PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 4, Pages 943–951 S 0002-9939(99)05045-5 Article electronically published on July 28, 1999

ON THE GELFAND-KIRILLOV CONJECTURE FOR QUANTUM ALGEBRAS

PHILIPPE CALDERO

(Communicated by Roe Goodman)

ABSTRACT. Let q be a complex not a root of unity and $\mathfrak g$ be a semi-simple Lie $\mathbb C$ -algebra. Let $U_q(\mathfrak g)$ be the quantized enveloping algebra of Drinfeld and Jimbo, $U_q(\mathfrak n^-) \otimes U^0 \otimes U_q(\mathfrak n)$ be its triangular decomposition, and $\mathbb C_q[G]$ the associated quantum group. We describe explicitly Fract $U_q(\mathfrak n)$ and Fract $\mathbb C_q[G]$ as a quantum Weyl field. We use for this a quantum analogue of the Taylor lemma.

0. Introduction

Let q be a nonzero complex number which is not a root of unity. In this article, a \mathbb{C} -algebra defined by generators X_i , $1 \leq i \leq m$, and relations $X_iX_j = q^{a_{i,j}}X_jX_i$, $1 \leq i < j \leq m$, $a_{i,j} \in \mathbb{Z}$, will be called "the algebra of regular functions on an affine quantum space". Its skew field of fractions will be called the quantum Weyl field. The X_i , $1 \leq i \leq m$, will be called a system of q-commuting generators (SQCG).

Let $\mathfrak g$ be a semi-simple Lie $\mathbb C$ -algebra of rank n. Let R be the root system associated to the choice of a Cartan subalgebra $\mathfrak h$. We denote by $\Delta = \{\alpha_i\}$ the set of simple roots of R, P the lattice of associated weights generated by the fundamental weights ϖ_i , $1 \leq i \leq n$, and $P^+ := \sum_i \mathbb N \varpi_i$ the lattice of dominant weights. Let G be the simply connected group associated to $\mathfrak g$ and $U_q(\mathfrak g)$ the Drinfeld and Jimbo's quantized enveloping algebra. We define as in the classical case its "nilpotent" subalgebra $U_q(\mathfrak n)$ and the quantum algebra of regular functions on the group $\mathbb C_q[G]$. A theorem of J. Alev and F. Dumas (cf. [1]) asserts that Fract $U_q(\mathfrak n)$ is a quantum Weyl field when $\mathfrak g$ is of type A_n . In [15], A. Joseph proves that this property is verified for all semi-simple Lie algebras $\mathfrak g$ when q is generic. We prove in this article that Fract $U_q(\mathfrak n)$ and Fract $\mathbb C_q[G]$ are quantum Weyl fields when $\mathfrak g$ is semi-simple and when q is not a root of one; see [9] for the case where q is a root of one. The method we used provides a system of q-commuting generators.

Inspired by [12, Theorem 3.2], we essentially used the quantum analogue of the Taylor lemma. This lemma asserts that if 1) δ is a locally nilpotent σ -derivation (cf. 1.1) on a \mathbb{C} -algebra A and 2) there exists an element a such that $\delta(a) = 1$, then a is (right) transcendant on the invariant algebra A^{δ} and $A \simeq A^{\delta}[a]$.

Our results are proved as follows:

Received by the editors March 27, 1997 and, in revised form, May 15, 1998. 1991 Mathematics Subject Classification. Primary 17Bxx.

Key words and phrases. Quantum groups, quantum Weyl fields, R-matrix.

As a first step, we give (cf. Proposition 2.1) a multi-parametered version of the Taylor lemma for the locally nilpotent action (as a bialgebra) of the Borel subalgebra $U_q(\mathfrak{b})$ on an algebra A. The difficulty encountered in the quantum case is the following: the generators E_{β} (β being a positive root) of the Poincaré-Birkhoff-Witt base of $U_q(\mathfrak{n})$ do not act as σ -derivations on A. To get round this problem, we can, from a reduced decomposition of the longest element w_0 in the Weyl group, define a total order on the set of these generators and obtain a decreasing sequence of subalgebras $U_q(\mathfrak{n}_{\beta})$ of $U_q(\mathfrak{n})$; cf. [10, Lemma 1.7]. With the help of a result of S.Z. Levendorskii and Y.S Soibelman (cf. [17, 2.4.1]) we obtain that E_{β} acts as a σ -derivation on the subalgebra of $U_q(\mathfrak{n}_{\beta}<)$ -invariants of A, $\beta^{<}$ being the root preceding β . So, we can inductively apply the Taylor lemma and prove Proposition 2.1.

As a second step, we apply Proposition 2.1, see also Assertion 2.2, to the (right) regular action of $U_q(\mathfrak{b})$ on $\mathbb{C}_q[G]$. Recall (cf. 1.4) that $\mathbb{C}_q[G]$ is generated as a space by the coefficients $c_{\mu,\nu}^{\lambda}$ of the simple finite dimensional $U_q(\mathfrak{g})$ -modules $L_q(\lambda)$, $\lambda \in P^+$. Let $w_0 = s_{i_1} \dots s_{i_N}$ be a reduced decomposition of w_0 into a product of elementary reflections. Let $\beta = \beta_l := s_{i_1} \dots s_{i_{l-1}}(\alpha_{i_l})$ and $y_l = s_{i_1} \dots s_{i_l}$. By using the Lusztig automorphisms and the Weyl character formula, we prove that $c_{\beta} := c_{y_{l-1}\varpi_{i_l},\varpi_{i_l}}^{\varpi_{i_l}}$, is $U_q(\mathfrak{n}_{\beta^<})$ -invariant. Moreover, with the help of the \mathcal{R} -matrix, we prove (cf. Proposition 2.3) that the c_{β} q-commute, i.e. commute up to a power of q. By the quantized Taylor lemma and the Drinfeld duality, we obtain the claimed theorem for Fract $U_q(\mathfrak{n})$. We may specify the description of Fract $U_q(\mathfrak{n})$ as in [1, Théorème 2.15]; cf. Theorem 3.2. We give similar results for the quantum algebras S_w^+ of regular functions on a Schubert variety; cf. [14, 10.3.1 (3)]. On this subject, we remark that the elements c_{β} belong to the Lakshmibai-Reshetikhin base of standard monomials [16]. After localization, they generate a polynomial base.

As a third step, we show that our method works for $\mathbb{C}_q[G]$. If ρ is the sum of fundamental weights, then the elements $d_{\beta} = c^{\rho}_{y_{l-1}\rho, -y_{l}\rho}$, $d'_{\beta} = c^{\rho}_{y_{l-1}\rho, -y_{l-1}\rho}$ and $c^{\varpi_i}_{w_0\varpi_i,\varpi_i}$ generate the quantum Weyl field Fract $\mathbb{C}_q[G]$. This theorem is a consequence of the Taylor lemma for the regular action of $U_q(\mathfrak{b}) \otimes U_q(\mathfrak{b})^{opp}$ on $\mathbb{C}_q[G]$. Note that this result was proved by A.N. Panov for $G = SL_n$ and generic q [21].

In the classical case, the Gelfand-Kirillov conjecture asks if the enveloping algebra of $\mathfrak g$ is a Weyl field. In [12], A. Joseph gives a generalization of the Gelfand-Kirillov conjecture, replacing the enveloping algebra of $\mathfrak g$ by an algebra on which $\mathfrak n$ acts by derivations. The title of our article must be understood in the sense of this generalization. At the present time, we do not know if $\operatorname{Fract} U_q(\mathfrak g)$ is a quantum Weyl field. As for the classical case, this assertion may be shown when $\mathfrak g$ has type A_n (see [19]).

We are in debt to T. Levasseur for his remarks and observations.

1. Preliminaries and notations

1.1. Let \mathfrak{g} be a semi-simple Lie \mathbb{C} -algebra of rank n. We fix a Cartan sub-algebra \mathfrak{h} of \mathfrak{g} . Let $\mathfrak{g} = \mathfrak{n}^- + \mathfrak{h} + \mathfrak{n}$ be the triangular decomposition and $\{\alpha_i\}_i$ be a base of the root system Δ resulting from this decomposition. We note $\mathfrak{b} = \mathfrak{n} + \mathfrak{h}$ and $\mathfrak{b}^- = \mathfrak{n}^- + \mathfrak{h}$, the two opposed Borel sub-algebras. Let P be the weight lattice generated by the fundamental weights ϖ_i , $1 \leq i \leq n$, and $P^+ := \sum_i \mathbb{N} \varpi_i$ the

semigroup of integral dominant weights. We denote by ρ the sum of fundamental weights. Let W be the Weyl group, generated by the reflections corresponding to the simple roots s_{α_i} . Let w_0 be the longest element of W. We denote by (,) the W-invariant form on P. We have $(\alpha_j, \varpi_i) = \delta_{ij} \frac{(\alpha_i, \alpha_i)}{2}$.

1.2. Let q be a nonzero complex number not a root of unity and $U_q(\mathfrak{g})$ be the simply connected quantized enveloping algebra, defined as in [14, 3.2.9]. Let $U_q(\mathfrak{n})$, resp. $U_q(\mathfrak{n}^-)$, be the subalgebra generated by the canonical generators E_{α_i} , resp. F_{α_i} , of positive, resp. negative, weights. For all λ in P, let $\tau(\lambda)$ be the corresponding element in the algebra U^0 of the torus of $U_q(\mathfrak{g})$. We have the triangular decomposition $U_q(\mathfrak{g}) = U_q(\mathfrak{n}^-) \otimes U^0 \otimes U_q(\mathfrak{n})$. We set

$$(1.2.1) U_q(\mathfrak{b}) = U_q(\mathfrak{n}) \otimes U^0, U_q(\mathfrak{b}^-) = U_q(\mathfrak{n}^-) \otimes U^0.$$

 $U_q(\mathfrak{g})$ is endowed with a structure of Hopf algebra with comultiplication Δ , and antipode S.

We fix the following notations, where t is a complex not root of one, n a nonnegative integer and α a positive root : $[n]_t = \frac{1-q^t}{1-q}$, $[n]_t! = [n]_t[n-1]_t \dots [1]_t$, $q_{\alpha} = q^{\frac{(\alpha,\alpha)}{2}}$.

1.3. For w in W, let T_w be the Lusztig automorphism [18] associated to w. We fix a decomposition of the longest element of the Weyl group $w_0 = s_{i_1} \dots s_{i_N}$, where $N = \dim \mathfrak{n}$. This decomposition settles an order, denoted <, into the set Δ^+ of positive roots: $\beta_N = s_{i_1} \dots s_{i_{N-1}}(\alpha_{i_N}), \dots$, $\beta_2 = s_{i_1}(\alpha_{i_2}), \beta_1 = \alpha_{i_1}$. Then, we introduce the following elements in $U_q(\mathfrak{n}): E_{\beta_s} = T_{i_1} \dots T_{i_{s-1}}(E_{i_s})$. We define in the same way $F_{\beta_s} = T_{i_1} \dots T_{i_{s-1}}(F_{i_s})$.

We know (cf. [18]) that these elements generate a Poincaré-Birkoff-Witt base of $U_q(\mathfrak{n})$. We have, by [22], see also [10, Lemma 1.7]:

Proposition. Let $U_q(\mathfrak{n}_{\beta})$ be the space generated by the ordered products $\prod_{\stackrel{\longrightarrow}{\alpha}} E_{\alpha}^{k_{\alpha}}$, $\alpha \in \Delta^+$, $\alpha \leq \beta$, $k_{\alpha} \in \mathbb{N}$. Then $U_q(\mathfrak{n}_{\beta})$ is a subalgebra of $U_q(\mathfrak{n})$. Moreover, if $\mu < \beta$, we have $E_{\mu}E_{\beta} - q^{-(\mu,\beta)}E_{\beta}E_{\mu} \in \sum_{\alpha < \beta} U_q(\mathfrak{n}_{\beta})E_{\alpha}$.

1.4. The dual $U_q(\mathfrak{g})^*$ is endowed with a structure of a left, resp. right, $U_q(\mathfrak{g})$ -module by u.c(a) = c(au), resp. c.u(a) = c(ua), $u, a \in U_q(\mathfrak{g})$, $c \in U_q(\mathfrak{g})^*$. In the same way, if M is a left $U_q(\mathfrak{g})$ -module, we endow the dual M^* with the structure of a right $U_q(\mathfrak{g})$ -module by $\xi u(v) = \xi(uv)$, $u \in U_q(\mathfrak{g})$, $\xi \in M^*$, $v \in M$.

For all λ in P^+ , let $L_q(\lambda)$ be the simple $U_q(\mathfrak{g})$ -module with highest weight λ . We know that $L_q(\lambda)$ verifies the Weyl character formula, for all w in W we denote by $v_{w\lambda}$ the extremal vector of weight $w\lambda$. For all integral dominant weight λ , we fix a weight base (v_μ) , $\mu \in \Omega(L_q(\lambda))$, of $L_q(\lambda)$. We denote by (v_μ^*) its dual base. From [14, 10.2], we have the assertion

Assertion. Let λ be an integral dominant weight and w an element of the Weyl group. Fix a space M and an isomorphism $\phi: M \to L_q(\lambda)^*$. We can endow M with the structure of a right $U_q(\mathfrak{g})$ -module by $: v^*.u = \phi^{-1}(\phi(v^*)T_w(u)), \ v^* \in M$. Then the $U_q(\mathfrak{g})$ -module M is isomorphic to $L_q(\lambda)^*$ and $\phi^{-1}(v^*_{w\lambda})$, resp. $\phi^{-1}(v^*_{ww_0\lambda})$, is its highest weight, resp. lowest weight, vector.

For all ξ in $L_q(\lambda)^*$ and v in $L_q(\lambda)$, let $c_{\xi,v}^{\lambda}$ in $U_q(\mathfrak{g})^*$ given by $c_{\xi,v}^{\lambda}(u) = \xi(uv)$, $u \in U_q(\mathfrak{g})$. Then we have $u.c_{\xi,v}^{\lambda} = c_{\xi,uv}^{\lambda}$ and $c_{\xi,v}^{\lambda}.u = c_{\xi u,v}^{\lambda}$. If ξ , resp. v, has weight

 ν , resp μ , we set (if no confusion occurs) $c_{\nu,\mu}^{\lambda} = c_{\xi,\nu}^{\lambda}$. For all integral dominant weight λ , let $C(\lambda)$, resp. $C^{+}(\lambda)$, be the space generated by the $c_{\xi,\nu}^{\lambda}$, resp. $c_{\xi,\lambda}^{\lambda}$, $\xi \in L_q(\lambda)^*$, $v \in L_q(\lambda)$. We note $R = \mathbb{C}_q[G] = \bigoplus_{\lambda \in P^+} C(\lambda)$, $R^+ = \bigoplus_{\lambda \in P^+} C^+(\lambda)$. R^+ and R are subalgebras of the Hopf dual of $U_q(\mathfrak{g})$.

For w in W, we define the quantized algebra S_w^+ of regular functions on the Schubert variety (see [14], [15] for details): S_w^+ is the inductive limit of $(c_{w\lambda,\lambda}^{\lambda})^{-1}V_w^+(\lambda)^*$, for λ in P^+ , where $V_w^+(\lambda)^*$ is the dual of the Demazure module $V_w(\lambda)$, naturally identified as a quotient of $C^+(\lambda)$.

1.5. We know that $U_q(\mathfrak{g})$ is an almost cocommutative Hopf algebra; cf. [11]. Let $\mathcal{R} = \mathcal{R}_{(1)} \otimes \mathcal{R}_{(2)}$ be the \mathcal{R} -matrix of $U_q(\mathfrak{g})$. This satisfies $\mathcal{R}\Delta = \Delta^t \mathcal{R}$, where t is the twist. From this property it follows easily that:

$$(1.5.1) (c.\mathcal{R}_{(1)})(c'.\mathcal{R}_{(2)}) = (\mathcal{R}_{(2)}.c')(\mathcal{R}_{(1)}.c), \quad c, c' \in \mathbb{C}_q[G].$$

We recall the expression of the \mathcal{R} -matrix as an ordered product [17, 3.3]:

(1.5.2)
$$\mathcal{R} = (\prod_{\alpha \in \Delta^+} exp_{q_{\alpha}^{-2}}((1 - q_{\alpha}^{-2})E_{\alpha} \otimes F_{\alpha}))\tau(\gamma) \otimes \tau(\gamma),$$

where $\gamma \in P$, $exp_t(x) = \sum_{n\geq 0} \frac{x^n}{[n]_t!}$.

2. A QUANTUM TAYLOR LEMMA

2.1. We have the following lemma, whose proof is an analogue to [20, 1.1], [8, Proposition 1.1]:

Lemma. Let A be an \mathbb{C} -algebra, σ a \mathbb{C} -automorphism of A, δ a σ -derivation of A, i.e. $\delta(ab) = \delta(a)b + \sigma(a)\delta(b)$, a, $b \in A$. Let A^{δ} be the algebra of δ -invariants in A. Suppose that 1) δ is locally nilpotent, 2) $\sigma\delta\sigma^{-1} = Q\delta$, $Q \in \mathbb{C}^*$, Q not root of one, 3) there exists a in A such that $\delta(a) \in \mathbb{C}^*$. Then $A = A^{\delta}[a]$ and a is (right) transcendantal on A^{δ} , i.e. $A = \bigoplus_{p>0} A^{\delta}a^p$.

Proof. By 2), A^{δ} is σ -stable. Moreover, we have : $\delta^p(a^p) = [p]_{Q^{-1}}!\delta(a)^p$. This implies the direct sum in the claimed equality. Let u be in A, with degree p, i.e. p is the greatest integer such that $u_0 := \delta^p(u) \neq 0$. Clearly, the element u_0 is in A^{δ} . We prove the result by induction on p by considering $u - \frac{1}{[p]_{Q^{-1}}!\delta(a)}\sigma^{-p}(u_0)a^p$, of degree $\leq p-1$.

Let A be an \mathbb{C} -algebra such that $U_q(\mathfrak{b})$ acts (as a bialgebra) on A, i.e. A is a $U_q(\mathfrak{b})$ -module and $a(uv) = a_{(1)}ua_{(2)}v$, $u,v \in A$, $a \in U_q(\mathfrak{b})$, $\Delta(a) = a_{(1)} \otimes a_{(2)}$. Suppose that this action is locally finite. We set $A^0 = A$ and we note A^l , $1 \leq l \leq N$, the algebra of $U_q(\mathfrak{n}_{\beta_l})$ -invariants in A. This proposition follows from the lemma.

Proposition. Let A be an algebra defined as above. Suppose that, for all β in Δ^+ , there exists a_{β} in A such that $E_{\alpha}.a_{\beta} = \delta_{\alpha\beta}$, $\alpha \leq \beta$, where $\delta_{\alpha\beta}$ is the Kroenecker symbol.

Then, for all $l, 1 \le l \le N$, we have

$$A = \bigoplus_{(k_1, \dots, k_l) \in \mathbb{N}^l} A^l a_{\beta_l}^{k_l} \dots a_{\beta_1}^{k_1}.$$

Proof. We note $\phi: U_q(\mathfrak{b}) \to End(A)$, the natural morphism for this action. By Proposition 1.3 and [17, 2.4.1], $\delta := \phi(E_{\beta_l})$ is a $\phi(\tau(\beta_l))$ -derivation on A^{l-1} . The conditions of the previous lemma are satisfied because 1) δ is locally nilpotent on A^{l-1} , 2) $\tau(\beta_l)$ and E_{β_l} q-commute, 3) $a := a_{\beta_l}$ is in A^{l-1} and satisfies $\delta(a) = 1$ by the definition. The proposition is obtained by induction on l using the previous lemma.

2.2. We shall see that if A is one of the algebras considered in the introduction, then the elements a_{β} of Proposition 2.1 exist in some localization of A, and not in the algebra A. For the classical case, cf. [12, Theorem 2.6], it is enough to localize by a set S generated by $\mathfrak n$ -invariant elements in A. We can then apply the Taylor lemma to A_S . In the quantum case, the Taylor lemma needs some refinements. We slightly modify Lemma 2.1 to get

Assertion. Let C be a noetherian domain on \mathbb{C} , σ a \mathbb{C} -automorphism of C and δ be a σ -derivation on C which satisfies 1) and 2) of Lemma 2.1. Suppose s (nonzero) and s' are q-commuting in C and such that $\delta(s') = s \in C^{\delta}$. Let $a = s's^{-1}$ in Fract C and $M = \bigcup_{p>0} Cs^{-p}$. Then δ acts on M and (as spaces) $C \subset M = \bigoplus_{p>0} M^{\delta}a^p$.

Proof. The element s in δ -invariant, so δ extends as a locally nilpotent derivation on M. Clearly, C is a subset of M and $\delta(a)=1$. The direct sum is proved as in Lemma 2.1. As s and s' q-commute, we have $\bigoplus_{p\geq 0} M^{\delta}a^p \subset M$. The reverse inclusion is an easy induction as in the proof of Lemma 2.1.

We now give a condition on A which implies that $\operatorname{Fract} A$ is isomorphic to a quantum Weyl field.

Definition. Let A be a noetherian domain. We say that A verifies the property (\mathcal{P}) if the following hypotheses are verified:

- (i) $U_q(\mathfrak{b})$ acts (as a Hopf algebra) on the \mathbb{C} -algebra A and this action is locally finite. Let $B=A^N$ be the subalgebra of $U_q(\mathfrak{n})$ -invariant elements in A.
- (ii) B is generated by elements c^i , $1 \le i \le m$, and $B = \mathbb{C}[c^m] \dots [c^2][c^1]$ is an algebra of functions on a quantum affine space with SQCG $\{c^1, \dots, c^m\}$.
- (iii) There exist nonzero elements c_{β} , $\beta \in \Delta^{+}$, in A which q-commute, q-commute with c^{i} , $1 \leq i \leq m$, and satisfy: $E_{\alpha}.c_{\beta} = \delta_{\alpha\beta}c_{\beta}^{>}$, $\alpha \leq \beta$, where $c_{\beta}^{>}$ is either c_{γ} , $\gamma > \beta$, E_{β} -invariant, or c^{j} , $1 \leq j \leq m$.

Proposition. Let A be a noetherian domain. If A satisfies the property (\mathcal{P}) , then Fract A is isomorphic to a quantum Weyl field. To be precise, if B is the algebra of $U_q(\mathfrak{n})$ -invariant elements in A, then Fract A is isomorphic to the skew field of fractions of $B[c_{\beta_N}] \dots [c_{\beta_2}][c_{\beta_1}]$.

Proof. Suppose that A satisfies the property (\mathcal{P}) . For all $\beta = \beta_i$ in Δ^+ , note S_i the multiplicative set generated by $s_i := c_{\beta}^{>}$; cf. (iii). We can define the following elements : $a_{\beta} = (c_{\beta}^{>})^{-1}c_{\beta} \in \operatorname{Fract} A$.

In the context of the previous assertion, we set (improperly) $C_S = \bigcup_{p\geq 0} Cs^{-p}$, where S is the multiplicative set generated by s. Recall that A is a domain. The conditions of the assertion are easily verified from the property (\mathcal{P}) . We have:

(*)
$$A = A^{0} \subset A_{S_{1}}^{1}[a_{\beta_{1}}] \subset A_{S_{2}}^{2}[a_{\beta_{2}}][s_{1}^{-1}, a_{\beta_{1}}]$$

$$\subset \ldots \subset A_{S_{N}}^{N}[a_{\beta_{N}}][s_{N-1}^{-1}, a_{\beta_{N-1}}, \ldots, s_{1}^{-1}, a_{\beta_{1}}].$$

Moreover, from (iii), $c_{\beta_N}^> \in B$, so $c_{\beta_N} \in B[a_{\beta_N}]$. Inductively, we can prove that $B[a_{\beta_N}] \dots [a_{\beta_1}]$ contains all the s_i . This and (*) imply that Fract A is isomorphic to the skew field of fractions of $B[a_{\beta_N}] \dots [a_{\beta_1}]$. The property (\mathcal{P}) (iii) asserts that the a_{α} are in the skew field of fractions of $B[c_{\beta_N}] \dots [c_{\beta_2}][c_{\beta_1}]$. By the Taylor lemma, these extensions are (right) transcendantal. Our proposition follows.

2.3. Fix $1 \leq l \leq N$ and $\beta = \beta_l$. The reduced decomposition of w_0 being fixed as in 1.3, we define the elements y_l of the Weyl group: $y_0 = Id$, $y_l = s_{i_1}s_{i_2}\dots s_{i_l}$, l > 0. Then, we introduce in R^+ : $c_{\beta} = c_{\beta_{l-1}\varpi_{i_l},\varpi_{i_l}}, c_{\beta}^> = c_{\beta}.E_{\beta}$.

Lemma. Let $I_l = \{p, l . If <math>I_l$ is empty, $c_{\beta_l}^> = c_{w_0 \varpi_{i_l}, \varpi_{i_l}}^{\varpi_{i_l}}$. If not, let l' be the minimal element in I_l ; then $c_{\beta_l}^> = c_{\beta_{l'}}$ (up to a multiplicative scalar).

Proof. Fix l. Set $j=i_l$. We show the second assertion of the lemma; the first is similar. We have $y_{l'-1}(\varpi_j)=y_{l-1}s_{i_l}\dots s_{i_{l'-1}}(\varpi_j)=y_{l-1}s_{i_l}(\varpi_j)=y_{l-1}(\varpi_j-\alpha_j)=y_{l-1}(\varpi_j)-\beta$. From Assertion 1.4, with $\lambda=\varpi_j$ and $w=y_{l-1}$, it is enough to prove that $v_{\varpi_{i_l}}^*.E_{\varpi_{i_l}}=v_{s_{i_l}\varpi_{i_l}}$. This is clear by the Weyl character formula and we can conclude the lemma.

Proposition. Let S be the multiplicative set generated by the $c_{\alpha}^{>}$, $\alpha \in \Delta^{+}$. S is a Ore set in R^{+} . Let $a_{\beta} = (c_{\beta}^{>})^{-1}c_{\beta} \in S^{-1}R^{+}$. We have $a_{\alpha'}a_{\alpha} = q^{(\alpha,\alpha')}a_{\alpha}a_{\alpha'}$, α , $\alpha' \in \Delta^{+}$, $\alpha' < \alpha$.

Proof. As in the previous proof, we fix $\beta = \beta_l$ in Δ^+ , $1 \leq l \leq N$, and $i_l = j$. From Assertion 1.4, the extremal vector $v_{y_{l-1}\varpi_j}^*$ in $L_q(\varpi_j)^*$ is annihilated by the right action of E_α , $\alpha > \beta$, and F_α , $\alpha \leq \beta$. So, this holds for c_β . From (1.5.1) and (1.5.2), we can deduce that the c_β , $\beta \in \Delta^+$, q-commute. By Lemma 2.3 and by [14, Corollary 9.1.4], this is also true for the $c_\beta^>$, $\beta \in \Delta^+$. The first assertion of the proposition follows from loc. cit., [Lemma A.2.9], and loc. cit., [Lemma 9.1.10]. We used loc. cit., [Proposition 9.1.5] to calculate the exponent of q in the formula. \square

Remark. The fact that S is a Ore set is not essential for the next section. Indeed, the elements a_{β} defined above exist at least in Fract R^+ , because R^+ is a noetherian domain, cf. [14, 9.1.11].

3. Applications

3.1. In this section, we give a list of quantum algebras which satisfy the desired property.

Theorem. The skew field of fractions of the algebra R^+ , resp. S_w^+ , resp. $U_q(\mathfrak{n})$, resp. $U_q(\mathfrak{b})$, is isomorphic to a quantum Weyl field of dimension N+n, resp. l(w)+n, resp. N, resp. N+n.

Proof. By [14, Chapter 7, Chapter 9], all the algebras in the claim are noetherian domains. Let's verify the assertions of the property (\mathcal{P}) .

For R^+ , the action of (i) is the right regular action, which is locally finite. The algebra of $U_q(\mathfrak{n})$ -invariant elements in R^+ is generated by the $c_{w_0\varpi_i,\varpi_i}^{\varpi_i}$, $1 \leq i \leq n$, which q-commute by [14, 9.1.4]. Then, (iii) is given by Lemma 2.3 and Proposition 2.3.

The assertion for S_w^+ is similar. We may consider, without loss of generality, the case where $w = s_{i_{N-l(w)+1}} \dots s_{i_N}$. Set $\beta := \beta_{N-l(w)+1}$. We prove the theorem with the help of (i) the right action of $U_q(\mathfrak{n})$, (ii) the $U_q(\mathfrak{n})$ -invariant elements $c_{w\varpi_i,\varpi_i}^{\varpi_i}$,

 $1 \leq i \leq n$, (iii) the q-commuting elements c_{α} , $\alpha \leq \beta$. Indeed, (i) and (iii) are clear, and (ii) follows from the fact that $(V_w^+(\lambda)^*)^{U_q(\mathfrak{n})}$ is generated by $c_{w\lambda,\lambda}^{\lambda}$.

Let φ be the restriction homomorphism from $U_q(\mathfrak{g})^*$ to $U_q(\mathfrak{b}^-)^*$ and $J^- = Ker\varphi \cap R$. We know (cf. [14, 9.1.10, 9.2.11]) that φ restricts to an embedding from R^+ to R/J^- , and this map is surjective up to localization. It is also well known (cf. [3]) that there exists an algebra antihomomorphism $R/J^- \simeq U_q(\mathfrak{b})$. The theorem being true for R^+ , it is true for $U_q(\mathfrak{b})$. Let's consider now the previous isomorphism extent to the skew field of fractions. We remark (cf. [4, Lemme 3.4], [5, I Prop. 4.2]) that the image of a_β is in Fract $U_q(\mathfrak{n})$. Thus, we can conclude by (1.2.1). \square

As in [15, Corollaire 6], we have the following corollary.

Corollary. Let P minimal primitive ideal of $U_q(\mathfrak{g})$. Then $\operatorname{Fract} U_q(\mathfrak{g})/P$ is isomorphic to a quantum Weyl field of dimension 2N.

3.2. In this section section, we make more explicit the system of q-commuting generators (SQCG) of Fract $U_q(\mathfrak{n})$ for the classical simple Lie algebras \mathfrak{g} . Recall that these generators are, from the proof of Theorem 3.1, the images of the elements c_{β} , $\beta \in \mathcal{R}^+$, by the Drinfeld (anti)homomorphism, followed by the natural projection on $U_q(\mathfrak{n})$.

We know [6] that there is a natural embedding from $L_q(\lambda)^*$ to $U_q(\mathfrak{n})$ which maps the lowest weight vector of $L_q(\lambda)^*$ to 1. It maps the highest weight vector to an element e_{λ} of the q-center of $U_q(\mathfrak{n})$; cf. [7]. An element of $U_q(\mathfrak{n})$ will be called almost maximal, and be noted e_{λ}^i , if it is the image of a vector $v_{-s_i w_0 \lambda} \in L_q(\lambda)^*$, $1 \leq i \leq n, \lambda \in P^+$. Remark that those elements can be explicitly computed with the help of [6, Lemme 3.3].

With the standard notations of [2, Planches I à IV], we recall the canonical embeddings of Dynkin diagrams:

$$A_1 \subset \ldots \subset A_n, \ A_1 \subset B_2 \subset \ldots \subset B_n, \ A_1 \subset C_2 \subset \ldots \subset C_n, \ A_3 \subset D_4 \subset \ldots \subset D_n.$$

If X is a Dynkin label for a classical simple Lie algebra, we denote by X^- the previous label for the embedding sequence above. We can inductively define the reduced decomposition of the longest element of the Weyl group $w_0(X)$ for the Lie algebra of type X by :

$$w_0(X) = w_0(X^-).\begin{cases} s_n \dots s_2 s_1, & \text{if } X = A_n, \\ s_1 \dots s_{n-1} s_n s_{n-1} \dots s_1 & \text{if } X = B_n \text{ or } C_n, \\ s_1 \dots s_{n-2} s_n s_{n-1} \dots s_1 & \text{if } X = D_n. \end{cases}$$

This decomposition of w_0 permits us to obtain inductively our SQCG.

Theorem. The system of q-commuting generators corresponding to the simple classical Lie algebra \mathfrak{g} of type X is inductively given by

$$SQCG(X) = SQCG(X^{-}) \cup \bigcup_{i=1}^{n} e_{\varpi_i} \cup \begin{cases} \varnothing & \text{if } X = A_n, \\ \bigcup_{i=1}^{n-1} e_{\varpi_i}^i & \text{if } X = B_n \text{ or } C_n, \\ \bigcup_{i=1}^{n-2} e_{\varpi_i}^i & \text{if } X = D_n. \end{cases}$$

Remark. This theorem is a generalization of [1, Théorème 2.15] for the classical Lie algebras. Note that, except for e_{ϖ_n} if \mathfrak{g} has type B_n , C_n , D_n and $e_{\varpi_{n-1}}$, if \mathfrak{g} has type D_n , all those elements can be obtained as quantum determinants of a "basic"

matrix. This can be obtained as in [6] (see also [14, 7.5.5]) by considering exterior powers of $L_q(\varpi_1)$.

3.3. Now, we give the proof of a similar theorem for the algebra $R = \mathbb{C}_q[G]$. For all $i, j, 1 \leq i, j \leq N$, we denote by $R^{i,j}$ the subalgebra of elements in R which are invariant for the right action of $U_q(\mathfrak{n}_{\beta_j})$ and for the left action of $U_q(\mathfrak{n}_{\beta_i})$ (recall that these actions commute). Set $B = R^{N,N}$.

Fix $\beta = \beta_l$. We define the following elements in $C(\rho)$:

$$d_{\beta} = c_{y_{l-1}\rho, -y_{l}\rho}, \qquad d'_{\beta} = c_{y_{l-1}\rho, -y_{l-1}\rho}.$$

By Assertion 1.4, we prove that d_{β} is invariant for the left action of E_{α} , $\alpha \leq \beta$, and of F_{α} , $\alpha > \beta$. Moreover, d_{β} is invariant for the right action of E_{α} , $\alpha < \beta$, and of F_{α} , $\alpha \geq \beta$. In the same way, d'_{β} is invariant for the left and right action of E_{α} , $\alpha < \beta$, and of F_{α} , $\alpha \geq \beta$. Hence, by (1.5.1) and (1.5.2), the elements d_{α} and d'_{α} , $\alpha \in \Delta^+$, q-commute. We have clearly $d_{\beta} \in R^{l,l-1}$ and $d_{\beta} \in R^{l-1,l-1}$. Moreover, up to a nonzero multiplicative scalar, $E_{\beta}.d'_{\beta} = d_{\beta}$ and $d_{\beta}.E_{\beta} = d'_{\beta_{l+1}}$, $l \neq N$, $d_{\beta}.E_{\beta} = c_{w_0\rho,\rho} \in B$, l = N. $\mathbb{C}_q[G]$ being noetherian [14, 9.2.2], we can easily modify the proof of Proposition 2.2 to obtain:

Theorem. Fract $\mathbb{C}_q[G]$ is isomorphic to a quantum Weyl field of dimension 2N+n. To be more precise, Fract $\mathbb{C}_q[G]$ is isomorphic to the skew Weyl field of fractions of $B[d_{\beta_N}][d'_{\beta_N}]\dots[d_{\beta_2}][d'_{\beta_2}][d_{\beta_1}][d'_{\beta_1}]$.

The generators of B, the d_{β} and d'_{β} , can be easily expressed as a product of elements of $C(\varpi_i)$, $1 \leq i \leq n$. Consider the algebra $\mathbb{C}_q[SL_2]$ generated by the elements of the quantum matrix : $\begin{pmatrix} a & c \\ b & d \end{pmatrix}$. Then the system of q-commuting generators provided by the theorem is $\{b, a, c\}$.

References

- J. ALEV and F. DUMAS. Sur le corps des fractions de certaines algèbres quantiques, J. Algebra, 170, (1994), 229-265. MR 96c:16033
- [2] N. BOURBAKI. Groupes et Algèbres de Lie, Chap. VI, Masson, Paris, 1981.
- [3] N. BURROUGHS. Relating the approaches to quantized algebras and quantum groups, Comm. Math. Phys., 133, (1990), 91-117. MR 92c:17018
- [4] P. CALDERO. Générateurs du centre de $U_q(sl(N+1))$, Bull. Sci. Math., 118, (1994), 177-208. MR $\bf 95k$:17018
- P. CALDERO. Algèbres enveloppantes quantifiées, action adjointe et représentations, Thèse Université Paris VI, (1993).
- [6] P. CALDERO. Sur le centre de $U_q(\mathfrak{n})$, Beiträge zur Algebra und Geometrie, 35, (1994), 13-23. MR 95d:17009
- [7] P. CALDERO. Etude des q-commutations dans l'algèbre Uq(n), J. Algebra, 178, (1995), 444-457. MR 96k:17019
- [8] P. CALDERO. Invariants in the enveloping algebra of a semi-simple Lie algebra for the adjoint action of a nilpotent Lie subalgebra, Comm. Math. Phys. 189 (1997), 699-707. CMP 98:04
- [9] P. CALDERO. On the q-commutations in $U_q(\mathfrak{n})$ at roots of one, to appear in J. Algebra.
- [10] C. DE CONCINI and V. G. KAC. Representations of quantum groups at roots of 1, Colloque Dixmier, Progress in Math., 92, (1990), 471-506. MR 92g:17012
- [11] V. G. DRINFELD. On almost cocommutative Hopf algebras, Leningrad Math. J., Vol. I, (1990), n° 2, 321-342. MR 91b:16046
- [12] A. JOSEPH. A generalization of the Gelfand-Kirillov conjecture, Amer. J. Math., 99, (1977), 1151-1165. MR 57:391

- [13] A. JOSEPH. A preparation theorem for the prime sprectrum of a semi-simple Lie algebra, 48, (1977), 241-289. MR 56:12082
- [14] A. JOSEPH. Quantum groups and their primitive ideals, Springer-Verlag, 29, (1995). MR 96d:17015
- [15] A. JOSEPH. Sur une conjecture de Feigin, C.R.Acad.Sci., 320, Serie I, (1995), 1441-1444. MR 96f:17020
- [16] V. LAKSHMIBAI, N. RESHETIKHIN. Quantum flag and Schubert schemes, Contemp. Math., 134, (1992), 145-181. MR 94a:14055
- [17] S.Z. LEVENDORSKII, Y.S. SOIBELMAN. Some applications of quantum Weyl group, J. Geom. Phys., 7, (1990), 241-254. MR 92g:17016
- [18] G. LUSZTIG. Quantum groups at roots of 1, Geom. Ded., 35 (1990), 1-25. MR 91j:17018
- [19] F. MILLET-FAUQUANT, Sur une algebre parabolique P de $U_q(sl(N+1))$ et ses semi-invariants par l'action adjointe de P, preprint.
- [20] Y. NOUAZÉ, P. GABRIEL. Idéaux premier de l'algèbre enveloppante d'une algèbre de Lie nilpotente, J. Algebra, 6, 77-99, (1967). MR 34:5889
- [21] A.N. PANOV. The skew field of rational functions on $GL_q(n,K)$, Transl. from Funk. Anal., Vol. 28, n⁰ 2, p. 75-77, 1994. CMP 94:14
- [22] C.M. RINGEL. Hall algebras and quantum groups, Invent. Math., 101, (1990), 583-592.
 MR 91i:16024

Institut Girard Desargues, UPRS-A-5028, Université Claude Bernard Lyon I, Bat $101,\,69622$ Villeurbanne Cedex, France

 $E ext{-}mail\ address: caldero@desargues.univ-lyon1.fr}$