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INTEGRABILITY OF SUPERHARMONIC FUNCTIONS
IN A JOHN DOMAIN

HIROAKI AIKAWA

(Communicated by Albert Baernstein II)

Abstract. The integrability of positive superharmonic functions on a bounded
fat John domain is established. No exterior conditions are assumed. For a gen-
eral bounded John domain the Lp-integrability is proved with the estimate of
p in terms of the John constant.

1. Introduction

Let D be a bounded domain in Rn with n ≥ 2. By S+(D) we denote the
family of all positive superharmonic functions in D. Armitage [5], [6] proved that
S+(D) ⊂ Lp(D) for 0 < p < n/(n − 1), provided D is smooth. This result was
extended by Maeda-Suzuki [11] to a Lipschitz domain. They gave an estimate of p
in terms of Lipschitz constant. Their estimate has the correct asymptotic behavior:
p → n/(n− 1) as the Lipschitz constant tends to 0. As a result they showed that
S+(D) ⊂ Lp(D) for 0 < p < n/(n − 1), provided D is a C1 domain. Masumoto
[12], [13] succeeded in obtaining the sharp value of p for planar domains bounded
by finitely many Jordan curves. For the higher dimensional case Aikawa [1] gave
the sharp value of p for Lipschitz domains with the aid of the coarea formula and
the boundary Harnack principle.

On the other hand, Stegenga-Ullrich [16] treated very non-smooth domains, such
as John domains and domains satisfying the quasihyperbolic boundary condition
[7, 3.6], which are called “Hölder domains” by Smith-Stegenga [15]. Let δD(x) =
dist(x, ∂D) and x0 ∈ D. We say that D is a John domain with John constant
cJ > 0 if each x ∈ D can be joined to x0 by a rectifiable curve γ such that

δD(ξ) ≥ cJ`(γ(x, ξ)) for all ξ ∈ γ,(1.1)

where γ(x, ξ) is the subarc of γ from x to ξ and `(γ(x, ξ)) is the length of γ(x, ξ).
A John domain may be visualized as a domain satisfying a twisted cone condition.
The quasi-hyperbolic metric kD(x1, x2) is defined by

kD(x1, x2) = inf
γ

∫
γ

ds

δD(x)
,
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where the infimum is taken over all rectifiable arcs γ joining x1 to x2 in D. We
say that D satisfies a quasi-hyperbolic boundary condition if there are positive
constants A1 and A2 such that

kD(x, x0) ≤ A1 log
(

1
δD(x)

)
+ A2 for all x ∈ D.

Smith-Stegenga [15] called a domain satisfying the quasihyperbolic boundary con-
dition a Hölder domain. It is easy to see that a John domain satisfies the quasi-
hyperbolic boundary condition (see [7, Lemma 3.11]). Stegenga-Ullrich [16] proved
that S+(D) ⊂ Lp(D) with small p > 0 for a domain satisfying the quasihyperbolic
boundary condition. Lindqvist [10] extends the result to positive supersolutions of
certain nonlinear elliptic equations, such as the p-Laplace equation. Gotoh [8] also
studies Lp-integrability. Unfortunately, their p > 0 is very small and it does not
seem that p ≥ 1 is obtained by their methods.

The main aim of the present paper is to show that S+(D) ⊂ L1(D) for a “fat”
John domain.

Theorem 1. Let D be a bounded John domain with John constant cJ ≥ 1−2−n−1.
Then S+(D) ⊂ L1(D).

The above bound 1 − 2−n−1 is not sharp. For more specific John domains we
obtain the sharp bound. We say that D satisfies the interior cone condition with
aperture ψ, 0 < ψ < π/2, if for each point x ∈ D there is a truncated cone with
vertex at x, aperture ψ and a fixed radius lying inD. Obviously, a domain satisfying
the interior cone condition with aperture ψ is a John domain with John constant
sinψ.

Theorem 2. Let D be a bounded domain satisfying the interior cone condition
with aperture ψ with cosψ > 1/

√
n. Then S+(D) ⊂ L1(D).

For a “slim” John domain we will show S+(D) ⊂ Lp(D) for some 0 < p < 1
with the estimate of p. This will give a larger p than that in Stegenga-Ullrich [16].
For details see Section 3.

In the previous paper [2], the above theorems are obtained with additional as-
sumption: the capacity density condition (CDC). See [3] for more illustrations.
For the 2-dimensional case CDC is equivalent to the uniform perfectness of the
boundary; planar domains bounded by finitely many Jordan curves satisfy CDC.
Thus all the known results for S+(D) ⊂ Lp(D) with p ≥ 1 required CDC or
some other stronger exterior condition. The above Theorems 1 and 2 first estab-
lish S+(D) ⊂ L1(D) for a domain satisfying only an interior condition. Recently,
Gustafsson, Sakai and Shapiro [9] considered the L1-integrability in connection
with quadrature domains. They showed that if D is a quadrature domain and the
Green functions do not decay so fast near the boundary, then S+(D) ⊂ L1(D) ([9,
Corollary 5.4]).

2. Proof of the theorems

For an open set U we denote by GU the Green function for U . Throughout this
section D is a bounded John domain or a domain satisfying an interior condition.
For simplicity we suppress the subscript D and write G for the Green function for
D. Moreover, x0 ∈ D is a fixed point and let g(x) = G(x, x0). By the symbol A we
denote an absolute positive constant whose value is unimportant and may change
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from line to line. If necessary, we use A1, A2, . . . , to specify them. We shall say
that two positive functions f1 and f2 are comparable, written f1 ≈ f2, if and only
if there exists a constant A ≥ 1 such that A−1f1 ≤ f2 ≤ Af1. The constant A will
be called the constant of comparison.

The proof of the theorems uses the following lower estimate of the Green function.
For 0 < cJ < 1 we let

αJ = log
[

1− cJ
(1 + cJ)n−1

]/
log(1− c2J).(2.1)

We observe that limαJ = 1 as cJ → 1. Let cn be the solution of the equation
(1 + t)n+1(1 − t) = 1 for 0 < t < 1. Then αJ = 2 for cJ = cn and 1 < αJ < 2 for
cn < cJ < 1. We see that n/(n+ 2) < cn < 1− 2−n−1.

Lemma 1 (see [2, Lemma 12]). (i) If D is a John domain with John constant
cJ , then g(x) ≥ AδD(x)αJ .

(ii) If D satisfies the interior cone condition with aperture ψ with cosψ > 1/
√
n,

then there is 1 < α(ψ) < 2 such that g(x) ≥ AδD(x)α(ψ).

Theorems 1 and 2 readily follow from Lemma 1 and the following.

Theorem 3. Let D be a John domain and suppose g(x) ≥ AδD(x)α for α > 0.
For ε > 0 let V = (min{g, 1})ε−2/α. Then∫

D

u(x)V (x)g(x)dx ≤ Au(x0) for any u ∈ S+(D),

where A is independent of u ∈ S+(D). Moreover, if 0 < α < 2, then S+(D) ⊂
L1(D).

We need one of the main results in [2]. Define the Green capacity CapU (E) for
E ⊂ U by

CapU (E) = sup{µ(E) : GUµ ≤ 1 on U, µ is a Borel measure supported on E}.
By B(x, r) we denote the open ball with center at x and radius r.

Lemma 2 ([2, Theorem 1]). Let 0 < η < 1. Then for an open set U with Green
function GU

sup
x∈U

∫
U

GU (x, y)dy ≤ Awη(U)2,

where

wη(U) = inf

{
ρ > 0 :

CapB(x,2ρ)(B(x, ρ) \ U)
CapB(x,2ρ)(B(x, ρ))

≥ η for all x ∈ U
}
.

The above quantity wη(U) is called the capacitary width of U . The definition of
John domain readily implies the following.

Lemma 3. Let D be a John domain. Then wη({x ∈ D : δD(x) ≤ r}) ≤ Ar.

The following estimate of the Green potential is called the basic estimate [4,
Theorem 3].
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Lemma 4. Let u be a positive continuous superharmonic function on D. For an
integer j we put Dj = {x ∈ D : 2j−1 < u(x) < 2j+2} and let Gj be the Green
function for Dj. If f is a nonnegative measurable function on D, then

sup
x∈D

1
u(x)

∫
D

G(x, y)f(y)dy ≤ 4
∞∑

j=−∞
sup
x∈Dj

1
u(x)

∫
Dj

Gj(x, y)f(y)dy.

Proof of Theorem 3. Apply Lemma 4 to u = g and f = V g to obtain

sup
x∈D

1
g(x)

∫
D

G(x, y)V (y)g(y)dy ≤ 32
∞∑

j=−∞
sup
x∈Dj

∫
Dj

Gj(x, y)V (y)dy,

where Dj = {x ∈ D : 2j−1 < g(x) < 2j+2}. Since g(x) ≥ AδD(x)α, it follows that
Dj ⊂ {x ∈ D : δD(x) ≤ A2j/α} and hence from Lemmas 2 and 3 that

0∑
j=−∞

sup
x∈Dj

∫
Dj

Gj(x, y)V (y)dy ≤ A

0∑
j=−∞

(2j)ε−2/α(2j/α)2 ≤ A

0∑
j=−∞

2εj <∞.

On the other hand, if j ≥ 1, then Dj ⊂ B(x0, A2j/(2−n)) if n ≥ 3 and Dj ⊂
B(x0, exp(−A2j)) if n = 2. Hence Lemma 2 implies

∞∑
j=1

sup
x∈Dj

∫
Dj

Gj(x, y)V (y)dy =
∞∑
j=1

sup
x∈Dj

∫
Dj

Gj(x, y)dy

≤


A

∑∞
j=1 22j/(2−n) <∞ if n ≥ 3,

A
∑∞

j=1 exp(−A2j) <∞ if n = 2.

Thus ∫
D

G(x, y)V (y)g(y)dy ≤ Ag(x) = AG(x, x0).

Integrate the above inequality with respect to dµ(x) and use Fubini’s theorem.
Then we have ∫

D

u(y)V (y)g(y)dy ≤ Au(x0)

with u = Gµ. Every u ∈ S+(D) can be approximated from below by a Green
potential, so that the monotone convergence theorem proves the first assertion.

Finally, suppose 0 < α < 2. Let ε = −1 + 2/α > 0 and observe that V g ≥ 1
and

∫
D
udx ≤ Au(x0) for u ∈ S+(D). If u(x0) < ∞, then u ∈ L1(D) obviously.

If u(x0) = ∞, then replace u by its Poisson integral over a small ball with center
at x0. The replaced function belongs to S+(D) and its value at x0 is finite, so
that it belongs to L1(D) by the previous observation. This, together with the local
integrability of u, proves u ∈ L1(D).

3. Lp-integrability

For a bounded John domain with John constant smaller than that in Theorem 1,
we shall obtain Lp-integrability of positive superharmonic functions with 0 < p < 1.
The exponent p will be estimated in terms of John constant. To this end we show
the following lemma, which is inspired by [14, Theorem 4].
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Lemma 5. Let D be a bounded John domain with John constant cJ . Then there
is a positive constant τJ depending only on cJ and the dimension n such that∫

D

δD(x)−τdx <∞ for 0 < τ < τJ .

Here τJ can be estimated as τJ ≥ log(1 + (cJ/20)n)
log 2

.

Proof. Let D̃j = {x ∈ D : 2−j−1 ≤ δD(x) < 2−j}. Then
⋃∞
j=j0

D̃j is a disjoint
decomposition of D with some j0. Observe that

∑∞
j=j0

|D̃j | = |D| < ∞, where
|D̃j| denotes the volume of D̃j. Without loss of generality we may assume that
j0 = 0 and x0 ∈ D0. Suppose x ∈ ⋃∞

i=j+1 D̃i with j ≥ 1, i.e., δD(x) < 2−j−1. By
definition there is a rectifiable curve γ connecting x and x0 with (1.1). We find a
point ξ ∈ γ such that δD(ξ) = 2−j. By (1.1)

2−j = δD(ξ) ≥ cJ`(γ(x, ξ)) ≥ cJ |x− ξ|,
so that |x− ξ| ≤ c−1

J 2−j . Hence
∞⋃

i=j+1

D̃i ⊂
⋃

δD(ξ)=2−j

C(ξ, c−1
J 2−j),

where C(ξ, c−1
J 2−j) is the closed ball with center at ξ and radius c−1

J 2−j. Suppose
for a moment δD(ξ) = 2−j . Then, by definition, there is a point xξ ∈ ∂D such that
|xξ − ξ| = 2−j. Let ξ′ be the point on the line segment xξξ with |ξ − ξ′| = 2−j−1.
Then an elementary geometrical observation shows that δD(ξ′) = 1

2 (2−j + 2−j−1)
and B(ξ′, 2−j−2) ⊂ D̃j , so that

|D̃j ∩ C(ξ, c−1
J 2−j)| ≥ A0(2−j−2)n =

(cJ
20

)n
|C(ξ, 5c−1

J 2−j)|,(3.1)

where A0 is the volume of a unit ball. By the covering lemma (see e.g. [17, Theorem
1.3.1]) we can find ξk such that δD(ξk) = 2−j , {C(ξk, c−1

J 2−j)}k is disjoint and
∞⋃

i=j+1

D̃i ⊂
⋃
k

C(ξk, 5c−1
J 2−j).

In view of (3.1) we have
∞∑

i=j+1

|D̃i| ≤
∑
k

|C(ξk, 5c−1
J 2−j)| ≤

(
20
cJ

)n ∑
k

|D̃j ∩C(ξk, c−1
J 2−j)| ≤

(
20
cJ

)n
|D̃j |.

Multiply the above inequalities by rj and take the summation for j = 1, . . . , N − 1,
where r > 1 is a constant to be determined. Then(

20
cJ

)n N−1∑
j=1

rj |D̃j | ≥
N−1∑
j=1

∞∑
i=j+1

rj |D̃i| =
∞∑
i=2

min{N,i}−1∑
j=1

rj |D̃i|

≥
N−1∑
i=2

i−1∑
j=1

rj |D̃i| =
N−1∑
i=2

ri − r

r − 1
|D̃i|

=
1

r − 1

N−1∑
i=1

ri|D̃i| − r

r − 1

N−1∑
i=1

|D̃i|,
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so that

r

r − 1

N−1∑
i=1

|D̃i| ≥
(

1
r − 1

−
(

20
cJ

)n)N−1∑
i=1

ri|D̃i|.

Letting N →∞, we obtain

∞ >
r

r − 1
|D| = r

r − 1

∞∑
i=1

|D̃i| ≥
(

1
r − 1

−
(

20
cJ

)n) ∞∑
i=1

ri|D̃i|.

Let 1 < r < 1 + (cJ/20)n. Then(
1

r − 1
−

(
20
cJ

)n)
> 0

and the above inequality implies
∞∑
i=1

ri|D̃i| <∞.

We observe that

ri ≈ δD(x)− log r/ log 2 for x ∈ D̃i,

whence ∫
D

δD(x)− log r/ log 2dx <∞.

This proves the lemma.

Theorem 4. Let D be a bounded John domain with John constant cJ . Suppose
g(x) ≥ AδD(x)α for x ∈ D with α ≥ 2 and∫

D

δD(x)−τdx <∞(3.2)

with τ > 0. Then S+(D) ⊂ Lp(D) for 0 < p < τ/(α − 2 + τ).

Remark. Let αJ be as in (2.1) and let τJ be as in Lemma 5. If αJ ≥ 2, then
Lemmas 1 and 5 show that S+(D) ⊂ Lp(D) with 0 < p < pJ = τJ/(αJ − 2 + τJ ).
Observe that pJ ≈ cn+1

J as cJ → 0; pJ → 1 as cJ → cn.

Proof. Let 0 < p < τ/(α − 2 + τ). Put

ε =
1
α

(
(1 − p)τ

p
− α+ 2

)
.

Then ε > 0 and α(ε− 2/α+ 1)p/(1− p) = τ . Let D′ = {x ∈ D : g(x) ≤ 1}. Take
u ∈ S+(D). Then Hölder’s inequality and Theorem 3 yield∫

D′
updx ≤

(∫
D′
ugε−2/α+1dx

)p (∫
D′
g−(ε−2/α+1)p/(1−p)dx

)1−p

≤ Au(x0)p
(∫

D′
δ−τD dx

)1−p
≤ Au(x0)p,

where (3.2) is used in the last inequality. By the same reasoning as in the proof of
Theorem 3, we have

∫
D′ u

pdx <∞. This, together with the local integrability of a
superharmonic function, proves the theorem.



INTEGRABILITY OF SUPERHARMONIC FUNCTIONS 201

References

[1] H. Aikawa, Integrability of superharmonic functions and subharmonic functions, Proc. Amer.
Math. Soc. 120 (1994), 109–117. MR 94b:31003

[2] H. Aikawa, Norm estimate of Green operator, perturbation of Green function and integrability
of superharmonic functions, Math. Ann. 312 (1998), 289–318. CMP 99:08

[3] H. Aikawa, Norm estimate for the Green operator with applications, Proceedings of Complex
Analysis and Differential Equations, Marcus Wallenberg Symposium in honor of Matts Essén,
Uppsala University (1997) (to appear).

[4] H. Aikawa and M. Murata, Generalized Cranston-McConnell inequalities and Martin bound-
aries of unbounded domains, J. Analyse Math. 69 (1996), 137–152. MR 98f:31016

[5] D. H. Armitage, On the global integrability of superharmonic functions in balls, J. London
Math. Soc. (2) 4 (1971), 365–373.

[6] D. H. Armitage, Further result on the global integrability of superharmonic functions, J.
London Math. Soc. (2) 6 (1972), 109–121. MR 42:2078

[7] F. W. Gehring and O. Martio, Lipschitz classes and quasiconformally homogeneous domains,
Ann. Acad. Sci. Fenn. 10 (1985), 203–219. MR 87b:30029

[8] Y. Gotoh, Integrability of superharmonic functions, uniform domains, and Hölder domains,
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