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ESTIMATES OF DERIVATIVES OF THE HEAT KERNEL
ON A COMPACT RIEMANNIAN MANIFOLD

ELTON P. HSU

(Communicated by Stanley Sawyer)

Abstract. We give global estimates on the covariant derivatives of the heat
kernel on a compact Riemannian manifold on a fixed finite time interval. The
proof is based on analyzing the behavior of the heat kernel along Riemannian
Brownian bridge.

1. Introduction

Let M be a compact Riemannian manifold of dimension n and p(T, x, y) the heat
kernel on M . The present work concerns with estimates of derivatives of the heat
kernel. Let ∇N log p(T, x, y) be the Nth covariant derivative of the logarithm of
the heat kernel with respect to its first space variable. The study of such estimates
is motivated by various problems involving Brownian bridge on M where one needs
to control the behavior of the process at the terminal time. Estimates of this kind
were obtained previously by Sheu [6]. In our present setting, his results can be
restated as follows. For all (T, x, y) ∈ (0, 1]×M ×M ,

|∇ log p(T, x, y)| ≤C1

{
d(x, y)

T
+

1√
T

}
,

|∇N log p(T, x, y)| ≤CN

{
d(x, y)

T
+

1√
T

}N {
d(x, y)√

T
+ 1

}2(N−2)

,

where CN is a constant depending on N and the manifold M . One expects that
for N ≥ 3 an estimate without the last factor should be the one with the correct
order of magnitude. The purpose of this work is to prove such an inequality.

From Sheu’s work we find two basic observations. First, from stochastic control
theory it is more natural to work with derivatives of log p(T, x, y) than with those of
p(T, x, y) itself. Second, the optimal control is attained at Brownian bridge. These
two observations lead us to consider directly the process log p(T − t, γt, y), where
{γt, 0 ≤ t ≤ T } is a Brownian bridge from x to y in time T . Using repeatedly Itô’s
formula on the process, we express ∇N log p(T, x, y) in terms of lower derivatives
and obtain the desired estimates by induction, much in the same way as was done
in Sheu [6]. It seems that our more intrinsic approach to the problem resulted in
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a precise tracking of the induction step, thus allowing us to obtain estimates with
the correct order of magnitude. Our result can be stated as follows.

Theorem 1.1. For each N , there is a constant CN depending on N and M such
that for all (T, x, y) ∈ (0, 1]×M ×M

|∇N log p(T, x, y)| ≤ CN

{
d(x, y)

T
+

1√
T

}N

.

The following corollary is immediate.

Corollary 1.2. For each N , there is a constant DN depending on N and M such
that for all (T, x, y) ∈ (0, 1]×M ×M

|∇Np(T, x, y)| ≤ DN

{
d(x, y)

T
+

1√
T

}N

p(T, x, y).

More recent discussions on the cases N ≤ 2 can be found in Hamilton [2],
Malliavin and Stroock [4], Stroock [7], and Stroock and Zeitouni [9]. We emphasize
that the estimate stated in the theorem holds for all (T, x, y) ∈ [0, 1]×M×M . The
argument in Malliavin and Stroock [4] shows that the estimate of the form stated in
the theorem is in general best possible. However, if x, y are kept a positive distance
away from the cut locus, the term 1/

√
T can be dispensed with. For a detailed

discussion on this case, see Norris [5].
We are happy to acknowledge that Theorem 1.1 was obtained independently in

a recent work of Stroock and Turetsky [8] by a different method.
Finally I thank Professors Stanley Sawyer, Wilfrid Kendall, and an anonymous

reviewer for their helpful comments on the work.

2. Proof of the theorem

In the course of the proof, the letter C will denote a constant depending on
the index N and the manifold M whose value may differ from one appearance to
another.

Let O(M) be the orthonormal frame bundle of M and π : O(M) → M the
canonical projection. We use Hi, 1 ≤ i ≤ n, to denote the canonical horizontal
vector fields and Ω∗

ij , 1 ≤ i, j ≤ n, the canonical vertical vector fields on O(M). We
denote by Ω the o(n)-valued curvature form on O(M). By the structure equations,
we have the following commutation relations:

[Hi, Hj ] = Ω∗
ij ,

[
Hi, Ω∗

jk

]
= Ωil

jkHl,
[
Ω∗

ij , Ω
∗
kl

]
= cab

ij,klΩ
∗
ab,(1)

where cab
ij,kl are the structure constants of o(n), whose explicit values we do not

need. If I = {i1, . . . , il} is a multi-index with length |I| = l, then we use the
abbreviation HIJ = Hi1 · · ·Hil

J for a function J on O(M).
Let J(t, u) = log p(t, πu, y), the lift of log p(t, x, y) to O(M). Then it satisfies

the equation

∂tJ(T − t, u) +
1
2
∆HJ(T − t, u) +

1
2
|∇HJ(T − t, u)|2 = 0,(2)

where ∆H =
∑n

i=1 H2
i is Bochner’s Laplacian on O(M) and

∇HJ = {H1J, . . . , HnJ}
is the horizontal gradient of J .
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Let {γt} be a Brownian bridge from x to y in time T and {ut} its horizontal lift
with initial value uo, where uo is an orthonormal frame over x. It is well known
that there is a Brownian motion {bt} such that

dut = Hut ◦ dbt +∇HJ(T − t, ut)dt.(3)

Using (3), and Itô’s formula we have (with J(T − t, ut) abbreviated as J):

dHIJ = 〈∇HHIJ, dbt〉+
{

∂tHIJ +
1
2
∆HHIJ + 〈∇HHIJ,∇HJ〉

}
dt.

Inserting the equation for J in (2) we have

dHIJ = 〈∇HHIJ, dbt〉+ {FI + GI} dt,(4)

where

FI =
1
2

[
∆H , HI

]
J,

and

GI = 〈∇HHIJ,∇HJ〉 − 1
2
HI〈∇HJ,∇HJ〉.

Consider first the cases |I| = 0 and 1. For I of length 0 we have FI = 0 and
GI = 1

2 |∇HJ |2. Integrating (4) from 0 to T/2 and taking expectation we have

E

∫ T/2

0

|∇HJ(T − t, ut)|2dt = 2EJ(T/2, uT/2)− 2J(T, uo).

From Bellanche [1] or Li and Yau [3], there is a constant C such that

C−1

tn/2
e−d(x,y)2/Ct ≤ p(t, x, y) ≤ C

tn/2
.

Hence we have immediately

E

∫ T/2

0

|∇HJ(T − s, us)|2ds ≤ C

{
d(x, y)2

T
+ 1

}
.

For the sake of simplicity we set

Q =
d(x, y)

T
+

1√
T

.

The above estimate can be written as

E

∫ T/2

0

|∇HJ(T − t, ut)|2ds ≤ CTQ2.(5)

We now apply (4) to an index I = {i} of length 1. In this case using (1) and noting
that Ω∗

ijJ = 0 we see that FI is a linear combination of HjJ and GI = 0. Therefore
|FI | ≤ C|∇HJ |. Integrating (4) from 0 to t and taking expectation, we have

HiJ(T, uo) = EHiJ(T − t, ut)− E

∫ t

0

FIdt.

Integrating from 0 to T/2 we have

T

2
HiJ(T, uo) = E

∫ T/2

0

HiJ(T − t, ut)dt− E

∫ T/2

0

(
T

2
− t

)
FI dt.

Using the Cauchy-Schwarz inequality and (5) we have |HiJ(T, uo)| ≤ CQ, which
proves the case N = 1 of the main theorem.
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Now it is clear how we should proceed inductively for the general case. The
induction hypothesis has two parts. First,

E

∫ T/2

0

|∇HJ(T − t, ut)|2dt ≤ CQ2,(6)

and for all I such that 2 ≤ |I| ≤ N ,

E

∫ T/2

0

|HIJ(T − t, ut)|2dt ≤ CQ2(|I|−1).(7)

Second, for all I such that |I| ≤ N ,

|HIJ(T, uo)| ≤ CQ|I|.(8)

Note that (6)–(8) are supposed to hold uniformly for all (T, uo) ∈ (0, 1] × O(M).
We have already proved the initial step N = 1. Suppose the above inequalities hold
for N and let I be an index of length N . Integrating (4) from 0 to T/2 we have∫ T/2

0

〈∇HHIJ(T − t, ut), dbt〉 = HIJ(T/2, uT/2)−HIJ(T, uo)

−
∫ T/2

0

{FI + GI} dt.

Squaring and taking expected value, we have

E

∫ T/2

0

|∇HHIJ(T − t, ut)|2dt(9)

≤ C

{
E

∫ T/2

0

|FI + GI |dt

}2

+CE|HIJ(T/2, uT/2)|2 + C|HIJ(T, uo)|2.
From (8) we have

E|HIJ(T/2, uT/2)|2 + |HIJ(T, uo)|2 ≤ CQ2N .(10)

Using the commutation relations (1) we can write
[
∆H , HI

]
J as a linear combina-

tion of HLJ with |L| = |I|. Hence for |I| = N = 1 we have by (6)

E

∫ T/2

0

|FI |2dt ≤ CQ2 = CQ2N

and for N > 1 we have by (7)

E

∫ T/2

0

|FI |2dt ≤ CQ2(N−1) ≤ CQ2N .

Hence we always have

E

∫ T/2

0

|FI |2dt ≤ CQ2N .

For the terms involving GI , we observe first that GI = 0 if N = |I| = 1 and if N ≥ 2,
then by the commutation relations (1) GI is a linear combination of the terms of
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the form 〈HKJ, HLJ〉 with 2 ≤ |K| ≤ N, |L| = N +2−|K| or |K| = N −1, |L| = 1.
In the first case we have |L| ≥ 2 and |K| ≥ 2, and by (7){

E

∫ T/2

0

|〈HKJ, HLJ〉|dt

}2

≤ E

{∫ T/2

0

|HK |2dt

}
E

{∫ T/2

0

|HL|2dt

}
≤ CQ2(|K|−1)Q2(|L|−1)

= CQ2N .

In the second case we have |L| = 1, N ≥ 2, and using both (6) and (7) we obtain
the same bound CQ2N . Therefore we have{

E

∫ T/2

0

|GI |dt

}
≤ CQN .

Thus we have shown that (6) and (7) for all indices of length less than |I| imply

E

∫ T/2

0

|FI + GI |dt ≤ CQ2|I|.(11)

From (9), (10), and (11) we have

E

∫ T/2

0

|∇HHIJ(T − t, ut)|dt ≤ CQN .

This proves (7) for all indices of length N + 1.
To prove (8) for indices of length N + 1, we assume that I is such an index.

Integrating (4) from 0 to t and taking expectation, we have

HIJ(T, uo) = EHIJ(T − t, ut)− E

∫ t

0

{FI + GI} ds.

Integrating from 0 to T/2, we have

T

2
HIJ(T, uo) = E

∫ T/2

0

HIJ(T − t, ut)dt(12)

+E

∫ T/2

0

(
T

2
− t

)
{FI + GI} dt.

Since |I| = N + 1, the first term on the right-hand side can be estimated by (7)
and we obtain ∣∣∣∣E ∫ T/2

0

HIJ(T − t, ut)dt

∣∣∣∣ ≤ C
√

TQN ≤ CTQN+1.(13)

The argument leading to (11) shows that

E

∫ T/2

0

|FI + GI |dt ≤ CQN+1.

Hence

E

∫ T/2

0

(
T

2
− t

)
|FI + GI | dt ≤ CTQN+1.(14)
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It follows from (12), (13), and (14) that |HIJ(T, uo)| ≤ CQN+1, and the theorem
is proved.
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291–301. MR 97m:58213

Department of Mathematics, Northwestern University, Evanston, Illinois 60208
E-mail address: elton@math.nwu.edu


