Therefore we have
Lemma 2. If $f_{1}, \ldots, f_{k} \in A$, then

$$
\sigma\left(f_{1}, \ldots, f_{k}\right) \subset h\left(K^{*}\right)
$$

If A is generated by f_{1}, \ldots, f_{k}, then

$$
\sigma\left(f_{1}, \ldots, f_{k}\right)=h\left(K^{*}\right)
$$

Proposition 1. If $f_{1}, \ldots, f_{n-1} \in C(S)$ and $f_{n} \in\left[f_{1}, \ldots, f_{n-1} ; S\right]$, then

$$
\pi(h(\Sigma))=\bar{B}
$$

Let F_{1}, \ldots, F_{n-1} be functions of $C(\bar{B})$, and let f_{1}, \ldots, f_{n-1} be the restriction of F_{1}, \ldots, F_{n-1} on S, restrictively. We denote by Σ_{1} the graph of $f^{\prime}=\left(f_{1}, \ldots, f_{n-1}\right)$ on S.

Proposition 2. If $f_{n} \in\left[f_{1}, \ldots, f_{n-1} ; S\right]$ and if $h\left(\Sigma_{1}\right)=G\left(F_{1}, \ldots, F_{n-1}\right)$, then there exists a function F_{n} of $C(\bar{B})$ such that $h(\Sigma)$ is the graph $G\left(F_{1}, \ldots, F_{n}\right)$ of $\left(F_{1}, \ldots, F_{n}\right)$ on \bar{B}.
4.

Let $g_{1}\left(z_{1}, z_{2}\right)$ and $g_{2}\left(z_{1}, z_{2}\right)$ be holomorphic functions on \bar{B} which have no zeros. Set $F=\left(\left|g_{1}\right|,\left|g_{2}\right|\right)$ and $f=\left.F\right|_{S}$. We consider the problems asking if $h(\Sigma)=G(F)$. We give two counter-examples. In the first example, $h(\Sigma)=\Sigma$, in the second one, $\Sigma \varsubsetneqq h(\Sigma) \varsubsetneqq G(F)$. We also give an example in which g_{1} and g_{2} have zeros and $G(F) \varsubsetneqq h(\Sigma)$.
Example 3. Let $h_{1}(\zeta)$ and $h_{2}(\zeta)$ be holomorphic on the unit disk \bar{D} such that $h_{1}^{\prime}, h_{2}^{\prime}$ have no zeros on \bar{D}. We set

$$
g_{1}\left(z_{1}, z_{2}\right)=e^{h_{1}\left(z_{1}\right)}, g_{2}\left(z_{1}, z_{2}\right)=e^{h_{2}\left(z_{2}\right)}
$$

Then $h(\Sigma)=\Sigma$.
Proof. For any pair $u=\left(u_{1}, u_{2}\right)$ of real numbers, we set

$$
\begin{gathered}
l_{k}=\left\{\zeta \in \bar{D}: \operatorname{Re} h_{k}(\zeta)=u_{k}\right\}, k=1,2 \\
L_{u}=\left\{\left(z_{1}, z_{2}\right) \in \bar{D} \times \bar{D}:\left|g_{1}\right|=e^{u_{1}},\left|g_{2}\right|=e^{u_{2}}\right\}
\end{gathered}
$$

For each $k, \operatorname{Re} h_{k}$ is harmonic. Hence l_{k} does not divide the plane and hence is polynomially convex. Since moreover $\partial h_{k} \neq 0$, it is a totally real set. Since $L_{u}=l_{1} \times l_{2}, L_{u}$ is a polynomially convex totally real set of \mathbb{C}^{2}. This implies $P\left(L_{u}\right)=$ $C\left(L_{u}\right)$ (cf. [6]). By Theorem 3 of [6], which is a generalization of Merglyan's theorem [5], we have

$$
\left[z_{1}, z_{2},\left|g_{1}\right|,\left|g_{2}\right| ; \bar{D} \times \bar{D}\right]=C(\bar{D} \times \bar{D})
$$

which implies $P(\Sigma)=C(\Sigma)$. Therefore Σ is polynomially convex.
Example 4. We consider $g_{1}\left(z_{1}, z_{2}\right)=e^{2 z_{1}}$ and $g_{2}\left(z_{1}, z_{2}\right)=e^{2 z_{1} z_{2}}$. Then $\Sigma \varsubsetneqq$ $h(\Sigma) \varsubsetneqq G(F)$. In fact, we have

$$
h(\Sigma)=\Sigma \cup\left\{\left(0, z_{2}, 1,1\right):\left|z_{2}\right| \leq 1\right\}
$$

Proof. We consider three algebras

$$
\begin{gathered}
A_{1}=\left[z_{1}, z_{2}, \overline{z_{1}}, \overline{z_{1} z_{2}} ; S\right], \\
A_{2}=\left[z_{1}, z_{2}, e^{\overline{z_{1}}}, e^{\overline{z_{1} z_{2}}} ; S\right], \\
A_{3}=\left[z_{1}, z_{2}, e^{z_{1}+\overline{z_{1}}}, e^{z_{1} z_{2}+\overline{z_{1} z_{2}}} ; S\right] .
\end{gathered}
$$

We denote by Σ_{1}, Σ_{2} and Σ_{3} the graphs on S of $\left(\overline{z_{1}}, \overline{z_{1} z_{2}}\right),\left(e^{z_{1}}, e^{\overline{z_{1} z_{2}}}\right)$ and $\left(e^{z_{1}+\overline{z_{1}}}, e^{z_{1} z_{2}+\overline{z_{1} z_{2}}}\right)$ respectively. By Example 2 and Lemma 2, we have

$$
\sigma\left(z_{1}, z_{2}, \overline{z_{1}}, \overline{z_{1} z_{2}}\right)=h\left(\Sigma_{1}\right)=\Sigma_{1} \cup\left\{\left(0, z_{2}, 0,0\right):\left|z_{2}\right| \leq 1\right\}
$$

If we can prove that these algebras are the same, then so are the maximal ideal spaces of these algebras and hence, by Lemma 2, we have

$$
h\left(\Sigma_{3}\right)=\sigma\left(z_{1}, z_{2}, e^{z_{1}+\overline{z_{1}}}, e^{z_{1} z_{2}+\overline{z_{1} z_{2}}}\right)=\Sigma_{3} \cup\left\{\left(0, z_{2}, 1,1\right):\left|z_{2}\right| \leq 1\right\} .
$$

We show $A_{1}=A_{2}$. Evidently we have $A_{2} \subset A_{1}$. Consider the algebra $\left[\zeta, e^{\bar{\zeta}} ; \bar{D}\right]$ on the unit disk \bar{D}. Since $e^{\bar{\zeta}}$ is pluriharmonic, the graph G on \bar{D} is polynomially convex, by Corollary of Lemma 1. G is a totally real set, since $\frac{\partial}{\partial \bar{\zeta}} \bar{\zeta} \neq 0$. Hence we have $P(G)=C(G)$ and $\left[\zeta, e^{\bar{\zeta}} ; \bar{D}\right]=C(\bar{D})$. We have $\bar{\zeta} \in\left[\zeta, e^{\bar{\zeta}} ; \bar{D}\right]$, which implies

$$
\bar{z}_{1} \in\left[z_{1}, e^{\bar{z}_{1}} ; \bar{D} \times \bar{D}\right] \text { and } \overline{z_{1} z_{2}} \in\left[z_{1} z_{2}, e^{\overline{z_{1} z_{2}}} ; \bar{D} \times \bar{D}\right]
$$

Therefore, we have

$$
\left[z_{1}, z_{2}, \bar{z}_{1}, \overline{z_{1} z_{2}} ; \bar{D} \times \bar{D}\right] \subset\left[z_{1}, z_{2}, e^{\bar{z}_{1}}, e^{\overline{z_{1} z_{2}}} ; \bar{D} \times \bar{D}\right]
$$

It follows that $A_{1} \subset A_{2}$.
Evidently, we have $A_{3} \subset A_{1}$. Since $e^{-z_{1}}$ and $e^{-\left(z_{1}+z_{2}\right)}$ are approximated by polynomials of z_{1}, z_{2}, we have $A_{2} \subset A_{3}$. Therefore, we have $A_{1}=A_{2}=A_{3}$.

In the following example, g_{1} and g_{2} have zeros and $h(\Sigma)$ covers \bar{B}.
Example 5. If

$$
g_{1}\left(z_{1}, z_{2}\right)=z_{1}^{2}, \quad g_{2}\left(z_{1}, z_{2}\right)=z_{2}^{2}
$$

then $h(\Sigma)$ covers \bar{B}. But $h(\Sigma)$ is not a graph of the function $F=\left(\left|g_{1}\right|,\left|g_{2}\right|\right)$. In fact, $h(\Sigma)$ coincides with a closed manifold
$M=\left\{\left(z_{1}, z_{2}, w_{1}, w_{2}\right): \operatorname{Im} w_{1}=\operatorname{Im} w_{2}=0,\left|z_{1}\right|^{2} \leq \operatorname{Re} w_{1} \leq 1-\left|z_{2}\right|^{2}, \operatorname{Re} w_{2}=1-\operatorname{Re} w_{1}\right\}$.
The real dimension of M is 5 .
Proof. Set $\Sigma_{1}=\left\{\left(z_{1}, z_{2},\left|z_{1}\right|^{2}\right) \in \mathbb{C}^{3}:\left(z_{1}, z_{2}\right) \in S\right\}$. For any point $\left(a, b, t^{2}\right)$ with $|a|^{2}+|b|^{2}<1,|a|^{2}<t^{2} \leq 1-|b|^{2}, t>0$, we consider the map

$$
F=\left(F_{1}, F_{2}, F_{3}\right): \lambda \mapsto\left(\frac{t(t \lambda+a)}{t+\bar{a} \lambda}, \frac{\sqrt{1-t^{2}}\left(\sqrt{1-t^{2}} \lambda+b\right)}{\sqrt{1-t^{2}}+\bar{b} \lambda}, t^{2}\right)
$$

of the disk $|\lambda| \leq 1$ into \mathbb{C}^{3}. If $|\lambda|=1$, then $\left|F_{1}(\lambda)\right|^{2}+\left|F_{2}(\lambda)\right|^{2}=1$. Hence $\left(a, b, t^{2}\right) \in h\left(\Sigma_{1}\right)$.

By taking appropriate polynomials, it follows that other points do not belong to $h\left(\Sigma_{1}\right)$. Hence we have $h\left(\Sigma_{1}\right)=\left\{\left(z_{1}, z_{2}, w_{1}\right):\left|z_{1}\right|^{2} \leq \operatorname{Re} w_{1} \leq 1-\left|z_{2}\right|^{2}, \operatorname{Im} w_{1}=0\right\}$.

Since $h(\Sigma)=\sigma\left(z_{1}, z_{2},\left|z_{1}\right|^{2}, 1-\left|z_{1}\right|^{2}\right)$, we have $h(\Sigma)=M$.

References

[1] P. Ahern and W.Rudin: Hulls of 3-spheres in \mathbb{C}^{3}, Contemporary Math. 137 (1992), 1-27. MR 93k:32020
[2] H. Alexander: Polynomial hulls of graphs, Pacific J. Math. 147 (1991), 201-212. MR 91k:32013
[3] J. T. Anderson: On an example of Ahern and Rudin, Proc. Amer. Math. Soc. 116 (1992), 695-699. MR 93c:32021
[4] H. Alexander and J. Wermer: Polynomial hulls with convex fibers, Math. Ann. 271 (1985), 99-109. MR 86i:32025
[5] S. N. Mergelyan: Uniform approximation to functions of a complex variable, Uspehi Mat. Nauk. 7 (1952), No.2, 31-122; Amer. Math. Soc Transl. 3 (1962), Ser.1, 294-391. MR 14:547e
[6] A. Sakai: Uniform approximation in several complex variables, Osaka J. Math. 15 (1978), 586-611. MR 81e:32019
[7] J. Wermer: On algebras of continuous functions, Proc. Amer. Math. Soc. 4 (1953), 866-869. MR 15:440g

Department of Mathematics, Nara University of Education, Takabatake, Nara 6308528, JAPAN

E-mail address: jimbo@nara-edu.ac.jp
Yamadanishi 2-9,A3-612 Suita, Osaka 565-0824, Japan
E-mail address: CXH02215@niftyserve.or.jp

