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A CHARACTERIZATION OF MÖBIUS TRANSFORMATIONS

ROLAND HÖFER

(Communicated by Christopher Croke)

Abstract. Let n ≥ 2 be an integer and let D be a domain of Rn. Let
f : D → Rn be an injective mapping which takes hyperspheres whose interior
is contained in D to hyperspheres in Rn. Then f is the restriction of a Möbius
transformation.

1. Introduction

Let n ≥ 2 be an integer. A theorem of A.D. Alexandrov [1] states that any
bijective transformation of Rn+1 which preserves the Lorentz distance 0 between
pairs of points in both directions is the product of a Lorentz transformation and a
dilatation. The following Theorem 1.3 is due to A.D. Alexandrov [2], J.A. Lester
[7], and I. Popovici and D.C. Rǎdulescu [9] and generalizes Alexandrov’s theorem.

Definition 1.1. Let n ∈ N, n ≥ 2. For x, y ∈ Rn let x · y denote the standard
euclidean product between x and y. The Lorentz product, resp. Lorentz distance,
between x, y ∈ Rn+1 is defined by

x � y := x1y1 + . . .+ xnyn − xn+1yn+1,

d(x, y) := (y − x) � (y − x).

Definition 1.2 (cf. [6]). Let n ∈ N, n ≥ 2.
a) Let D ⊂ Rn. A mapping f : D → Rn is the restriction of a Möbius transfor-

mation if Rσ1

(
f(x)

)
= R

(
σ1(x)A1

)
is satisfied for all x ∈ D, where

σ1(z) :=
(

1− z · z
2

, z,
1 + z · z

2

)
for all z ∈ Rn, and where A1 is an (n + 2) × (n + 2)-Lorentz matrix, A1M1A

T
1 =

M1 := diag(1, . . . , 1,−1).
b) Let D ⊂ Rn+1. A mapping f : D → Rn+1 is the restriction of a Lie transfor-

mation if Rσ2

(
f(x)

)
= R

(
σ2(x)A2

)
for all x ∈ D, where

σ2(z) :=
(

1− z � z
2

, z,
1 + z � z

2

)
for all z ∈ Rn+1, and where A2 is an (n + 3) × (n + 3)-matrix with A2M2A

T
2 =

M2 := diag(1, . . . , 1,−1,−1).
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Theorem 1.3. Let D be a domain (i.e. an open, connected subset) of Rn+1, n ≥ 2.
Let f : D → Rn+1 be a mapping such that

d(x, y) = 0 ⇔ d
(
f(x), f(y)

)
= 0

for all x, y ∈ D. Then f is the restriction of a Lie transformation.

Alexandrov’s theorem and Theorem 1.3 are important results in a modern field
of geometrical research which is called characterizations of geometrical mappings
under mild hypotheses [3], [4], [8]. In particular no regularity assumptions such as
differentiability or even continuity are needed in these kinds of characterizations.
In the same sense, C. Carathéodory proved [5] that any injective mapping of a
domain D of R2 to R2 is the restriction of a Möbius transformation if the following
condition is satisfied:

The image of any circle contained with its interior in D, is itself a circle.

2. Results

There is a close connection between Carathéodory’s theorem and Theorem 1.3
(n = 2). In fact we will generalize Carathéodory’s theorem to arbitrary dimensions
with the help of Theorem 1.3.

Theorem 2.1. Let n ≥ 2 be an integer and let D be a domain of Rn. Let f : D →
Rn be an injective mapping such that f(H) is a hypersphere, whenever H ⊂ D is a
hypersphere and the interior of H is contained in D. Then f is the restriction of a
Möbius transformation.

Definition 2.2. A similarity of Rn, n ≥ 2, is a mapping f : Rn → Rn, f(x) =
kxQ+ t where k > 0, t ∈ Rn, and Q is an orthogonal n× n-matrix, QQT = E.

It is well known that a mapping f : Rn → Rn which is induced by a Möbius
transformation is a similarity. Hence, Theorem 2.1 implies the following corollary.

Corollary 2.3. Let n ≥ 2. Let f : Rn → Rn be an injective mapping such that
images of euclidean hyperspheres are euclidean hyperspheres. Then f is a similarity.

Now let D be the set In :=
{
x ∈ Rn | x · x < 1

}
of points in Poincaré’s sphere

model of n-dimensional hyperbolic geometry, n ≥ 2. A hyperbolic hypersphere in
In is a euclidean hypersphere which is contained in In. If f : In → In is induced
by a Möbius transformation and if f is surjective, then f is a hyperbolic motion.

Corollary 2.4. Let n ≥ 2. Let f : In → In be a bijection of n-dimensional
hyperbolic space which maps hyperbolic hyperspheres onto hyperbolic hyperspheres.
Then f is a hyperbolic motion.

3. Proof of Theorem 2.1

We show that, whenever H is a hypersphere contained in D such that the interior
I of H is also contained in D, then f |I is the restriction of a Möbius transformation.
This implies Theorem 2.1 since

a) Any Möbius transformation is uniquely determined by its restriction to any
non-empty open subset of Rn.

b) For any two points x, y ∈ D, there is a finite sequence I1, . . . , Ik ⊂ D of
interiors of hyperspheres with x ∈ I1, y ∈ Ik, Ij∩Ij+1 6= ∅ for all j ∈ {1, . . . , k−1}.

Let H be a hypersphere contained in D such that the interior I of H is also
contained in D.
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1. Let I ′ denote the interior of the hypersphere H ′ := f(H). Then either f(I) ⊂ I ′
or f(I) ⊂ Rn \ (H ′ ∪ I ′).

Proof. Let x, y ∈ I. Then there is a hypersphere H1 ⊂ I which contains x and
y. Since f is injective and f(H1) is a hypersphere, either f(H1) ⊂ I ′ or f(H1) ⊂
Rn \ (H ′ ∪ I ′). Thus f(x), f(y) are on the same side of f(H1).

2. Let µ : Rn \ I ′ → Rn denote the restriction of a Möbius transformation which
satisfies µ(H ′) = H ′ and µ

(
Rn \ (I ′ ∪H ′)

)
⊂ I ′. Let g : H ∪ I → Rn be defined by

g := f |H∪I if f(I) ⊂ I ′, and g := µ◦f |H∪I if f(I) ⊂ Rn \ (H ′∪I ′). Then g(I) ⊂ I ′,
g(H) = H ′, and g is an injective mapping which takes hyperspheres in H ∪ I to
hyperspheres in H ′ ∪ I ′.

3. Let H1 ⊂ I be a hypersphere with interior I1. Then g(I1) is contained in the
interior I ′1 of H ′1 := g(H1), and g

(
I \ (H1 ∪ I1)

)
is contained in the exterior of H ′1.

Proof. Let z ∈ I \ (H1 ∪ I1). There is a hypersphere H2 ⊂ H ∪ I with z ∈ H2,
#(H ∩ H2) = 1 and H1 ∩ H2 = ∅. Then H ′2 := g(H2) ⊂ H ′ ∪ I ′, g(z) ∈ H ′2,
#(H ′ ∩ H ′2) = 1 and H ′1 ∩ H ′2 = ∅. Hence g(z) 6∈ I ′1, and g

(
I \ (H1 ∪ I1)

)
⊂

I ′ \ (H ′1 ∪ I ′1). From the proof of 1. we know that g(I1) is either contained in the
interior or in the exterior of H ′1. We take a hypersphere H3 ⊂ I, #(H1 ∩H3) > 1.
Then H3∩I1 6= ∅ and #

(
H ′1∩g(H3)

)
> 1. Hence g(H3∩I1)∩I ′1 6= ∅ and g(I1) ⊂ I ′1.

Definition 3.1. Two hyperspheres H1, H2 ⊂ Rn are in interior (exterior) contact
if #(H1 ∩ H2) = 1 and Hi is contained in the interior (exterior) of Hj where
(i, j) = (1, 2) or (i, j) = (2, 1).

4. Two hyperspheres H1, H2 ⊂ I are in interior (exterior) contact iff g(H1), g(H2)
are in interior (exterior) contact.

Proof. Since g is injective, #(H1∩H2) = 1 iff #
(
g(H1)∩g(H2)

)
= 1. The assertion

now follows from 3.

Definition 3.2. For any hypersphere H1 let γ(H1) ∈ Rn, ρ(H1) > 0 denote the
euclidean center and radius of H1. Let λ(H1) :=

(
γ(H1), ρ(H1)

)
∈ Rn × R>0.

5. Two distinct hyperspheres H1, H2 of Rn are in interior contact iff the Lorentz
distance between λ(H1) and λ(H2) is zero.

6. The set C :=
{
λ(H1) | H1 ⊂ I is a hypersphere

}
is a domain of Rn+1.

Proof. C =
{
x ∈ Rn× ]0, ρ(H)[ | d

(
x, λ(H)

)
< 0
}

is open and connected.

7. The mapping ϕ := λ◦ g ◦λ−1 : C → C′ :=
{
λ(g(H1)) | H1 ⊂ I is a hypersphere

}
satisfies d(x, y) = 0 iff d

(
ϕ(x), ϕ(y)

)
= 0 for all x, y ∈ C.

Proof. From 5. and 4., for all distinct hyperspheres H1, H2 ⊂ I,

d
(
λ(H1), λ(H2)

)
= 0 ⇔ H1 and H2 are in interior contact

⇔ g(H1) and g(H2) are in interior contact
⇔ d

(
λ(g(H1)), λ(g(H2))

)
= 0.
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8. From 7. and Theorem 1.3, ϕ is the restriction of a Lie transformation, i.e. there
is an (n + 3) × (n + 3)-matrix A2 =: (aij)i,j=1,... ,n+3 as in Definition 1.2 b), such
that Rσ2(y) = R

(
σ2(x)A2

)
for all x ∈ C, y = ϕ(x).

Definition 3.3. A light line of Rn+1 is a line u + Rv, u, v ∈ Rn+1, v 6= 0, where
d(v, v) = 0.

9. f |I is the restriction of a Möbius transformation.

Proof. Let x ∈ I. Let l1, l2 be two distinct light lines which contain (x, 0). Then
{(x, 0)} = l1 ∩ l2 ⊂ ∂C. The images ϕ(li ∩ C) 6= ∅ are contained in uniquely
determined light lines l′i, i = 1, 2. Since ϕ is continuous, {(g(x), 0)} = l′1 ∩ l′2 is
contained in ∂C′. Hence for all x ∈ I, we have Rσ2

(
(g(x), 0)

)
= R

(
σ2

(
(x, 0)

)
A2

)
which implies

Rσ1

(
g(x)

)
= R

(
σ1(x)A1

)
,(3.1)

σ1(x) · (a1,n+2, . . . , an+1,n+2, an+3,n+2) = 0(3.2)

whereA1 is the (n+2)×(n+2)-matrix obtained from A2 by deleting the (n+2)th row
and (n+ 2)th column. Equation (3.2) is a quadratic equation in x = (x1, . . . , xn)
which holds for any x ∈ I, and we obtain a1,n+2 = . . . = an+1,n+2 = an+3,n+2 = 0.
Together with A2M2A

T
2 = M2 we have A1M1A

T
1 = M1, where M1 is chosen as

in Definition 1.2 a). Equation (3.1) implies that g is the restriction of a Möbius
transformation. Hence also f |I is the restriction of a Möbius transformation.

Remark 3.4. It is possible to prove Theorem 2.1 by Carathéodory’s theorem. If
n = 3 and f : D → R3 is injective and has the sphere preserving property, then
we can apply Carathéodory’s theorem to any hypersphere H ⊂ D whose interior is
contained in D, after removing a point p ∈ H and f(p) ∈ f(H), to show that f is a
Möbius transformation betweenH and its image f(H). This Möbius transformation
is the restriction of the same Möbius transformation for all hyperspheres. Induction
proves the result for all n ≥ 2.

I would like to thank the referee for helpful comments, especially Remark 3.4.
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9. I. Popovici and D. C. Rǎdulescu. Characterizing the conformality in a Minkowski space. Ann.
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