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INTEGRABILITY OF SUPERHARMONIC FUNCTIONS
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ABSTRACT. The integrability of positive superharmonic functions on a bounded
fat John domain is established. No exterior conditions are assumed. For a gen-
eral bounded John domain the LP-integrability is proved with the estimate of
p in terms of the John constant.

1. INTRODUCTION

Let D be a bounded domain in R® with n > 2. By ST(D) we denote the
family of all positive superharmonic functions in D. Armitage [5], [6] proved that
ST(D) c LP(D) for 0 < p < n/(n — 1), provided D is smooth. This result was
extended by Maeda-Suzuki [11] to a Lipschitz domain. They gave an estimate of p
in terms of Lipschitz constant. Their estimate has the correct asymptotic behavior:
p — n/(n —1) as the Lipschitz constant tends to 0. As a result they showed that
ST(D) c LP(D) for 0 < p < n/(n — 1), provided D is a C! domain. Masumoto
[12], [13] succeeded in obtaining the sharp value of p for planar domains bounded
by finitely many Jordan curves. For the higher dimensional case Aikawa [1] gave
the sharp value of p for Lipschitz domains with the aid of the coarea formula and
the boundary Harnack principle.

On the other hand, Stegenga-Ullrich [16] treated very non-smooth domains, such
as John domains and domains satisfying the quasihyperbolic boundary condition
[7, 3.6], which are called “Holder domains” by Smith-Stegenga [15]. Let dp(z) =
dist(x,0D) and xo € D. We say that D is a John domain with John constant
cy > 0 if each = € D can be joined to xg by a rectifiable curve v such that

(1.1) 0p(&) = csl(y(x,€)) forall £ €,

where y(z, ) is the subarc of v from z to & and £(y(z,£)) is the length of v(z,§).
A John domain may be visualized as a domain satisfying a twisted cone condition.
The quasi-hyperbolic metric kp(x1,x2) is defined by

ds

kp(xy,z9) =inf [ ——,
p(w1,22) =in ., Op(x)
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where the infimum is taken over all rectifiable arcs v joining z; to x2 in D. We
say that D satisfies a quasi-hyperbolic boundary condition if there are positive
constants A; and A, such that

1
kp(x,zo) < A log (m) + Ay, forall z € D.

Smith-Stegenga [15] called a domain satisfying the quasihyperbolic boundary con-
dition a Holder domain. It is easy to see that a John domain satisfies the quasi-
hyperbolic boundary condition (see [7, Lemma 3.11]). Stegenga-Ullrich [16] proved
that ST(D) C LP(D) with small p > 0 for a domain satisfying the quasihyperbolic
boundary condition. Lindqvist [10] extends the result to positive supersolutions of
certain nonlinear elliptic equations, such as the p-Laplace equation. Gotoh [8] also
studies LP-integrability. Unfortunately, their p > 0 is very small and it does not
seem that p > 1 is obtained by their methods.

The main aim of the present paper is to show that S*(D) C L'(D) for a “fat”
John domain.

Theorem 1. Let D be a bounded John domain with John constant c; > 1—2"""1,
Then ST(D) C LY(D).

The above bound 1 — 27"~ is not sharp. For more specific John domains we
obtain the sharp bound. We say that D satisfies the interior cone condition with
aperture 1, 0 < ¥ < 7/2, if for each point € D there is a truncated cone with
vertex at x, aperture ¥ and a fixed radius lying in D. Obviously, a domain satisfying
the interior cone condition with aperture v is a John domain with John constant

sin .

Theorem 2. Let D be a bounded domain satisfying the interior cone condition
with aperture 1 with cosy > 1/y/n. Then S*(D) C LY(D).

For a “slim” John domain we will show S*(D) C LP(D) for some 0 < p < 1
with the estimate of p. This will give a larger p than that in Stegenga-Ullrich [16].
For details see Section 3.

In the previous paper [2], the above theorems are obtained with additional as-
sumption: the capacity density condition (CDC). See [3] for more illustrations.
For the 2-dimensional case CDC is equivalent to the uniform perfectness of the
boundary; planar domains bounded by finitely many Jordan curves satisfy CDC.
Thus all the known results for ST(D) C LP(D) with p > 1 required CDC or
some other stronger exterior condition. The above Theorems 1 and 2 first estab-
lish ST (D) c L'(D) for a domain satisfying only an interior condition. Recently,
Gustafsson, Sakai and Shapiro [9] considered the Ll-integrability in connection
with quadrature domains. They showed that if D is a quadrature domain and the
Green functions do not decay so fast near the boundary, then S*(D) c LY(D) (|9,
Corollary 5.4]).

2. PROOF OF THE THEOREMS

For an open set U we denote by Gy the Green function for U. Throughout this
section D is a bounded John domain or a domain satisfying an interior condition.
For simplicity we suppress the subscript D and write G for the Green function for
D. Moreover, xg € D is a fixed point and let g(x) = G(x, zp). By the symbol A we
denote an absolute positive constant whose value is unimportant and may change
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from line to line. If necessary, we use Aj, A, ..., to specify them. We shall say
that two positive functions f; and fo are comparable, written f; = fo, if and only
if there exists a constant A > 1 such that A=1f; < fo < Af;. The constant A will
be called the constant of comparison.

The proof of the theorems uses the following lower estimate of the Green function.
For 0 < cy <1 we let

(2.1) ay = log [ﬁ]/loga — ).

We observe that limay; = 1 as ¢;j — 1. Let ¢, be the solution of the equation
1+t)"*1—t)=1for 0 <t < 1. Then ay=2forcy=c, and 1 < ay < 2 for
cn < cy <1. We see that n/(n+2) <c, <1-—27""1

Lemma 1 (see [2, Lemma 12]). (i) If D is a John domain with John constant
cy, then g(x) > Adp(z)™/.
(i) If D satisfies the interior cone condition with aperture 1 with cos > 1/+/n,
then there is 1 < a(i) < 2 such that g(x) > Adp(x)*®).

Theorems 1 and 2 readily follow from Lemma 1 and the following.
Theorem 3. Let D be a John domain and suppose g(x) > Adp(xz)* for o > 0.
For e >0 let V = (min{g,1})°%/®. Then
/ w(x)V(x)g(z)dx < Au(zo) for any u € ST(D),
D
where A is independent of u € ST(D). Moreover, if 0 < a < 2, then ST(D) C
LY(D).

We need one of the main results in [2]. Define the Green capacity Capy (E) for
E cCU by

Capy (E) = sup{u(E) : Gup < 1lon U, uis a Borel measure supported on E}.
By B(z,7) we denote the open ball with center at x and radius 7.

Lemma 2 ([2, Theorem 1]). Let 0 < n < 1. Then for an open set U with Green
function Gy

sup/ Gy (z,y)dy < Awn(U)Q,

xeU JU

where

CapB(m,Zp) (B(:Eu p) \ U)
CapB(m,Zp) (B(:Eu p))

wn(U):inf{p>O: > foralleU}.

The above quantity w,(U) is called the capacitary width of U. The definition of
John domain readily implies the following.
Lemma 3. Let D be a John domain. Then w,({x € D : dp(x) <r}) < Ar.

The following estimate of the Green potential is called the basic estimate [4,
Theorem 3].
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Lemma 4. Let u be a positive continuous superharmonic function on D. For an
integer j we put D; = {x € D : 2771 < u(x) < 2972} and let G; be the Green
function for D;. If f is a nonnegative measurable function on D, then

sup — /ny dy<4lz sup (1)/1) Gj(z,y) f(y)dy.

z€D U zeD; UL 5

Proof of Theorem 3. Apply Lemma 4 to u = g and f = Vg to obtain

sup —— / G(z,y)V(y)g(y)dy < 32 Z sup [ Gj(z,y)V(y)dy,

zeD g(x j=—oo ¥€D; JD;

where D; = {z € D : 2771 < g(x) < 2772}, Since g(x) > Adp(x)®, it follows that
D; C {z € D:dp(zx) < A2/*} and hence from Lemmas 2 and 3 that

sup Gj(x dy < A (27)~ 2/ 2J/0‘ <A 2¢7 < 0.
2 mzeD/ WV Wiy E@O J_Zm

On the other hand, if j > 1, then D; C B(zo, A2/?~™) if n > 3 and D; C
B(xg,exp(—A27)) if n = 2. Hence Lemma 2 implies

oo oo

sup [ Gz, y)V(y)dy=>_ sup [ Gj(x,y)dy
=1 wED]‘ Dj =1 wED]‘ Dj
Az;il 221/(2=1) < 50 if n > 3,
<
AT exp(— A2)) < oo ifn=2.

Thus
/ G(z,y)V(y)g(y)dy < Ag(z) = AG(x, z0).

Integrate the above inequality with respect to du(z) and use Fubini’s theorem.
Then we have

/D u(y)V(y)g(y)dy < Au(zo)

with v = Gu. Every u € S*(D) can be approximated from below by a Green
potential, so that the monotone convergence theorem proves the first assertion.
Finally, suppose 0 < a < 2. Let ¢ = —1 4+ 2/a > 0 and observe that Vg > 1
and [, udr < Au(x) for u € ST(D). If u(zg) < oo, then u € L*(D) obviously.
If u(xzp) = oo, then replace u by its Poisson integral over a small ball with center
at ro. The replaced function belongs to ST (D) and its value at g is finite, so
that it belongs to L' (D) by the previous observation. This, together with the local
integrability of u, proves u € L'(D). O

3. LP-INTEGRABILITY

For a bounded John domain with John constant smaller than that in Theorem 1,
we shall obtain LP-integrability of positive superharmonic functions with 0 < p < 1.
The exponent p will be estimated in terms of John constant. To this end we show
the following lemma, which is inspired by [14, Theorem 4].
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Lemma 5. Let D be a bounded John domain with John constant cy. Then there
is a positive constant Ty depending only on cj and the dimension n such that

/6D(x)_7dx<oo for0O< T <71y,
D

log(1 + (c;/20)™)
log 2 '

Proof. Let D; = {x € D : 27971 < §p(x) < 277}, Then Uiz, D; is a disjoint
e 1 i—jo |Dj| = |D| < oo, where
|D;| denotes the volume of D;. Without loss of generality we may assume that
jo =0 and xy € Do. Suppose = € U2, Dy with j > 1, i.e, dp(z) < 2777'. By
definition there is a rectifiable curve v connecting z and z¢ with (1.1). We find a
point & € «y such that 6p(§) =277. By (1.1)

277 =6p(€) = csb(v(x,€)) = cylz — &,

so that |z — & < ¢;'277. Hence

D Dic |J o2,

=741 ép(§)=2-7

Here 75 can be estimated as 75 >

decomposition of D with some jy. Observe that > °

where C/(£,¢;'277) is the closed ball with center at & and radius ¢;'277. Suppose
for a moment 6p(¢) = 277. Then, by definition, there is a point z¢ € 9D such that
lze — & =277, Let & be the point on the line segment z¢€ with |¢ — &'| = 27971,
Then an elementary geometrical observation shows that dp(¢') = £(277 +27971)
and B(¢',277972) C Dj, so that

(1) D0 2| 2 A2 = (55) " 1C(E 55 2]

where Ay is the volume of a unit ball. By the covering lemma (see e.g. [17, Theorem
1.3.1]) we can find & such that §p (&) =277, {C(&,c¢;'277)}y is disjoint and

U Di c| O, 5c;"27).
i=j+1 k
In view of (3.1) we have
i |D;| < Z |C (&, 5e; 1279 < 20 ”Z 1D; N C(&,c;'27)| < 0 |D-|.
Z 19Cg c 1€ c J
1=75+1 k
Multiply the above inequalities by 7/ and take the summation for j =1,..., N —1,

where r > 1 is a constant to be determined. Then
oo min{N,i}—1

(%)njvirﬂmpzirum_z Z 7| D;|

=1 i=75+1

N
Pj |
]

I
N

Il
3
| [~
—
<
>
]
=
|
<
—
]
=
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so that

poN= 1 90\ ™\ V=1

D;| > - = | Dyl.
1| |<7"—1 <CJ>);T| |
Letting NV — oo, we obtain

ril ; |Dy| > (T_% ~ (E) ) S Dy,

c
J i—1

-
— D=

oo>T_1| |
Let 1 <r <1+ (c;/20)". Then

(Til _(%)") =0

and the above inequality implies

o0 ~

Z r*|D;| < oo.

i=1
We observe that

o Op(x) 18T/ 182 for & € D,
whence
/ Sp(x)loer/ 182y < oo,
D

This proves the lemma. O

Theorem 4. Let D be a bounded John domain with John constant cy. Suppose
g(z) > Adp(x)* for x € D with a > 2 and

(3.2) / Op(x) Tdr < o0
D
with 7 > 0. Then ST(D) C LP(D) for 0 <p < 7/(a — 2+ 7).

Remark. Let oy be as in (2.1) and let 7; be as in Lemma 5. If ay > 2, then
Lemmas 1 and 5 show that ST (D) C LP(D) with 0 < p < pj = 75/(ceg — 2 + 7).

Observe that p; ~ ¢t as c; — 0; py — 1 as cj — cp.

Proof. Let 0 <p < 7/(a¢ —2+ 7). Put
1 /71—
5:—(ﬂ—a+2).
« p

Then € > 0 and a(e —2/a+ 1)p/(1 —p) =71. Let D' ={x € D : g(x) < 1}. Take
u € ST(D). Then Holder’s inequality and Theorem 3 yield

p 1-p
/upda:§</ ugs_Q/o‘de) </ g_(6_2/°‘+1)p/(1_p)d:z:>

1-p
< Au(zo)? ( 55%[:10) < Au(zo)?,

D/
where (3.2) is used in the last inequality. By the same reasoning as in the proof of
Theorem 3, we have | pr uPdr < oo. This, together with the local integrability of a
superharmonic function, proves the theorem. O
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