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WEIGHTED CACCIOPPOLI-TYPE ESTIMATES
AND WEAK REVERSE HÖLDER INEQUALITIES

FOR A-HARMONIC TENSORS

SHUSEN DING

(Communicated by Christopher D. Sogge)

Abstract. We obtain a local weighted Caccioppoli-type estimate and prove
the weighted version of the weak reverse Hölder inequality for A-harmonic
tensors.

1. Introduction

Harmonic functions have wide applications in many fields, such as potential the-
ory, partial differential equations, harmonic analysis and the theory of Hp-spaces.
A-harmonic tensors are interesting and important generalizations of p-harmonic
tensors. In the meantime, p-harmonic tensors are extensions of conjugate har-
monic functions and p-harmonic functions, p > 1. In recent years there have been
remarkable advances made in the field of A-harmonic tensors. Many interesting
results of A-harmonic tensors and their applications in fields such as potential the-
ory, quasiregular mappings and the theory of elasticity have been found; see [1],
[2], [3], [7], [8], [9], [10], [11], [12], [14]. For many purposes, we need to know the
integrability of A-harmonic tensors and estimate the integrals for A-harmonic ten-
sors. In this paper we first obtain the local weighted Caccioppoli-type estimate and
the weighted version of the weak reverse Hölder inequality for A-harmonic tensors.
These integral inequalities can be used to study the integrability of A-harmonic
tensors and estimate the integrals for A-harmonic tensors.

We always assume Ω is a connected open subset of Rn throughout this paper.
Let e1, e2, · · · , en denote the standard unit basis of Rn. For l = 0, 1, · · · , n, the
linear space of l-vectors, spanned by the exterior products eI = ei1 ∧ ei2 ∧ · · · ∧ eil

,
corresponding to all ordered l-tuples I = (i1, i2, · · · , il), 1 ≤ i1 < i2 < · · · < il ≤ n,
is denoted by ∧l = ∧l(Rn). The Grassmann algebra ∧ =

⊕∧l is a graded algebra
with respect to the exterior products. For α =

∑
αIeI ∈ ∧ and β =

∑
βIeI ∈ ∧,

the inner product in ∧ is given by 〈α, β〉 =
∑

αIβI with summation over all l-
tuples I = (i1, i2, · · · , il) and all integers l = 0, 1, · · · , n. We define the Hodge star
operator ?: ∧ → ∧ by the rule ?1 = e1∧e2∧· · ·∧en and α∧?β = β∧?α = 〈α, β〉(?1)
for all α, β ∈ ∧.

Received by the editors August 23, 1997.
1991 Mathematics Subject Classification. Primary 30C65; Secondary 31B05, 58A10.
Key words and phrases. A-harmonic tensors, Ar-weights, Caccioppoli-type estimate, A-

harmonic equation.

c©1999 American Mathematical Society

2657



2658 SHUSEN DING

Hence the norm of α ∈ ∧ is given by the formula |α|2 = 〈α, α〉 = ?(α∧?α) ∈ ∧0 =
R. The Hodge star is an isometric isomorphism on ∧ with ? : ∧l → ∧n−l and
? ? (−1)l(n−l) : ∧l → ∧l. Let 0 < p < ∞; we denote the weighted Lp-norm of a
measurable function f over E by

||f ||p,E,w =
(∫

E

|f(x)|pw(x)dx

)1/p

.

A differential l-form ω on Ω is a Schwartz distribution on Ω with values in
∧l(Rn). We denote the space of differential l-forms by D′(Ω,∧l). We write
Lp(Ω,∧l) for the l-forms ω(x) =

∑
I ωI(x)dxI =

∑
ωi1i2···il

(x)dxi1 ∧dxi2 ∧· · ·∧dxil

with ωI ∈ Lp(Ω, R) for all ordered l-tuples I. Thus Lp(Ω,∧l) is a Banach space
with norm

||ω||p,Ω =
(∫

Ω

|ω(x)|pdx

)1/p

=

(∫
Ω

(
∑

I

|ωI(x)|2)p/2dx

)1/p

.

Similarly, W 1
p (Ω,∧l) are those differential l-forms on Ω whose coefficients are in

W 1
p (Ω, R). The notations W 1

p,loc(Ω, R) and W 1
p,loc(Ω,∧l) are self-explanatory. We

denote the exterior derivative by d : D′(Ω,∧l) → D′(Ω,∧l+1) for l = 0, 1, · · · , n. Its
formal adjoint operator d? : D′(Ω,∧l+1) → D′(Ω,∧l) is given by d? = (−1)nl+1?d?
on D′(Ω,∧l+1), l = 0, 1, · · · , n.

Recently there has been new interest developed in the study of the A-harmonic
equation for differential forms, largely pertaining to applications in quasiconformal
analysis and nonlinear elasticity, that is:

d?A(x, dω) = 0,(1.1)

where A : Ω× ∧l(Rn) → ∧l(Rn) satisfies the following conditions:

|A(x, ξ)| ≤ a|ξ|p−1 and 〈A(x, ξ), ξ〉 ≥ |ξ|p(1.2)

for almost every x ∈ Ω and all ξ ∈ ∧l(Rn). Here a > 0 is a constant and 1 < p < ∞
is a fixed exponent associated with (1.1). A solution to (1.1) is an element of the
Sobolev space W 1

p,loc(Ω,∧l−1) such that∫
Ω

〈A(x, dω), dϕ〉 = 0

for all ϕ ∈ W 1
p (Ω,∧l−1) with compact support.

Definition 1.3. We call u an A-harmonic tensor in Ω if u satisfies the A-harmonic
equation (1.1) in Ω.

Let us mention some basic terms for harmonic tensors as follows. A differential
l-form u ∈ D′(Ω,∧l) is called a closed form if du = 0 in Ω. A differential form u is
called a p-harmonic tensor if

d?(|du|p−2du) = 0 and d?u = 0,

where 1 < p < ∞. See [7] for more results about p-harmonic tensors. In order to
formulate some estimates it is required first of all that the equation be written in
the form of a first order differential system:

A(x, du) = d?v .(1.4)
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In this way we obtain a pair (u, v) of (l − 1)-form u and (l + 1)-form v, called
the conjugate A-harmonic fields. Example: du = d∗v is an analogue of a Cauchy-
Riemann system in Rn. Clearly, the A-harmonic equation is not affected by adding
a closed form to u and coclosed form to v. Therefore, any type of estimates between
u and v must be modulo such forms. Suppose that u is a solution to (1.1) in Ω.
Then, at least locally in a ball B, there exists a form v ∈ W 1

q (B,∧l+1), 1
p + 1

q = 1,
such that (1.4) holds.

Definition 1.5. When u and v satisfy (1.4) in Ω, and A−1 exists in Ω, we call u
and v conjugate A-harmonic tensors in Ω.

Definition 1.6. We call u a p-harmonic function if u satisfies the p-harmonic equa-
tion

div(∇u|∇u|p−2) = 0

with p > 1. Its conjugate in the plane is a q-harmonic function v, p−1 + q−1 = 1,
which satisfies

∇u|∇u|p−2 = (
∂v

∂y
,−∂v

∂x
).

Note that if p = q = 2, we get the usual conjugate harmonic functions.
We write R = R1. Balls are denoted by B and σB is the ball with the same

center as B and with diam(σB) = σdiam(B). The n-dimensional Lebesgue mea-
sure of a set E ⊆ Rn is denoted by |E|. We call w a weight if w ∈ L1

loc (Rn) and
w > 0 a.e. Also in general dµ = wdx where w is a weight. The following result
appears in [8]: Let Q ⊂ Rn be a cube or a ball. To each y ∈ Q there corresponds
a linear operator Ky : C∞(Q,∧l) → C∞(Q,∧l−1) defined by

(Kyω)(x; ξ1, · · · , ξl) =
∫ 1

0

tl−1ω(tx + y − ty; x− y, ξ1, · · · , ξl−1)dt

and the decomposition

ω = d(Kyω) + Ky(dω).

We define another linear operator TQ : C∞(Q,∧l) → C∞(Q,∧l−1) by averaging
Ky over all points y in Q

TQω =
∫

Q

ϕ(y)Kyωdy,

where ϕ ∈ C∞
0 (Q) is normalized by

∫
Q ϕ(y)dy = 1. We define the l-form ωQ ∈

D′(Q,∧l) by

ωQ = |Q|−1

∫
Q

ω(y)dy, l = 0, and ωQ = d(TQω), l = 1, 2, · · · , n,

for all ω ∈ Lp(Q,∧l), 1 ≤ p < ∞.

2. The local weighted Caccioppoli-type estimate

Definition 2.1. We say the weight w(x) satisfies the Ar condition, r > 1, written
w ∈ Ar, if w(x) > 0 a.e., and, for any ball B ⊂ Rn,

sup
B

(
1
|B|

∫
B

wdx

)(
1
|B|

∫
B

(
1
w

)1/(r−1)

dx

)(r−1)

< ∞.
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See [5] and [6] for the basic properties of Ar-weights. We need the following
lemma [5].

Lemma 2.2. If w ∈ Ar, then there exist constants β > 1 and C, independent of
w, such that

‖ w ‖β,B≤ C|B|(1−β)/β ‖ w ‖1,B

for all balls B ⊂ Rn.

We will also need the following generalized Hölder’s inequality.

Lemma 2.3. Let 0 < α < ∞, 0 < β < ∞ and s−1 = α−1 + β−1. If f and g are
measurable functions on Rn, then

‖ fg ‖s,Ω≤‖ f ‖α,Ω · ‖ g ‖β,Ω(2.4)

for any Ω ⊂ Rn.

In [10], C. A. Nolder obtains the following local Caccioppoli-type estimate.

Theorem A. Let u be an A-harmonic tensor in Ω and let σ > 1. Then there exists
a constant C, independent of u and du, such that

‖du‖s,B ≤ C|B|−1‖u− c‖s,σB

for all balls or cubes B with σB ⊂ Ω and all closed forms c. Here 1 < s < ∞.

The following weak reverse Hölder inequality appears in [10].

Theorem B. Let u be an A-harmonic tensor in Ω, σ > 1 and 0 < s, t < ∞. Then
there exists a constant C, independent of u, such that

‖u‖s,B ≤ C|B|(t−s)/st‖u‖t,σB

for all balls or cubes B with σB ⊂ Ω.

We now generalize Theorem A into the following local weighted Caccioppoli-type
estimate for A-harmonic tensors.

Theorem 2.5. Let u ∈ D′(Ω,∧l), l = 0, 1, · · · , n, be an A-harmonic tensor in a
domain Ω ⊂ Rn and ρ > 1. Assume that 1 < s < ∞ is a fixed exponent associated
with the A-harmonic equation and w ∈ Ar for some r > 1. Then there exists a
constant C, independent of u and du, such that

‖du‖s,B,w ≤ C|B|−1‖u− c‖s,ρB,w,(2.6)

for all balls B with ρB ⊂ Ω and all closed forms c.

Note that (2.6) can be written as(∫
B

|du|swdx

)1/s

≤ C

|B|
(∫

ρB

|u− c|swdx

)1/s

,(2.6′)

or (∫
B

|du|sdµ

)1/s

≤ C

|B|
(∫

ρB

|u− c|sdµ

)1/s

,(2.6′′)

where the measure µ is defined by dµ = w(x)dx and w ∈ Ar.
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Proof. Since w ∈ Ar for some r > 1, by Lemma 2.2, there exist constants β > 1
and C1 > 0, such that

‖ w ‖β,B≤ C1|B|(1−β)/β ‖ w ‖1,B(2.7)

for any cube or any ball B ⊂ Rn. Choose t = sβ/(β − 1); then 1 < s < t and
β = t/(t− s). Since 1/s = 1/t + (t− s)/st, by Hölder’s inequality, Theorem A and
(2.7), we have

‖du‖s,B,w =
(∫

B

(
|du|w1/s

)s

dx

)1/s

≤
(∫

B

|du|tdx

)1/t(∫
B

(
w1/s

)st/(t−s)

dx

)(t−s)/st

≤ C2‖du‖t,B · ‖w‖1/s
β,B

≤ C3|B|−1‖u− c‖t,σB · ‖w‖1/s
β,B

≤ C4|B|−1|B|(1−β)/βs‖w‖1/s
1,B · ‖u− c‖t,σB

= C4|B|−1|B|−1/t · ‖w‖1/s
1,B · ‖u− c‖t,σB(2.8)

for all balls B with σB ⊂ Ω and all closed forms c. Since c is a closed form and u
is an A-harmonic tensor, then u− c is still an A-harmonic tensor. Taking m = s/r,
we find that m < s < t. Applying Theorem B yields

‖u− c‖t,σB ≤ C5|B|(m−t)/mt‖u− c‖m,σ2B

≤ C5|B|(m−t)/mt‖u− c‖m,ρB(2.9)

where ρ = σ2. Substituting (2.9) in (2.8), we have

‖du‖s,B,w ≤ C6|B|−1|B|−1/m · ‖w‖1/s
1,B · ‖u− c‖m,ρB.(2.10)

Now 1/m = 1/s + (s−m)/sm; by Hölder’s inequality again, we obtain

‖u− c‖m,ρB =
(∫

ρB

|u− c|mdx

)1/m

=
(∫

ρB

(
|u− c|w1/sw−1/s

)m

dx

)1/m

≤
(∫

ρB

|u− c|swdx

)1/s
(∫

ρB

(
1
w

)m/(s−m)

dx

)(s−m)/sm

≤ ‖u− c‖s,ρB,w · ‖1/w‖1/s
m/(s−m),ρB(2.11)

for all balls B with ρB ⊂ Ω and all closed forms c. Combining (2.10) and (2.11),
we obtain

‖du‖s,B,w ≤ C6|B|−1|B|−1/m · ‖w‖1/s
1,B · ‖1/w‖1/s

m/(s−m),ρB · ‖u− c‖s,ρB,w.(2.12)
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Since w ∈ Ar, we then have

‖w‖1/s
1,B · ‖1/w‖1/s

m/(s−m),ρB =
(∫

B

wdx

)1/s
(∫

ρB

(
1
w

)m/(s−m)

dx

)(s−m)/sm

≤
(∫

ρB

wdx

)(∫
ρB

(
1
w

)1/(s/m−1)

dx

)s/m−1
1/s

=

|ρB|s/m

(
1

|ρB|
∫

ρB

wdx

)(
1

|ρB|
∫

ρB

(
1
w

)1/(r−1)

dx

)r−1
1/s

(2.13)

≤ C7|B|1/m.

Substituting (2.13) in (2.12), we find that

‖du‖s,B,w ≤ C|B|−1‖u− c‖s,ρB,w

for all balls B with ρB ⊂ Ω and all closed forms c. This ends the proof of Theorem
2.5.

3. The weighted version of the weak reverse Hölder inequality

We now generalize Theorem B into the following weighted form.

Theorem 3.1. Let u ∈ D′(Ω,∧l), l = 0, 1, · · · , n, be an A-harmonic tensor in a
domain Ω ⊂ Rn, σ > 1. Assume that 0 < s, t < ∞ and w ∈ Ar for some r > 1.
Then there exists a constant C, independent of u, such that(∫

B

|u|swdx

)1/s

≤ C|B|(t−s)/st

(∫
σB

|u|twt/sdx

)1/t

(3.2)

for all balls B with σB ⊂ Ω.

The proof of Theorem 3.1 is similar to that of Theorem 2.5. For completion of
the paper, we prove Theorem 3.1 as follows.

Proof. Since w ∈ Ar for some r > 1, by Lemma 2.2, there exist constants β > 1
and C1 > 0, such that

‖ w ‖β,B≤ C1|B|(1−β)/β ‖ w ‖1,B(3.3)

for any cube or any ball B ⊂ Rn. Choose k = sβ/(β − 1); then s < k and
β = k/(k − s). By (3.3) and Hölder’s inequality, we have

‖u‖s,B,w ≤
(∫

B

|u|kdx

)1/k (∫
B

(
w1/s

)sk/(k−s)

dx

)(k−s)/sk

= ‖u‖k,B · ‖w‖1/s
β,B

≤ C2|B|(1−β)/βs‖w‖1/s
1,B · ‖u‖k,B

= C2|B|−1/k‖w‖1/s
1,B · ‖u‖k,B(3.4)
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for all balls B with σB ⊂ Ω. Choosing m = st/(s + t(r − 1)), by Theorem B we
obtain

‖u‖k,B ≤ C3|B|(m−k)/km‖u‖m,σB.(3.5)

Combining (3.4) and (3.5) yields

‖u‖s,B,w ≤ C4|B|−1/m‖w‖1/s
1,B · ‖u‖m,σB.(3.6)

Since m < t, by Hölder’s inequality, we have

‖u‖m,σB =
(∫

σB

(
|u|w1/sw−1/s

)m

dx

)1/m

≤
(∫

σB

|u|twt/sdx

)1/t
(∫

σB

(
1
w

)mt/(s(t−m))

dx

)(t−m)/mt

≤ ‖1/w‖1/s
mt/(s(t−m)),σB

(∫
σB

|u|twt/sdx

)1/t

.(3.7)

By the choice of m, we find that r−1 = s(t−m)/mt. Since w ∈ Ar, we then obtain

‖w‖1/s
1,B · ‖1/w‖1/s

mt/(s(t−m)),σB

=

(∫
B

wdx

)(∫
σB

(
1
w

)mt/(s(t−m))

dx

)s(t−m)/mt
1/s

≤
|σB|1+s(t−m)/tm

(
1

|σB|
∫

σB

wdx

)(
1

|σB|
∫

σB

(
1
w

)1/(r−1)

dx

)r−1
1/s

(3.8)

≤ C5|B|1/s+1/m−1/t.

From (3.6), (3.7) and (3.8), we have

‖u‖s,B,w ≤ C4|B|−1/m‖w‖1/s
1,B · ‖1/w‖1/s

mt/(s(t−m)),σB

(∫
σB

|u|twt/sdx

)1/t

≤ C6|B|1/s−1/t

(∫
σB

|u|twt/sdx

)1/t

.(3.9)

It is easy to see that (3.9) is equivalent to (3.2). This ends the proof of Theorem
3.1.
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