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A MODIFICATION OF LOUVEAU AND
VELIČKOVIČ’S CONSTRUCTION FOR Fσ-IDEALS

KRZYSZTOF MAZUR

(Communicated by Carl G. Jockusch, Jr.)

Abstract. We show that the construction of Louveau and Veličkovič can be

modified to obtain an embedding of ([ω]ω ,⊂∗) into the preorder (Fσ-ideals,≤)
where ≤ is the relation of Borel reducibility.

The notion of reducibility appeared in [1]. Generally, reducibility is a preorder
on all Borel equivalence relations in Polish spaces. We will be interested here only
in one Polish space P(ω) (or P(A), where A is a countable set). We equip this
space with the Tychonoff topology transfered from the Cantor cube 2ω. For s ∈
2<ω =df

⋃
n∈ω{0, 1}n let ŝ = {X ⊂ ω : x ∩ dom(s) = s−1{1}}. Thus {ŝ : s ∈ 2<ω}

is a basis of the topology defined above. By [A]ω we will define a set of all infinite,
and by [A]<ω a set of all finite subsets of a set A. Let I be the Borel ideal in the
space P(ω). Additionally we will restrict our attention only to equivalences which
are of the form =I (i.e. congruences modulo ideal I).

Thus we will define reducibility (in symbols ≤) and continuous reducibility (in
symbols ≤c) only for ideals. The definitions look as follows:

(I ≤ J) ≡ ∃F : P(ω) Borel−→ P(ω) ∀x, y ∈ P(ω)[(x4y ∈ I)⇔ (F (x)4F (y) ∈ J)]

(1)

and the definition of ≤c is almost the same with “Borel” replaced by “continuous”.
By submeasure on a set X we mean a function µ : P(X) → [0,∞] with the

following properties:

∀A,B ⊂ X [µ(A) ≤ µ(A ∪B) ≤ µ(A) + µ(B)]

µ(∅) = 0, µ(X) > 0, ∀x ∈ X [µ({x}) <∞]

µ(A) = sup
a∈[A]<ω

µ(a).
(2)

Let us define preorder ⊂∗ on the set P(ω) by the formula:

S ⊂∗ T ⇔ S\T ∈ [ω]<ω.
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Louveau and Veličkovič found a family of Fσδ-ideals (I ′S)S∈[ω]ω satisfying:

∀S, T ∈ [ω]ω[S ⊂∗ T ⇔ I ′S ≤ I ′T ].(3)

We will show that there exists a family of Fσ-ideals IS for which the same is true.
Let us recall some basic facts about the original construction of Louveau and

Veličkovič [2]. They start by partitioning ω into finite pieces (Pn)n and constructing
a sequence of submeasures (‖ ‖n)n such that for every n, ‖ ‖n is originally defined
on Pn and ∀n(‖Pn‖n ≥ 1). These submeasures extend naturally to P(ω) by the
formula:

‖Y ‖n =df ‖Y ∩ Pn‖n.
Then they define their Fσδ-ideals (I ′S)S∈[ω]ω by the formulas:

Y ∈ I ′S ⇔ lim
n∈S
‖Y ‖n = 0.

Our Fσ-ideals (IS)S∈[ω]ω will be defined by the formulas:

IS = {Y ⊂ ω : sup
n∈S
‖Y ‖n <∞}.

Of course we must require something like: ∀n(‖Pn‖n ≥ n) in order to obtain proper
ideals.

Now we will give our (very close to the original) definition of Pn’s and ‖ ‖n’s.
Let us create two increasing sequences of natural numbers (an)n and (bn)n. Put
a0 = b0 = 2, an+1 = 2n+1(an + bn + 2), bn+1 = 2(n+1)(an+1+bn+1). Let additionally
mn =

∑
k<n bk, Pn = [mn,mn+1). Then we have of course |Pn| = bn and we will

define a submeasure ‖ ‖n supported by Pn by the formulas:

‖Y ‖n =
log2(|Y ∩ Pn|+ 1)

an
.

Notice that the above definitions imply that ∀n(‖Pn‖n ≥ n+ 1).
Let us begin the proof of the equivalence (3) for ideals (IS)S∈[ω]ω .
The proof of the implication “⇒” is the same as in [2]: If we define ωS =⋃
n∈S Pn, then the appropriate reducing function is F (Y ) = Y ∩ ωS .
The proof of “⇐”: Let us take a pair S, T of infinite subsets of ω such that

IS ≤ IT . Assume towards a contradiction that S 6⊆∗ T . As in [2] again (Lemma
2) we can observe that if there is a Borel reduction, then there exists a continuous
one (possibly for smaller S) and that we can assume S, T ∈ [ω]ω are disjoint. Let
us define submeasures ϕS , ϕT on ω connected with the ideals IS , IT , respectively:

ϕS(Y ) = sup
n∈S
‖Y ‖n

and ϕT in the similar way. We will prove:

Lemma 1. Assume that F : P(ω) → P(ω) is continuous and reduces IS to IT .
Then we can find K ∈ ω, S′ ∈ [S]ω, F ′ : P(ω) → P(ω) continuously reducing IS′
to IT such that:

∀X,Y ⊂ ω[(ϕS′(X4Y ) ≤ 1)⇒ (ϕT (F ′(X)4F ′(Y )) ≤ K)].(∗)
Proof. The proof will be split into two facts:

Fact 2. Assume that F : P(ω)→ P(ω) continuously reduces IS to IT . Then there
exist an S′ ∈ [S]ω and F ′ reducing IS′ to IT satisfying:

∀n ∈ ω ∃mn ∈ ω ∀X,Y ⊂ ω[((X4Y ) ⊂ n)⇒ (ϕT (F ′(X)4F ′(Y )) ≤ mn)].(∗∗)
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Fact 3. Assume that F is a continuous function reducing IS′ to IT and satisfying
(∗∗). Then F also satisfies (∗).

Proof of Fact 2. We will define first a suitable dense Gδ-set and then we will pro-
ceed as in [2], Lemma 2. For m,n ∈ ω let:

Cnm = {x : ∀y[(x\n = y\n)⇒ (ϕT (F (x)4F (y)) ≤ m)]}.
For any n ∈ ω, (Cnm)m is an increasing family of closed sets and

⋃
m∈ω C

n
m = P(ω).

Hence, by the Baire category theorem, the set
⋃
m∈ω int(Cnm) is open dense for any

n ∈ ω. Our G will be of the form
⋂
n∈ω Gn where Gn =

⋃
n∈ω int(Cnm). Proceeding

as in [2], Lemma 2, take S′ ∈ [S]ω and Z ⊂ ω\ωS′ such that ∀A ⊂ ωS′(A∪Z ∈ G).
The set {A ∪ Z : A ⊂ ωS′} is compact and contained in every Gn. Hence:

∀n ∃mn[{A ∪ Z : A ⊂ ωS′} ⊂ int(Cnmn)],

i.e.,

∀n ∀x, y ∈ {A ∪ Z : A ⊂ ωS′}[(x4y ⊂ n)→ (ϕT (F (x)4F (y)) ≤ mn)].

Define F ′ : P(ω)→ P(ω) by the formula: F ′(X) = F ((X ∩ ωS′) ∪ Z). Then F ′

is as required.

Proof of Fact 3. We know that: {F (X)4F (Y ) : ϕS(X4Y ) ≤ 1} is a compact set
covered by the countable union of closed sets:

⋃
n∈ω{A : ϕT (A) ≤ n}. Hence,

by the Baire category theorem applied to this space there exist a u ∈ 2<ω and
m1 ∈ ω such that ∅ 6= {F (X)4F (Y ) : ϕS(X4Y ) ≤ 1} ∩ û ⊂ {A : ϕT (A) ≤ m1}.
By the continuity of F we can also find s1, t1 ∈ 2<ω such that lh(s1) = lh(t1),
ϕS(s−1

1 {1}4t−1
1 {1}) ≤ 1 and

{F (X)4F (Y ) : ϕS(X4Y ) ≤ 1, X ∈ ŝ1, Y ∈ t̂1} ⊂ {A : ϕT (A) ≤ m1}.
Take any X,Y ⊂ ω such that ϕS(X4Y ) ≤ 1. Let C =

⋃
k∈ω : Pk∩dom(s1) 6=∅ Pk,

X1 = s−1
1 {1} ∪ (X\C), Y1 = t−1

1 {1} ∪ (Y \C). Let n = sup(C). Using Fact 2 we
can find m2 such that: ∀Z1, Z2[(Z14Z2 ⊂ n)⇒ (ϕT (F (Z1)4F (Z2)) ≤ m2)]. Now
we have:

ϕT (F (X)4F (X1)) ≤ m2,

ϕT (F (X1)4F (Y1)) ≤ m1,

ϕT (F (Y1)4F (Y )) ≤ m2.

From the above we infer that: ϕT (F (X)∆F (Y )) ≤ m1 + 2m2, which concludes the
proof of Fact 3 and the lemma.

Next we will prove two interesting properties of the sequence (Pn, ‖ ‖n)n.

Lemma 4. Let n < m and let (Ak)k<l≤bn be a family of subsets of Pm. Then∥∥∥∥∥⋃
k<l

Ak

∥∥∥∥∥
m

≤ sup
k<l
‖Ak‖m +

1
2n+1

.

Proof.

log2

(∣∣∣∣∣⋃
k<l

Ak

∣∣∣∣∣+ 1

)
≤ log2(l) + sup

k<l
log2

(
|Ak|+

1
l

)
≤ log2(bn) + sup

k<l
[log2(|Ak|+ 1)].
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Dividing log2(bn) + supk<l[log2(|Ak| + 1)] by am for m > n, and noting that
log2(bn)
an+1

≤ 1
2n+1 , we infer the lemma.

Lemma 5. Let n < m and assume that f : P(Pn)→ P(Pm) satisfies:

∀A,B ⊂ Pn[(‖A4B‖n ≤ 1)⇒ (‖f(A)4f(B)‖m ≤ K)].

Then

∀A,B ⊂ Pn
(
‖f(A)4f(B)‖m ≤ K +

1
2n+1

)
.

Proof. Enumerate A4B = {tk : k < l} where l ≤ bn. For p ≤ l let Up =
A4{tk : k < p}. We have U0 = A, Ul = B. For every p < l, |Up4Up+1| = 1, hence
‖Up4Up+1‖n ≤ 1. Thus from our assumptions on f we have ‖f(Up)4f(Up+1)‖m ≤
K. Using Lemma 4 we can calculate:

‖f(A)4f(B)‖m =

∥∥∥∥∥ l−1

4
p=0

(f(Up)4f(Up+1))

∥∥∥∥∥
m

≤
∥∥∥∥∥
l−1⋃
p=0

(f(Up)4f(Up+1))

∥∥∥∥∥
m

≤
Lemma 4

K +
1

2n+1
.

Now we want to construct a sequence of natural numbers (in)n ⊂ S and two
sequences (An)n and (Bn)n of subsets of ω such that

i) An, Bn ⊂ min ;An+1 ∩min = An;Bn+1 ∩min = Bn,
ii) ‖An+14Bn+1‖in ≥ n,
iii) ∀X ⊂ ω\min [ϕT [F (An ∪X)4F (Bn ∪X)] ≤ K + 1− 1

2n ].
We start the construction by taking i1 = the first element of S and A1, B1 ⊂ mi1

such that ϕS(A14B1) ≤ 1. Now we describe how to do the inductive step. Let us
find a family F ⊂ P(Pin) such that |F| ≥ 2min + 1, consisting of disjoint sets, each
of cardinality 2nain . This is possible because:

bin = |Pin | = 2in(bin−1+ain+1) = 2in+inbin−12inain ≥ (2min + 1)2nain .

From the pigeon-hole principle it follows that we can find A,B ∈ F such that:

F (An ∪A) ∩min = F (An ∪B) ∩min .

Let us choose in+1 > in, in+1 ∈ S, such that for any X ⊂ ω\in+1

F (An ∪A ∪X) ∩min = F (An ∪A) ∩min ,

F (An ∪B ∪X) ∩min = F (An ∪B) ∩min .

Finally we put:

An+1 = An ∪A,

Bn+1 = Bn ∪B.

By the properties of the family F , A and B are disjoint and the submeasure ‖ ‖in
is ≥ n on both of them. Therefore ‖An+14Bn+1‖in ≥ ‖A4B‖in ≥ n. Now we
want to check if iii) holds for n + 1. Take any X ⊂ ω\in+1 and m ∈ T . We want
to show that:

‖F (An+1 ∪X)4F (Bn+1 ∪X)‖m ≤ K + 1− 1
2n+1

.
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We can partition this symmetric difference introducing the intermediate factor
F (An ∪B ∪X). We obtain:

F (An+1 ∪X)4F (Bn+1 ∪X)

= [F (An+1 ∪X)4
(I)

F (An ∪B ∪X)]4[F (An ∪B ∪X)4
(II)

F (Bn+1 ∪X)].

For our m ∈ T there are two possibilities: m < in and m > in. Recall that because
in ∈ S and S and T are disjoint, the case m = in is impossible. When m < in, then
‖(I)‖m = 0 and ‖(II)‖m is small by our inductive assumption iii). When m > in,
then, if we take f : P(Pin) → P(Pm) defined by f(C) = F (An ∪ C ∪ X) ∩ Pm,
then from Lemma 5 we have ‖(I)‖m ≤ K + 1

2in ≤ K + 1
2n and from our inductive

assumption ‖(II)‖m ≤ K + 1− 1
2n . From Lemma 4 we obtain:

‖(I)4(II)‖m ≤ ‖(I) ∪ (II)‖m ≤ sup(‖(I)‖m, ‖(II)‖m) +
1

2n+1
≤ K + 1− 1

2n+1
.

Finally, if we put Ã=
⋃
n∈ω An, B̃=

⋃
n∈ω Bn, then Ã4B̃ 6∈IS but ϕT [F (Ã)4F (B̃)]

≤ K + 1. Thus the pair Ã, B̃ is an example showing that F does not reduce IS to
IT .

Let us recall the definitions of two important Borel ideals:

Fin×∅ =df {x ⊂ ω2 : ∃n[x ⊂ n× ω]},

∅× Fin =df {x ⊂ ω2 : ∀m∃n∀k ≥ n〈m, k〉 6∈ x}.
It is not difficult to prove that the original Louveau and Veličkovič family of ideals
(I ′S)S∈[ω]ω satisfies:

∀S ∈ [ω]ω[I ′S ≥ ∅× Fin].

Similarly the family (IS)S∈[ω]ω constructed above satisfies:

∀S ∈ [ω]ω[IS ≥ Fin×∅].

Thus, in connection with the results of Solecki (see [3], Theorems 2.1 and 3.3),
stating that every ideal not greater in the sense of reducibility from either ∅×Fin
or Fin×∅ is a p-ideal of the class Fσ, it is interesting to ask the following

Question 6. Does there exist a family of p-ideals of the class Fσ, (I∗S)S∈[ω]ω , sat-
isfying the formula analogous to (3)?
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