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AN EMBEDDING THEOREM FOR LIE ALGEBRAS
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(Communicated by Roe Goodman)

Abstract. In this paper we give a sufficient condition for a restricted envelop-
ing algebra to be quasi-elementary. We also prove that every finite dimensional
p-nilpotent Lie algebra can be embedded in a finite dimensional p-nilpotent
quasi-elementary Lie algebra.

1. Introduction

Elementary abelian p-groups play an important role in understanding the mod-p
cohomology of finite groups. For notation suppose that G is a finite group and that k
is an algebraically closed field of characteristic p > 0. The most fundamental result
in this direction was proved by Quillen [7, 8] and says that the minimal primes of the
mod-p cohomology ring H∗(G, k) are precisely the inverse images under restriction
of the radicals of the rings H∗(E, k) for a set {E} of representatives of the conjugacy
classes of maximal elementary abelian p-subgroups of G. Among other things this
establishes a one-to-one correspondence between the conjugacy classes of maximal
elementary abelian p-subgroups and the components of the maximal ideal spectrum
of H∗(G, k). Also if M is a finite dimensional kG-module, then an element in
Ext∗kG(M, M) is nilpotent if and only if its restriction to every elementary abelian
p-subgroup of G is nilpotent [7, 8, 1].

In [5] and [6] Palmieri and Nakano showed that analogous theorems hold for
finite dimensional, graded, cocommutative Hopf algebras, once the correct gener-
alization of an elementary abelian p-group has been identified. Palmieri calls such
a generalization a quasi-elementary (QE) Hopf algebra. His definition, which is
given below, is somewhat technical, and hence it would be helpful to be able to
explicitly identify the QE Hopf algebras that arise in a particular context. This is
done for finite p-groups in Quillen’s work using Serre’s theorem [9]. In this case
quasi-elementary means elementary. Also, in [5] and [6], the QE subalgebras of the
Steenrod algebra are explicitly identified. The answer here is somewhat compli-
cated, but it is still the case that a sub-Hopf algebra of a quasi-elementary algebra
is quasi-elementary.

This note grew out of an attempt to understand the structure of the QE Hopf
subalgebras of the restricted enveloping algebras of certain p-nilpotent Lie algebras.
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In our investigation we came across a rather curious result stated as Theorem 2.4
below. This result shows just how spectacularly the analogy between elementary
abelian groups and quasi-elementary Hopf algebras can fail. The p-nilpotent Lie
algebras are in some ways the p-restricted Lie algebra analogs of p-groups for group
algebras, and we might expect similar behavior. Even though in this context it
is clear that QE does not mean E the differences from the p-group case are even
greater. Briefly stated, our main result is that any p-nilpotent Lie algebra can
be embedded in one which is QE. This is not surprising (indeed it is well known)
for arbitrary finite dimensional p-restricted Lie algebras because any one such can
be embedded in sl(n) for some n. The latter is QE because it is generated as an
algebra by its null cone which is irreducible (see Theorem 2.1 below). However the
statement is also comparable to the assertion that any finite group can be embedded
in a simple group (whose group algebra is necessarily QE by Palmieri’s definition,
given below).

Throughout this paper g is a finite dimensional restricted p-nilpotent Lie alge-
bra over an algebraically closed field k of characteristic p > 0. Let V (g) denote
the restricted enveloping algebra of g. We say that g is QE if V (g) is QE. The
cohomology ring ExtV (g)(k, k) is denoted by H∗(g). Let Hev(g) be the subring of
H∗(g) generated by elements of even degree. We define

H•(g) =

{
H∗(g) if p = 2,

Hev(g) if p is odd,

and we denote the variety corresponding to H•(g) by |g|. An important tool here
is the theorem of Jantzen’s [2] which allows us to work with N (g), the null cone of
g, rather than directly with |g|.

The definition of QE is the following:

Definition 1.1 (Palmieri [6]). A Hopf algebra C over k is elementary if it is bi-
commutative and has xp = 0 for all x ∈ IC, the augmentation ideal of C. Let
C(x) denote a monogenic elementary Hopf algebra, generated by x; i.e., C(x) is
isomorphic as an algebra to k[x]/(xn), where n is p or 2. ( Note here that the case
n = 2 (p 6= 2) occurs only for genuinely graded-cocommutative Hopf algebras, not
just cocommutative ones, and will not be of concern here.) For a Hopf algebra E, a
nonzero element v ∈ Ext2E(k, k) is called a Serre element if there is a Hopf algebra
extension

E′ ↪→ E � C(x)

so that under the induced map in Ext, v is the image of a nonzero element of
Ext2C(x)(k, k). A Hopf algebra E is quasi-elementary if no product of Serre elements
is nilpotent.

2. The theorem

As before, let N (g) = {x ∈ g : x[p] = 0} be the null cone of g. By a theorem
of Friedlander and Parshall [4], H•(g) is a finitely generated module over the sym-
metric algebra S∗(g) on the vector space g. Hence the map of varieties |g| −→ g is
finite-to-one. Jantzen’s theorem says that the image of |g| in g is N (g).

We need the following.

Theorem 2.1. Let C ⊆ N (g) be an irreducible closed connected set. Then hC , the
restricted Lie algebra generated by C, is a QE Lie algebra.
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Proof. If B is a sub-Hopf algebra of A, then we have a restriction map resA,B :
H∗(A) → H∗(B), and hence a corresponding map of varieties res∗A,B : |B| −→ |A|.
Suppose that hC is not a QE Lie algebra. Then by Definition 1.1, some product
v1, . . . , vt of Serre elements is zero. Each vi corresponds to a subalgebra Ei ⊆
V (hC). Then

|hC | =
t⋃

i=1

res∗V (hC),Ei
|Ei| .

This result, though implicit in the proof of Theorem 1.2 of [6], is not actually
stated there. The point is that every element of H•(g) whose restriction to every
Ei is nilpotent, must be nilpotent, and hence must be contained in every maximal
ideal. So any maximal ideal I must contain the kernel of the restriction to some
Ei. Otherwise for each i there would exist an element xi /∈ I which is in the kernel
of the restriction to Ei. But then we have a contradiction because the product
x1 · · ·xt is not in I.

By Milnor and Moore [3, Theorem 6.11] Ei = V (li) for some Lie algebra li < hC .
It follows that

C ⊆
t⋃

i=1

N (li),

and, of course, N (li) ⊆ li. Since C is irreducible C ⊆ li for some i. This last is not
possible because C generates hC . Therefore hC is a QE algebra.

Corollary 2.2. Let G be a connected algebraic group which acts on a restricted
p-Lie algebra g. Let C ⊆ N (g) be an irreducible closed set. Then the orbit OC of
C under G generates a QE subalgebra.

Proof. The point is that OC is the image of the map G × C −→ N (g) which is
irreducible because G×C is irreducible. So the corollary follows from the theorem.

Remark 2.3. The results in Palmieri’s paper have the additional hypothesis that
the Hopf algebra be graded. However there is no problem for us. For a finite
dimensional, genuinely cocommutative Hopf algebra such as V (g) we can assume
that everything is in degree zero. In addition the results which we need from [6] do
not depend on the Hopf algebra being connected.

Now we can state our main theorem.

Theorem 2.4. Any finite dimensional p-nilpotent Lie algebra g can be embedded
in a finite dimensional p-nilpotent QE Lie algebra q.

Note that by the Poincare-Birkhoff-Witt Theorem, this is equivalent to saying
that V (g) can be embedded in V (q).

Proof. Recall that k is an algebraically closed field of characteristic p. We can
assume that g is the restricted Lie algebra of strictly upper triangular n×n matrices
over k, since all p-nilpotent finite dimensional restricted Lie algebras over k can be
embedded in such a g. Denote g by gn. For all n and p we will construct a QE Lie
algebra q(n,p) and display an embedding θ : gn ↪→ q(n+(n−1)(p−1),p).
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We begin by constructing q(n,p).

Definition 2.5. Write n = pq + r where q, r are nonnegative integers with r < p.
Let x be the following n× n block diagonal matrix:

x =


J1 0 . . . 0 0
0 J2 . . . 0 0

. . . . . . . . . . . .
0 0 . . . Jq 0
0 0 . . . 0 Jq+1


where each Ji for 1 ≤ i ≤ q is a p× p matrix, Jq+1 is an r× r matrix, and each Ji,
for 1 ≤ i ≤ q + 1 has ones down the superdiagonal and zeros elsewhere.

We note that xp = 0 and so

x ∈ N (gn) = {x ∈ gn : x[p] = 0}.
Let G denote the group of upper triangular matrices with coefficients in k. Then

G is a connected algebraic group and G acts on N (gn) by conjugation. Let C
denote the line through the origin and x, and let OC denote the orbit of the line C
under the given action. Define q(n,p) to be the restricted Lie algebra generated by
OC . By Corollary 2.2 q(n,p) is a QE Lie algebra.

It is an exercise in linear algebra to check that q(n,p) consists of all n× n block
upper triangular matrices of the form

R1,1 R1,2 . . . R1,q R1,q+1

0 R2,2 . . . R2,q R2,q+1

. . . . . . . . . . . . . . .
0 0 . . . Rq,q Rq,q+1

0 0 . . . 0 Rq+1,q+1


where each Ri,i for 1 ≤ i ≤ q is a p×p strictly upper triangular matrix with arbitrary
elements above the diagonal, Rq+1,q+1 is an r× r strictly upper triangular matrix,
the superdiagonal blocks Ri,i+1 for 1 ≤ i ≤ q have arbitrary entries except for a
zero in the lower left hand corner, and the remaining blocks are arbitrary.

Now we define the embedding. Let C ∈ gn and write C = (ci,j). Then θ(C) =
B = (bs,t) ∈ q(n+(n−1)(p−1),p) where

bs,t =

{
ci,j if s = i + (i− 1)(p− 1) and t = j + (j − 1)(p− 1),
0 otherwise.
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