PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 128, Number 4, Pages 1197-1201 S 0002-9939(99)05203-X Article electronically published on August 3, 1999

A CHARACTERIZATION OF MÖBIUS TRANSFORMATIONS

ROLAND HÖFER

(Communicated by Christopher Croke)

ABSTRACT. Let $n \geq 2$ be an integer and let \mathcal{D} be a domain of \mathbb{R}^n . Let $f: \mathcal{D} \to \mathbb{R}^n$ be an injective mapping which takes hyperspheres whose interior is contained in \mathcal{D} to hyperspheres in \mathbb{R}^n . Then f is the restriction of a Möbius transformation.

1. INTRODUCTION

Let $n \geq 2$ be an integer. A theorem of A.D. Alexandrov [1] states that any bijective transformation of \mathbb{R}^{n+1} which preserves the Lorentz distance 0 between pairs of points in both directions is the product of a Lorentz transformation and a dilatation. The following Theorem 1.3 is due to A.D. Alexandrov [2], J.A. Lester [7], and I. Popovici and D.C. Rădulescu [9] and generalizes Alexandrov's theorem.

Definition 1.1. Let $n \in \mathbb{N}$, $n \geq 2$. For $x, y \in \mathbb{R}^n$ let $x \cdot y$ denote the standard euclidean product between x and y. The Lorentz product, resp. Lorentz distance, between $x, y \in \mathbb{R}^{n+1}$ is defined by

$$x \diamond y := x_1 y_1 + \ldots + x_n y_n - x_{n+1} y_{n+1},$$

 $d(x, y) := (y - x) \diamond (y - x).$

Definition 1.2 (cf. [6]). Let $n \in \mathbb{N}$, $n \geq 2$.

a) Let $\mathcal{D} \subset \mathbb{R}^n$. A mapping $f : \mathcal{D} \to \mathbb{R}^n$ is the restriction of a *Möbius transfor*mation if $\mathbb{R}\sigma_1(f(x)) = \mathbb{R}(\sigma_1(x)A_1)$ is satisfied for all $x \in \mathcal{D}$, where

$$\sigma_1(z) := \left(\frac{1-z \cdot z}{2}, z, \frac{1+z \cdot z}{2}\right)$$

for all $z \in \mathbb{R}^n$, and where A_1 is an $(n+2) \times (n+2)$ -Lorentz matrix, $A_1 M_1 A_1^T = M_1 := \text{diag}(1, \ldots, 1, -1).$

b) Let $\mathcal{D} \subset \mathbb{R}^{n+1}$. A mapping $f : \mathcal{D} \to \mathbb{R}^{n+1}$ is the restriction of a *Lie transfor*mation if $\mathbb{R}\sigma_2(f(x)) = \mathbb{R}(\sigma_2(x)A_2)$ for all $x \in \mathcal{D}$, where

$$\sigma_2(z) := \left(\frac{1-z\diamond z}{2}, z, \frac{1+z\diamond z}{2}\right)$$

for all $z \in \mathbb{R}^{n+1}$, and where A_2 is an $(n+3) \times (n+3)$ -matrix with $A_2 M_2 A_2^T = M_2 := \text{diag}(1, \dots, 1, -1, -1).$

©2000 American Mathematical Society

Received by the editors June 4, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 51B10; Secondary 51M04, 51M09.

Key words and phrases. Möbius transformation, Lie transformation, mappings preserving hyperspheres, Alexandrov's theorem for domains.

Theorem 1.3. Let \mathcal{D} be a domain (i.e. an open, connected subset) of \mathbb{R}^{n+1} , $n \geq 2$. Let $f : \mathcal{D} \to \mathbb{R}^{n+1}$ be a mapping such that

$$d(x,y) = 0 \quad \Leftrightarrow \quad d(f(x), f(y)) = 0$$

for all $x, y \in \mathcal{D}$. Then f is the restriction of a Lie transformation.

Alexandrov's theorem and Theorem 1.3 are important results in a modern field of geometrical research which is called *characterizations of geometrical mappings* under mild hypotheses [3], [4], [8]. In particular no regularity assumptions such as differentiability or even continuity are needed in these kinds of characterizations. In the same sense, C. Carathéodory proved [5] that any injective mapping of a domain \mathcal{D} of \mathbb{R}^2 to \mathbb{R}^2 is the restriction of a Möbius transformation if the following condition is satisfied:

The image of any circle contained with its interior in \mathcal{D} , is itself a circle.

2. Results

There is a close connection between Carathéodory's theorem and Theorem 1.3 (n = 2). In fact we will generalize Carathéodory's theorem to arbitrary dimensions with the help of Theorem 1.3.

Theorem 2.1. Let $n \geq 2$ be an integer and let \mathcal{D} be a domain of \mathbb{R}^n . Let $f : \mathcal{D} \to \mathbb{R}^n$ be an injective mapping such that f(H) is a hypersphere, whenever $H \subset \mathcal{D}$ is a hypersphere and the interior of H is contained in \mathcal{D} . Then f is the restriction of a Möbius transformation.

Definition 2.2. A similarity of \mathbb{R}^n , $n \ge 2$, is a mapping $f : \mathbb{R}^n \to \mathbb{R}^n$, f(x) = kxQ + t where k > 0, $t \in \mathbb{R}^n$, and Q is an orthogonal $n \times n$ -matrix, $QQ^T = E$.

It is well known that a mapping $f : \mathbb{R}^n \to \mathbb{R}^n$ which is induced by a Möbius transformation is a similarity. Hence, Theorem 2.1 implies the following corollary.

Corollary 2.3. Let $n \ge 2$. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be an injective mapping such that images of euclidean hyperspheres are euclidean hyperspheres. Then f is a similarity.

Now let \mathcal{D} be the set $I^n := \{x \in \mathbb{R}^n \mid x \cdot x < 1\}$ of points in Poincaré's sphere model of *n*-dimensional hyperbolic geometry, $n \ge 2$. A hyperbolic hypersphere in I^n is a euclidean hypersphere which is contained in I^n . If $f : I^n \to I^n$ is induced by a Möbius transformation and if f is surjective, then f is a hyperbolic motion.

Corollary 2.4. Let $n \ge 2$. Let $f : I^n \to I^n$ be a bijection of n-dimensional hyperbolic space which maps hyperbolic hyperspheres onto hyperbolic hyperspheres. Then f is a hyperbolic motion.

3. Proof of Theorem 2.1

We show that, whenever H is a hypersphere contained in \mathcal{D} such that the interior I of H is also contained in \mathcal{D} , then $f|_{I}$ is the restriction of a Möbius transformation. This implies Theorem 2.1 since

a) Any Möbius transformation is uniquely determined by its restriction to any non-empty open subset of \mathbb{R}^n .

b) For any two points $x, y \in \mathcal{D}$, there is a finite sequence $I_1, \ldots, I_k \subset \mathcal{D}$ of interiors of hyperspheres with $x \in I_1, y \in I_k, I_j \cap I_{j+1} \neq \emptyset$ for all $j \in \{1, \ldots, k-1\}$.

Let H be a hypersphere contained in \mathcal{D} such that the interior I of H is also contained in \mathcal{D} .

1198

1. Let I' denote the interior of the hypersphere H' := f(H). Then either $f(I) \subset I'$ or $f(I) \subset \mathbb{R}^n \setminus (H' \cup I')$.

Proof. Let $x, y \in I$. Then there is a hypersphere $H_1 \subset I$ which contains x and y. Since f is injective and $f(H_1)$ is a hypersphere, either $f(H_1) \subset I'$ or $f(H_1) \subset \mathbb{R}^n \setminus (H' \cup I')$. Thus f(x), f(y) are on the same side of $f(H_1)$.

2. Let $\mu : \mathbb{R}^n \setminus I' \to \mathbb{R}^n$ denote the restriction of a Möbius transformation which satisfies $\mu(H') = H'$ and $\mu(\mathbb{R}^n \setminus (I' \cup H')) \subset I'$. Let $g : H \cup I \to \mathbb{R}^n$ be defined by $g := f|_{H \cup I}$ if $f(I) \subset I'$, and $g := \mu \circ f|_{H \cup I}$ if $f(I) \subset \mathbb{R}^n \setminus (H' \cup I')$. Then $g(I) \subset I'$, g(H) = H', and g is an injective mapping which takes hyperspheres in $H \cup I$ to hyperspheres in $H' \cup I'$.

3. Let $H_1 \subset I$ be a hypersphere with interior I_1 . Then $g(I_1)$ is contained in the interior I'_1 of $H'_1 := g(H_1)$, and $g(I \setminus (H_1 \cup I_1))$ is contained in the exterior of H'_1 .

Proof. Let $z \in I \setminus (H_1 \cup I_1)$. There is a hypersphere $H_2 \subset H \cup I$ with $z \in H_2$, $\#(H \cap H_2) = 1$ and $H_1 \cap H_2 = \emptyset$. Then $H'_2 := g(H_2) \subset H' \cup I'$, $g(z) \in H'_2$, $\#(H' \cap H'_2) = 1$ and $H'_1 \cap H'_2 = \emptyset$. Hence $g(z) \notin I'_1$, and $g(I \setminus (H_1 \cup I_1)) \subset I' \setminus (H'_1 \cup I'_1)$. From the proof of 1. we know that $g(I_1)$ is either contained in the interior or in the exterior of H'_1 . We take a hypersphere $H_3 \subset I$, $\#(H_1 \cap H_3) > 1$. Then $H_3 \cap I_1 \neq \emptyset$ and $\#(H'_1 \cap g(H_3)) > 1$. Hence $g(H_3 \cap I_1) \cap I'_1 \neq \emptyset$ and $g(I_1) \subset I'_1$.

Definition 3.1. Two hyperspheres $H_1, H_2 \subset \mathbb{R}^n$ are in *interior (exterior) contact* if $\#(H_1 \cap H_2) = 1$ and H_i is contained in the interior (exterior) of H_j where (i, j) = (1, 2) or (i, j) = (2, 1).

4. Two hyperspheres $H_1, H_2 \subset I$ are in interior (exterior) contact iff $g(H_1), g(H_2)$ are in interior (exterior) contact.

Proof. Since g is injective, $\#(H_1 \cap H_2) = 1$ iff $\#(g(H_1) \cap g(H_2)) = 1$. The assertion now follows from 3.

Definition 3.2. For any hypersphere H_1 let $\gamma(H_1) \in \mathbb{R}^n$, $\rho(H_1) > 0$ denote the euclidean center and radius of H_1 . Let $\lambda(H_1) := (\gamma(H_1), \rho(H_1)) \in \mathbb{R}^n \times \mathbb{R}_{>0}$.

5. Two distinct hyperspheres H_1, H_2 of \mathbb{R}^n are in interior contact iff the Lorentz distance between $\lambda(H_1)$ and $\lambda(H_2)$ is zero.

6. The set $\mathcal{C} := \{\lambda(H_1) \mid H_1 \subset I \text{ is a hypersphere}\}$ is a domain of \mathbb{R}^{n+1} .

Proof. $C = \{x \in \mathbb{R}^n \times [0, \rho(H)] \mid d(x, \lambda(H)) < 0\}$ is open and connected.

7. The mapping $\varphi := \lambda \circ g \circ \lambda^{-1} : \mathcal{C} \to \mathcal{C}' := \{\lambda(g(H_1)) \mid H_1 \subset I \text{ is a hypersphere}\}$ satisfies d(x, y) = 0 iff $d(\varphi(x), \varphi(y)) = 0$ for all $x, y \in \mathcal{C}$.

Proof. From 5. and 4., for all distinct hyperspheres $H_1, H_2 \subset I$,

$$d(\lambda(H_1), \lambda(H_2)) = 0 \iff H_1 \text{ and } H_2 \text{ are in interior contact}$$
$$\Leftrightarrow \quad g(H_1) \text{ and } g(H_2) \text{ are in interior contact}$$
$$\Leftrightarrow \quad d(\lambda(g(H_1)), \lambda(g(H_2))) = 0.$$

ROLAND HÖFER

8. From 7. and Theorem 1.3, φ is the restriction of a Lie transformation, i.e. there is an $(n+3) \times (n+3)$ -matrix $A_2 =: (a_{ij})_{i,j=1,\ldots,n+3}$ as in Definition 1.2 b), such that $\mathbb{R}\sigma_2(y) = \mathbb{R}(\sigma_2(x)A_2)$ for all $x \in \mathcal{C}, y = \varphi(x)$.

Definition 3.3. A light line of \mathbb{R}^{n+1} is a line $u + \mathbb{R}v$, $u, v \in \mathbb{R}^{n+1}$, $v \neq 0$, where d(v, v) = 0.

9. $f|_I$ is the restriction of a Möbius transformation.

Proof. Let $x \in I$. Let l_1, l_2 be two distinct light lines which contain (x, 0). Then $\{(x, 0)\} = l_1 \cap l_2 \subset \partial \mathcal{C}$. The images $\varphi(l_i \cap \mathcal{C}) \neq \emptyset$ are contained in uniquely determined light lines l'_i , i = 1, 2. Since φ is continuous, $\{(g(x), 0)\} = l'_1 \cap l'_2$ is contained in $\partial \mathcal{C}'$. Hence for all $x \in I$, we have $\mathbb{R}\sigma_2((g(x), 0)) = \mathbb{R}(\sigma_2((x, 0))A_2))$ which implies

(3.1)
$$\mathbb{R}\sigma_1(g(x)) = \mathbb{R}(\sigma_1(x)A_1),$$

(3.2)
$$\sigma_1(x) \cdot (a_{1,n+2}, \dots, a_{n+1,n+2}, a_{n+3,n+2}) = 0$$

where A_1 is the $(n+2) \times (n+2)$ -matrix obtained from A_2 by deleting the (n+2)th row and (n+2)th column. Equation (3.2) is a quadratic equation in $x = (x_1, \ldots, x_n)$ which holds for any $x \in I$, and we obtain $a_{1,n+2} = \ldots = a_{n+1,n+2} = a_{n+3,n+2} = 0$. Together with $A_2M_2A_2^T = M_2$ we have $A_1M_1A_1^T = M_1$, where M_1 is chosen as in Definition 1.2 a). Equation (3.1) implies that g is the restriction of a Möbius transformation. Hence also $f|_I$ is the restriction of a Möbius transformation.

Remark 3.4. It is possible to prove Theorem 2.1 by Carathéodory's theorem. If n = 3 and $f : \mathcal{D} \to \mathbb{R}^3$ is injective and has the sphere preserving property, then we can apply Carathéodory's theorem to any hypersphere $H \subset \mathcal{D}$ whose interior is contained in \mathcal{D} , after removing a point $p \in H$ and $f(p) \in f(H)$, to show that f is a Möbius transformation between H and its image f(H). This Möbius transformation is the restriction of the same Möbius transformation for all hyperspheres. Induction proves the result for all $n \geq 2$.

I would like to thank the referee for helpful comments, especially Remark 3.4.

References

- 1. A. D. Alexandrov. Seminar report. Uspekhi Mat. Nauk, 37(3):187, 1950.
- A. D. Alexandrov. On the axioms of relativity theory. Vestnik Leningrad Univ. Math., 19:5–28, 1976.
- 3. W. Benz. Characterizations of geometrical mappings under mild hypotheses: Über ein modernes Forschungsgebiet der Geometrie. *Hamb. Beitr. Wiss.gesch.*, 15:393–409, 1994.
- W. Benz. Real Geometries. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1994. MR 95k:51019
- C. Carathéodory. The most general transformations of plane regions which transform circles into circles. Bull. Am. Math. Soc., 43:573–579, 1937.
- 6. T. E. Cecil. *Lie Sphere Geometry.* Springer-Verlag, New York Berlin Heidelberg, 1992. MR **94m:**53076
- J. A. Lester. A physical characterization of conformal transformations of Minkowski spacetime. Ann. Discrete Math., 18:567–574, 1983. MR 84g:83004b

1200

- J. A. Lester. Distance preserving transformations. In F. Buekenhout, editor, Handbook of Incidence Geometry, pages 921–944, Amsterdam, 1995. Elsevier. MR 96j:51019
- I. Popovici and D. C. Rădulescu. Characterizing the conformality in a Minkowski space. Ann. Inst. H. Poincaré. Phys. Théor., 35:131–148, 1981. MR 83b:53011

Mathematisches Seminar, Universität Hamburg, Bundesstr. 55, 20146 Hamburg, Germany

E-mail address: hoefer@math.uni-hamburg.de