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ON THE GELFAND-KIRILLOV CONJECTURE
FOR QUANTUM ALGEBRAS

PHILIPPE CALDERO

(Communicated by Roe Goodman)

Abstract. Let q be a complex not a root of unity and g be a semi-simple
Lie C-algebra. Let Uq(g) be the quantized enveloping algebra of Drinfeld and
Jimbo, Uq(n−) ⊗ U0 ⊗ Uq(n) be its triangular decomposition, and Cq [G] the
associated quantum group. We describe explicitly FractUq(n) and FractCq[G]
as a quantum Weyl field. We use for this a quantum analogue of the Taylor
lemma.

0. Introduction

Let q be a nonzero complex number which is not a root of unity. In this article,
a C-algebra defined by generators Xi, 1 ≤ i ≤ m, and relations XiXj = qai,jXjXi,
1 ≤ i < j ≤ m, ai,j ∈ Z, will be called “the algebra of regular functions on an affine
quantum space”. Its skew field of fractions will be called the quantum Weyl field.
The Xi, 1 ≤ i ≤ m, will be called a system of q-commuting generators (SQCG).

Let g be a semi-simple Lie C-algebra of rank n. Let R be the root system
associated to the choice of a Cartan subalgebra h. We denote by ∆ = {αi} the set of
simple roots of R, P the lattice of associated weights generated by the fundamental
weights $i, 1 ≤ i ≤ n, and P+ :=

∑
i N$i the lattice of dominant weights. Let G

be the simply connected group associated to g and Uq(g) the Drinfeld and Jimbo’s
quantized enveloping algebra. We define as in the classical case its “nilpotent”
subalgebra Uq(n) and the quantum algebra of regular functions on the group Cq[G].
A theorem of J. Alev and F. Dumas (cf. [1]) asserts that FractUq(n) is a quantum
Weyl field when g is of type An. In [15], A. Joseph proves that this property is
verified for all semi-simple Lie algebras g when q is generic. We prove in this article
that FractUq(n) and FractCq[G] are quantum Weyl fields when g is semi-simple
and when q is not a root of one; see [9] for the case where q is a root of one. The
method we used provides a system of q-commuting generators.

Inspired by [12, Theorem 3.2], we essentially used the quantum analogue of the
Taylor lemma. This lemma asserts that if 1) δ is a locally nilpotent σ-derivation
(cf. 1.1) on a C-algebra A and 2) there exists an element a such that δ(a) = 1, then
a is (right) transcendant on the invariant algebra Aδ and A ' Aδ[a].

Our results are proved as follows:
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As a first step, we give (cf. Proposition 2.1) a multi-parametered version of
the Taylor lemma for the locally nilpotent action (as a bialgebra) of the Borel
subalgebra Uq(b) on an algebraA. The difficulty encountered in the quantum case is
the following : the generators Eβ (β being a positive root) of the Poincaré-Birkhoff-
Witt base of Uq(n) do not act as σ-derivations on A. To get round this problem,
we can, from a reduced decomposition of the longest element w0 in the Weyl group,
define a total order on the set of these generators and obtain a decreasing sequence
of subalgebras Uq(nβ) of Uq(n); cf. [10, Lemma 1.7]. With the help of a result
of S.Z. Levendorskii and Y.S Soibelman (cf. [17, 2.4.1]) we obtain that Eβ acts
as a σ-derivation on the subalgebra of Uq(nβ<)-invariants of A, β< being the root
preceding β. So, we can inductively apply the Taylor lemma and prove Proposition
2.1.

As a second step, we apply Proposition 2.1, see also Assertion 2.2, to the (right)
regular action of Uq(b) on Cq[G]. Recall (cf. 1.4) that Cq[G] is generated as a
space by the coefficients cλµ,ν of the simple finite dimensional Uq(g)-modules Lq(λ),
λ ∈ P+. Let w0 = si1 . . . siN be a reduced decomposition of w0 into a product
of elementary reflections. Let β = βl := si1 . . . sil−1(αil ) and yl = si1 . . . sil . By
using the Lusztig automorphisms and the Weyl character formula, we prove that
cβ := c

$il
yl−1$il ,$il

, is Uq(nβ<)-invariant. Moreover, with the help of the R-matrix,
we prove (cf. Proposition 2.3) that the cβ q-commute, i.e. commute up to a power
of q. By the quantized Taylor lemma and the Drinfeld duality, we obtain the
claimed theorem for FractUq(n). We may specify the description of FractUq(n) as
in [1, Théorème 2.15]; cf. Theorem 3.2. We give similar results for the quantum
algebras S+

w of regular functions on a Schubert variety; cf. [14, 10.3.1 (3)]. On
this subject, we remark that the elements cβ belong to the Lakshmibai-Reshetikhin
base of standard monomials [16]. After localization, they generate a polynomial
base.

As a third step, we show that our method works for Cq[G]. If ρ is the sum
of fundamental weights, then the elements dβ = cρyl−1ρ,−ylρ, d

′
β = cρyl−1ρ,−yl−1ρ

and c$iw0$i,$i generate the quantum Weyl field FractCq[G]. This theorem is a
consequence of the Taylor lemma for the regular action of Uq(b) ⊗ Uq(b)opp on
Cq[G]. Note that this result was proved by A.N. Panov for G = SLn and generic q
[21].

In the classical case, the Gelfand-Kirillov conjecture asks if the enveloping algebra
of g is a Weyl field. In [12], A. Joseph gives a generalization of the Gelfand-Kirillov
conjecture, replacing the enveloping algebra of g by an algebra on which n acts
by derivations. The title of our article must be understood in the sense of this
generalization. At the present time, we do not know if FractUq(g) is a quantum
Weyl field. As for the classical case, this assertion may be shown when g has type
An (see [19]).

We are in debt to T. Levasseur for his remarks and observations.

1. Preliminaries and notations

1.1. Let g be a semi-simple Lie C-algebra of rank n. We fix a Cartan sub-algebra
h of g. Let g = n− + h + n be the triangular decomposition and {αi}i be a base
of the root system ∆ resulting from this decomposition. We note b = n + h and
b− = n− + h, the two opposed Borel sub-algebras. Let P be the weight lattice
generated by the fundamental weights $i, 1 ≤ i ≤ n, and P+ :=

∑
i N$i the
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semigroup of integral dominant weights. We denote by ρ the sum of fundamental
weights. Let W be the Weyl group, generated by the reflections corresponding to
the simple roots sαi . Let w0 be the longest element of W . We denote by ( , ) the
W -invariant form on P . We have (αj , $i) = δij

(αi,αi)
2 .

1.2. Let q be a nonzero complex number not a root of unity and Uq(g) be the
simply connected quantized enveloping algebra, defined as in [14, 3.2.9]. Let Uq(n),
resp. Uq(n−), be the subalgebra generated by the canonical generators Eαi , resp.
Fαi , of positive, resp. negative, weights. For all λ in P , let τ(λ) be the corre-
sponding element in the algebra U0 of the torus of Uq(g). We have the triangular
decomposition Uq(g) = Uq(n−)⊗ U0 ⊗ Uq(n). We set

Uq(b) = Uq(n)⊗ U0, Uq(b−) = Uq(n−)⊗ U0.(1.2.1)

Uq(g) is endowed with a structure of Hopf algebra with comultiplication ∆, and
antipode S.

We fix the following notations, where t is a complex not root of one, n a non-
negative integer and α a positive root : [n]t = 1−qt

1−q , [n]t! = [n]t[n − 1]t . . . [1]t,

qα = q
(α,α)

2 .

1.3. For w in W , let Tw be the Lusztig automorphism [18] associated to w. We fix
a decomposition of the longest element of the Weyl group w0 = si1 . . . siN , where
N = dim n. This decomposition settles an order, denoted <, into the set ∆+ of
positive roots : βN = si1 . . . siN−1(αiN ), . . . , β2 = si1(αi2), β1 = αi1 . Then, we
introduce the following elements in Uq(n) : Eβs = Ti1 . . . Tis−1(Eis). We define in
the same way Fβs = Ti1 . . . Tis−1(Fis ).

We know (cf. [18]) that these elements generate a Poincaré-Birkoff-Witt base of
Uq(n). We have, by [22], see also [10, Lemma 1.7]:

Proposition. Let Uq(nβ) be the space generated by the ordered products
∏
→

Ekαα ,

α ∈ ∆+, α ≤ β, kα ∈ N. Then Uq(nβ) is a subalgebra of Uq(n). Moreover, if µ < β,
we have EµEβ − q−(µ,β)EβEµ ∈

∑
α<β Uq(nβ)Eα.

1.4. The dual Uq(g)∗ is endowed with a structure of a left, resp. right, Uq(g)-
module by u.c(a) = c(au), resp. c.u(a) = c(ua), u, a ∈ Uq(g), c ∈ Uq(g)∗. In the
same way, if M is a left Uq(g)-module, we endow the dual M∗ with the structure
of a right Uq(g)-module by ξu(v) = ξ(uv), u ∈ Uq(g), ξ ∈M∗, v ∈M .

For all λ in P+, let Lq(λ) be the simple Uq(g)-module with highest weight λ.
We know that Lq(λ) verifies the Weyl character formula, for all w in W we denote
by vwλ the extremal vector of weight wλ. For all integral dominant weight λ, we
fix a weight base (vµ), µ ∈ Ω(Lq(λ)), of Lq(λ). We denote by (v∗µ) its dual base.
From [14, 10.2], we have the assertion

Assertion. Let λ be an integral dominant weight and w an element of the Weyl
group. Fix a space M and an isomorphism φ : M → Lq(λ)∗. We can endow M with
the structure of a right Uq(g)-module by : v∗.u = φ−1(φ(v∗)Tw(u)), v∗ ∈M . Then
the Uq(g)-module M is isomorphic to Lq(λ)∗ and φ−1(v∗wλ), resp. φ−1(v∗ww0λ

), is
its highest weight, resp. lowest weight, vector.

For all ξ in Lq(λ)∗ and v in Lq(λ), let cλξ,v in Uq(g)∗ given by cλξ,v(u) = ξ(uv),
u ∈ Uq(g). Then we have u.cλξ,v = cλξ,uv and cλξ,v.u = cλξu,v. If ξ, resp. v, has weight
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ν, resp µ, we set (if no confusion occurs) cλν,µ = cλξ,v. For all integral dominant
weight λ, let C(λ), resp. C+(λ), be the space generated by the cλξ,v, resp. cλξ,λ,
ξ ∈ Lq(λ)∗, v ∈ Lq(λ). We note R = Cq[G] =

⊕
λ∈P+ C(λ), R+ =

⊕
λ∈P+ C+(λ).

R+ and R are subalgebras of the Hopf dual of Uq(g).
For w in W , we define the quantized algebra S+

w of regular functions on the Schu-
bert variety (see [14], [15] for details) : S+

w is the inductive limit of (cλwλ,λ)−1V +
w (λ)∗,

for λ in P+, where V +
w (λ)∗ is the dual of the Demazure module Vw(λ), naturally

identified as a quotient of C+(λ).

1.5. We know that Uq(g) is an almost cocommutative Hopf algebra; cf. [11]. Let
R = R(1) ⊗ R(2) be the R-matrix of Uq(g). This satisfies R∆ = ∆tR, where t is
the twist. From this property it follows easily that:

(c.R(1))(c′.R(2)) = (R(2).c
′)(R(1).c), c, c′ ∈ Cq[G].(1.5.1)

We recall the expression of the R-matrix as an ordered product [17, 3.3]:

R = (
∏

α∈∆+
expq−2

α
((1 − q−2

α )Eα ⊗ Fα))τ(γ) ⊗ τ(γ),(1.5.2)

where γ ∈ P , expt(x) =
∑

n≥0
xn

[n]t!
.

2. A quantum Taylor lemma

2.1. We have the following lemma, whose proof is an analogue to [20, 1.1], [8,
Proposition 1.1]:

Lemma. Let A be an C-algebra, σ a C-automorphism of A, δ a σ-derivation of
A, i.e. δ(ab) = δ(a)b+ σ(a)δ(b), a, b ∈ A. Let Aδ be the algebra of δ-invariants in
A. Suppose that 1) δ is locally nilpotent, 2) σδσ−1 = Qδ, Q ∈ C∗, Q not root of
one, 3) there exists a in A such that δ(a) ∈ C∗. Then A = Aδ[a] and a is (right)
transcendantal on Aδ, i.e. A =

⊕
p≥0A

δap.

Proof. By 2), Aδ is σ-stable. Moreover, we have : δp(ap) = [p]Q−1 !δ(a)p. This
implies the direct sum in the claimed equality. Let u be in A, with degree p, i.e. p
is the greatest integer such that u0 := δp(u) 6= 0. Clearly, the element u0 is in Aδ.
We prove the result by induction on p by considering u − 1

[p]Q−1 !δ(a)σ
−p(u0)ap, of

degree ≤ p− 1.

Let A be an C-algebra such that Uq(b) acts (as a bialgebra) on A, i.e. A is
a Uq(b)-module and a(uv) = a(1)ua(2)v, u, v ∈ A, a ∈ Uq(b), ∆(a) = a(1) ⊗ a(2).
Suppose that this action is locally finite. We set A0 = A and we note Al, 1 ≤ l ≤ N ,
the algebra of Uq(nβl)-invariants in A. This proposition follows from the lemma.

Proposition. Let A be an algebra defined as above. Suppose that, for all β in ∆+,
there exists aβ in A such that Eα.aβ = δαβ, α ≤ β, where δαβ is the Kroenecker
symbol.

Then, for all l, 1 ≤ l ≤ N , we have

A =
⊕

(k1,... ,kl)∈Nl
Alaklβl . . . a

k1
β1
.
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Proof. We note φ : Uq(b) → End(A), the natural morphism for this action. By
Proposition 1.3 and [17, 2.4.1], δ := φ(Eβl) is a φ(τ(βl))-derivation on Al−1. The
conditions of the previous lemma are satisfied because 1) δ is locally nilpotent on
Al−1, 2) τ(βl) and Eβl q-commute, 3) a := aβl is in Al−1 and satisfies δ(a) = 1
by the definition. The proposition is obtained by induction on l using the previous
lemma.

2.2. We shall see that if A is one of the algebras considered in the introduction,
then the elements aβ of Proposition 2.1 exist in some localization of A, and not in
the algebra A. For the classical case, cf. [12, Theorem 2.6], it is enough to localize
by a set S generated by n-invariant elements in A. We can then apply the Taylor
lemma to AS . In the quantum case, the Taylor lemma needs some refinements. We
slightly modify Lemma 2.1 to get

Assertion. Let C be a noetherian domain on C, σ a C-automorphism of C and δ
be a σ-derivation on C which satisfies 1) and 2) of Lemma 2.1. Suppose s (nonzero)
and s′ are q-commuting in C and such that δ(s′) = s ∈ Cδ. Let a = s′s−1 in FractC
and M =

⋃
p≥0 Cs

−p. Then δ acts on M and (as spaces) C ⊂M =
⊕

p≥0M
δap.

Proof. The element s in δ-invariant, so δ extends as a locally nilpotent derivation
on M . Clearly, C is a subset of M and δ(a) = 1. The direct sum is proved as
in Lemma 2.1. As s and s′ q-commute, we have

⊕
p≥0 M

δap ⊂ M . The reverse
inclusion is an easy induction as in the proof of Lemma 2.1.

We now give a condition on A which implies that FractA is isomorphic to a
quantum Weyl field.

Definition. Let A be a noetherian domain. We say that A verifies the property
(P) if the following hypotheses are verified:

(i) Uq(b) acts (as a Hopf algebra) on the C-algebra A and this action is locally
finite. Let B = AN be the subalgebra of Uq(n)-invariant elements in A.

(ii) B is generated by elements ci, 1 ≤ i ≤ m, and B = C[cm] . . . [c2][c1] is an
algebra of functions on a quantum affine space with SQCG {c1, . . . , cm}.

(iii) There exist nonzero elements cβ, β ∈ ∆+, in A which q-commute, q-commute
with ci, 1 ≤ i ≤ m, and satisfy : Eα.cβ = δαβc

>
β , α ≤ β, where c>β is either cγ ,

γ > β, Eβ-invariant, or cj , 1 ≤ j ≤ m.

Proposition. Let A be a noetherian domain. If A satisfies the property (P), then
FractA is isomorphic to a quantum Weyl field. To be precise, if B is the algebra
of Uq(n)-invariant elements in A, then FractA is isomorphic to the skew field of
fractions of B[cβN ] . . . [cβ2 ][cβ1 ].

Proof. Suppose that A satisfies the property (P). For all β = βi in ∆+, note Si
the multiplicative set generated by si := c>β ; cf. (iii). We can define the following
elements : aβ = (c>β )−1cβ ∈ FractA.

In the context of the previous assertion, we set (improperly) CS =
⋃
p≥0 Cs

−p,
where S is the multiplicative set generated by s. Recall that A is a domain. The
conditions of the assertion are easily verified from the property (P). We have:

A =A0 ⊂ A1
S1

[aβ1 ] ⊂ A2
S2

[aβ2 ][s−1
1 , aβ1 ]

⊂ . . . ⊂ ANSN [aβN ][s−1
N−1, aβN−1, . . . , s

−1
1 , aβ1 ].

(*)
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Moreover, from (iii), c>βN ∈ B, so cβN ∈ B[aβN ]. Inductively, we can prove that
B[aβN ] . . . [aβ1 ] contains all the si. This and (*) imply that FractA is isomorphic to
the skew field of fractions of B[aβN ] . . . [aβ1 ]. The property (P) (iii) asserts that the
aα are in the skew field of fractions of B[cβN ] . . . [cβ2 ][cβ1 ]. By the Taylor lemma,
these extensions are (right) transcendantal. Our proposition follows.

2.3. Fix 1 ≤ l ≤ N and β = βl. The reduced decomposition of w0 being fixed as in
1.3, we define the elements yl of the Weyl group : y0 = Id, yl = si1si2 . . . sil , l > 0.
Then, we introduce in R+ : cβ = c

$il
yl−1$il ,$il

, c>β = cβ .Eβ .

Lemma. Let Il = {p, l < p ≤ N | ip = il}. If Il is empty, c>βl = c
$il
w0$il ,$il

. If not,
let l′ be the minimal element in Il; then c>βl = cβl′ (up to a multiplicative scalar).

Proof. Fix l. Set j = il. We show the second assertion of the lemma; the first is
similar. We have yl′−1($j) = yl−1sil . . . sil′−1

($j) = yl−1sil($j) = yl−1($j−αj) =
yl−1($j)−β. From Assertion 1.4, with λ = $j and w = yl−1, it is enough to prove
that v∗$il .E$il = vsil$il . This is clear by the Weyl character formula and we can
conclude the lemma.

Proposition. Let S be the multiplicative set generated by the c>α , α ∈ ∆+. S is a
Ore set in R+. Let aβ = (c>β )−1cβ ∈ S−1R+. We have aα′aα = q(α,α′)aαaα′ , α,
α′ ∈ ∆+, α′ < α.

Proof. As in the previous proof, we fix β = βl in ∆+, 1 ≤ l ≤ N , and il = j.
From Assertion 1.4, the extremal vector v∗yl−1$j in Lq($j)∗ is annihilated by the
right action of Eα, α > β, and Fα, α ≤ β. So, this holds for cβ . From (1.5.1) and
(1.5.2), we can deduce that the cβ , β ∈ ∆+, q-commute. By Lemma 2.3 and by
[14, Corollary 9.1.4], this is also true for the c>β , β ∈ ∆+. The first assertion of the
proposition follows from loc. cit., [Lemma A.2.9], and loc. cit., [Lemma 9.1.10]. We
used loc. cit., [Proposition 9.1.5] to calculate the exponent of q in the formula.

Remark. The fact that S is a Ore set is not essential for the next section. Indeed,
the elements aβ defined above exist at least in FractR+, because R+ is a noetherian
domain, cf. [14, 9.1.11].

3. Applications

3.1. In this section, we give a list of quantum algebras which satisfy the desired
property.

Theorem. The skew field of fractions of the algebra R+, resp. S+
w , resp. Uq(n),

resp. Uq(b), is isomorphic to a quantum Weyl field of dimension N + n, resp.
l(w) + n, resp. N , resp. N + n.

Proof. By [14, Chapter 7, Chapter 9], all the algebras in the claim are noetherian
domains. Let’s verify the assertions of the property (P).

For R+, the action of (i) is the right regular action, which is locally finite. The
algebra of Uq(n)-invariant elements in R+ is generated by the c$iw0$i,$i , 1 ≤ i ≤ n,
which q-commute by [14, 9.1.4]. Then, (iii) is given by Lemma 2.3 and Proposition
2.3.

The assertion for S+
w is similar. We may consider, without loss of generality, the

case where w = siN−l(w)+1 . . . siN . Set β := βN−l(w)+1. We prove the theorem with
the help of (i) the right action of Uq(n), (ii) the Uq(n)-invariant elements c$iw$i,$i ,
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1 ≤ i ≤ n, (iii) the q-commuting elements cα, α ≤ β. Indeed, (i) and (iii) are clear,
and (ii) follows from the fact that (V +

w (λ)∗)Uq(n) is generated by cλwλ,λ.
Let ϕ be the restriction homomorphism from Uq(g)∗ to Uq(b−)∗ and J− =

Kerϕ∩R. We know (cf. [14, 9.1.10, 9.2.11]) that ϕ restricts to an embedding from
R+ to R/J−, and this map is surjective up to localization. It is also well known (cf.
[3]) that there exists an algebra antihomomorphism R/J− ' Uq(b). The theorem
being true for R+, it is true for Uq(b). Let’s consider now the previous isomorphism
extent to the skew field of fractions. We remark (cf. [4, Lemme 3.4], [5, I Prop.
4.2]) that the image of aβ is in FractUq(n). Thus, we can conclude by (1.2.1).

As in [15, Corollaire 6], we have the following corollary.

Corollary. Let P minimal primitive ideal of Uq(g). Then FractUq(g)/P is iso-
morphic to a quantum Weyl field of dimension 2N .

3.2. In this section section, we make more explicit the system of q-commuting ge-
nerators (SQCG) of FractUq(n) for the classical simple Lie algebras g. Recall that
these generators are, from the proof of Theorem 3.1, the images of the elements cβ,
β ∈ R+, by the Drinfeld (anti)homomorphism, followed by the natural projection
on Uq(n).

We know [6] that there is a natural embedding from Lq(λ)∗ to Uq(n) which maps
the lowest weight vector of Lq(λ)∗ to 1. It maps the highest weight vector to an
element eλ of the q-center of Uq(n); cf. [7]. An element of Uq(n) will be called
almost maximal, and be noted eiλ, if it is the image of a vector v−siw0λ ∈ Lq(λ)∗,
1 ≤ i ≤ n, λ ∈ P+. Remark that those elements can be explicitly computed with
the help of [6, Lemme 3.3].

With the standard notations of [2, Planches I à IV], we recall the canonical
embeddings of Dynkin diagrams:

A1 ⊂ . . . ⊂ An, A1 ⊂ B2 ⊂ . . . ⊂ Bn, A1 ⊂ C2 ⊂ . . . ⊂ Cn, A3 ⊂ D4 ⊂ . . . ⊂ Dn.

If X is a Dynkin label for a classical simple Lie algebra, we denote by X− the
previous label for the embedding sequence above. We can inductively define the
reduced decomposition of the longest element of the Weyl group w0(X) for the Lie
algebra of type X by :

w0(X) = w0(X−).


sn . . . s2s1, if X = An,

s1 . . . sn−1snsn−1 . . . s1 if X = Bn or Cn,
s1 . . . sn−2snsn−1 . . . s1 if X = Dn.

This decomposition of w0 permits us to obtain inductively our SQCG.

Theorem. The system of q-commuting generators corresponding to the simple clas-
sical Lie algebra g of type X is inductively given by

SQCG(X) = SQCG(X−) ∪
n⋃
i=1

e$i ∪


∅ if X = An,⋃n−1
i=1 e

i
$i if X = Bn or Cn,⋃n−2

i=1 e
i
$i if X = Dn.

Remark. This theorem is a generalization of [1, Théorème 2.15] for the classical Lie
algebras. Note that, except for e$n if g has type Bn, Cn, Dn and e$n−1 , if g has
type Dn, all those elements can be obtained as quantum determinants of a “basic”
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matrix. This can be obtained as in [6] (see also [14, 7.5.5]) by considering exterior
powers of Lq($1).

3.3. Now, we give the proof of a similar theorem for the algebra R = Cq[G]. For
all i, j, 1 ≤ i, j ≤ N , we denote by Ri,j the subalgebra of elements in R which are
invariant for the right action of Uq(nβj ) and for the left action of Uq(nβi) (recall
that these actions commute). Set B = RN,N .

Fix β = βl. We define the following elements in C(ρ):

dβ = cyl−1ρ,−ylρ, d′β = cyl−1ρ,−yl−1ρ.

By Assertion 1.4, we prove that dβ is invariant for the left action of Eα, α ≤ β,
and of Fα, α > β. Moreover, dβ is invariant for the right action of Eα, α < β,
and of Fα, α ≥ β. In the same way, d′β is invariant for the left and right action
of Eα, α < β, and of Fα, α ≥ β. Hence, by (1.5.1) and (1.5.2), the elements dα
and d′α, α ∈ ∆+, q-commute. We have clearly dβ ∈ Rl,l−1 and dβ ∈ Rl−1,l−1.
Moreover, up to a nonzero multiplicative scalar, Eβ .d′β = dβ and dβ .Eβ = d′βl+1

,
l 6= N , dβ .Eβ = cw0ρ,ρ ∈ B, l = N . Cq[G] being noetherian [14, 9.2.2], we can
easily modify the proof of Proposition 2.2 to obtain:

Theorem. FractCq[G] is isomorphic to a quantum Weyl field of dimension 2N+n.
To be more precise, FractCq[G] is isomorphic to the skew Weyl field of fractions of
B[dβN ][d′βN ] . . . [dβ2 ][d′β2

][dβ1 ][d′β1
].

The generators of B, the dβ and d′β , can be easily expressed as a product of
elements of C($i), 1 ≤ i ≤ n. Consider the algebra Cq[SL2] generated by the

elements of the quantum matrix :
(
a c
b d

)
. Then the system of q-commuting

generators provided by the theorem is {b, a, c}.
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457. MR 96k:17019
[8] P. CALDERO. Invariants in the enveloping algebra of a semi-simple Lie algebra for the

adjoint action of a nilpotent Lie subalgebra, Comm. Math. Phys. 189 (1997), 699-707. CMP
98:04

[9] P. CALDERO. On the q-commutations in Uq(n) at roots of one, to appear in J. Algebra.
[10] C. DE CONCINI and V. G. KAC. Representations of quantum groups at roots of 1, Colloque

Dixmier, Progress in Math., 92, (1990), 471-506. MR 92g:17012

[11] V. G. DRINFELD. On almost cocommutative Hopf algebras, Leningrad Math. J., Vol. I,
(1990), n◦ 2, 321-342. MR 91b:16046

[12] A. JOSEPH. A generalization of the Gelfand-Kirillov conjecture, Amer. J. Math., 99, (1977),
1151-1165. MR 57:391

http://www.ams.org/mathscinet-getitem?mr=96c:16033
http://www.ams.org/mathscinet-getitem?mr=92c:17018
http://www.ams.org/mathscinet-getitem?mr=95k:17018
http://www.ams.org/mathscinet-getitem?mr=95d:17009
http://www.ams.org/mathscinet-getitem?mr=96k:17019
http://www.ams.org/mathscinet-getitem?mr=92g:17012
http://www.ams.org/mathscinet-getitem?mr=91b:16046
http://www.ams.org/mathscinet-getitem?mr=57:391


THE GELFAND-KIRILLOV CONJECTURE FOR QUANTUM ALGEBRAS 951

[13] A. JOSEPH. A preparation theorem for the prime sprectrum of a semi-simple Lie algebra,
48, (1977), 241-289. MR 56:12082

[14] A. JOSEPH. Quantum groups and their primitive ideals, Springer-Verlag, 29, (1995).
MR 96d:17015

[15] A. JOSEPH. Sur une conjecture de Feigin, C.R.Acad.Sci., 320, Serie I, (1995), 1441-1444.
MR 96f:17020

[16] V. LAKSHMIBAI, N. RESHETIKHIN. Quantum flag and Schubert schemes, Contemp.
Math., 134, (1992), 145-181. MR 94a:14055

[17] S.Z. LEVENDORSKII, Y.S. SOIBELMAN. Some applications of quantum Weyl group, J.
Geom. Phys., 7, (1990), 241-254. MR 92g:17016

[18] G. LUSZTIG. Quantum groups at roots of 1, Geom. Ded., 35 (1990), 1-25. MR 91j:17018
[19] F. MILLET-FAUQUANT, Sur une algebre parabolique P de Uq(sl(N + 1)) et ses semi-

invariants par l’action adjointe de P , preprint.
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