A MODIFICATION OF LOUVEAU AND VELIČKOVIČ'S CONSTRUCTION FOR F_{σ}-IDEALS

KRZYSZTOF MAZUR
(Communicated by Carl G. Jockusch, Jr.)

Abstract

We show that the construction of Louveau and Veličkovič can be modified to obtain an embedding of $\left([\omega]^{\omega}, \subset^{*}\right)$ into the preorder (F_{σ}-ideals, \leq) where \leq is the relation of Borel reducibility.

The notion of reducibility appeared in [1]. Generally, reducibility is a preorder on all Borel equivalence relations in Polish spaces. We will be interested here only in one Polish space $\mathcal{P}(\omega)$ (or $\mathcal{P}(A)$, where A is a countable set). We equip this space with the Tychonoff topology transfered from the Cantor cube 2^{ω}. For $s \in$ $2^{<\omega}={ }^{d f} \bigcup_{n \in \omega}\{0,1\}^{n}$ let $\hat{s}=\left\{X \subset \omega: x \cap \operatorname{dom}(s)=s^{-1}\{1\}\right\}$. Thus $\left\{\hat{s}: s \in 2^{<\omega}\right\}$ is a basis of the topology defined above. By $[A]^{\omega}$ we will define a set of all infinite, and by $[A]^{<\omega}$ a set of all finite subsets of a set A. Let I be the Borel ideal in the space $\mathcal{P}(\omega)$. Additionally we will restrict our attention only to equivalences which are of the form $={ }_{I}$ (i.e. congruences modulo ideal I).

Thus we will define reducibility (in symbols \leq) and continuous reducibility (in symbols \leq_{c}) only for ideals. The definitions look as follows:

$$
\begin{equation*}
(I \leq J) \equiv \exists F: \mathcal{P}(\omega) \xrightarrow{\text { Borel }} \mathcal{P}(\omega) \forall x, y \in \mathcal{P}(\omega)[(x \triangle y \in I) \Leftrightarrow(F(x) \triangle F(y) \in J)] \tag{1}
\end{equation*}
$$

and the definition of \leq_{c} is almost the same with "Borel" replaced by "continuous".
By submeasure on a set X we mean a function $\mu: \mathcal{P}(X) \rightarrow[0, \infty]$ with the following properties:

$$
\begin{gather*}
\forall A, B \subset X[\mu(A) \leq \mu(A \cup B) \leq \mu(A)+\mu(B)] \\
\mu(\varnothing)=0, \mu(X)>0, \forall x \in X[\mu(\{x\})<\infty] \tag{2}\\
\mu(A)=\sup _{a \in[A]<\omega} \mu(a) .
\end{gather*}
$$

Let us define preorder \subset^{*} on the set $\mathcal{P}(\omega)$ by the formula:

$$
S \subset^{*} T \Leftrightarrow S \backslash T \in[\omega]^{<\omega}
$$

[^0]Louveau and Veličkovič found a family of $F_{\sigma \delta}$-ideals $\left(I_{S}^{\prime}\right)_{S \in[\omega] \omega}$ satisfying:

$$
\begin{equation*}
\forall S, T \in[\omega]^{\omega}\left[S \subset^{*} T \Leftrightarrow I_{S}^{\prime} \leq I_{T}^{\prime}\right] \tag{3}
\end{equation*}
$$

We will show that there exists a family of F_{σ}-ideals I_{S} for which the same is true.
Let us recall some basic facts about the original construction of Louveau and Veličkovič [2]. They start by partitioning ω into finite pieces $\left(P_{n}\right)_{n}$ and constructing a sequence of submeasures $\left(\left\|\|_{n}\right)_{n}\right.$ such that for every $n,\| \|_{n}$ is originally defined on P_{n} and $\forall n\left(\left\|P_{n}\right\|_{n} \geq 1\right)$. These submeasures extend naturally to $\mathcal{P}(\omega)$ by the formula:

$$
\|Y\|_{n}={ }^{d f}\left\|Y \cap P_{n}\right\|_{n}
$$

Then they define their $F_{\sigma \delta}$-ideals $\left(I_{S}^{\prime}\right)_{S \in[\omega] \omega}$ by the formulas:

$$
Y \in I_{S}^{\prime} \Leftrightarrow \lim _{n \in S}\|Y\|_{n}=0
$$

Our F_{σ}-ideals $\left(I_{S}\right)_{S \in[\omega] \omega}$ will be defined by the formulas:

$$
I_{S}=\left\{Y \subset \omega: \sup _{n \in S}\|Y\|_{n}<\infty\right\}
$$

Of course we must require something like: $\forall n\left(\left\|P_{n}\right\|_{n} \geq n\right)$ in order to obtain proper ideals.

Now we will give our (very close to the original) definition of P_{n} 's and $\left\|\|_{n}\right.$'s. Let us create two increasing sequences of natural numbers $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$. Put $a_{0}=b_{0}=2, a_{n+1}=2^{n+1}\left(a_{n}+b_{n}+2\right), b_{n+1}=2^{(n+1)\left(a_{n+1}+b_{n}+1\right)}$. Let additionally $m_{n}=\sum_{k<n} b_{k}, P_{n}=\left[m_{n}, m_{n+1}\right)$. Then we have of course $\left|P_{n}\right|=b_{n}$ and we will define a submeasure $\left\|\|_{n}\right.$ supported by P_{n} by the formulas:

$$
\|Y\|_{n}=\frac{\log _{2}\left(\left|Y \cap P_{n}\right|+1\right)}{a_{n}}
$$

Notice that the above definitions imply that $\forall n\left(\left\|P_{n}\right\|_{n} \geq n+1\right)$.
Let us begin the proof of the equivalence (3) for ideals $\left(I_{S}\right)_{S \in[\omega] \omega}$.
The proof of the implication " \Rightarrow " is the same as in [2]: If we define $\omega_{S}=$ $\bigcup_{n \in S} P_{n}$, then the appropriate reducing function is $F(Y)=Y \cap \omega_{S}$.

The proof of " \Leftarrow ": Let us take a pair S, T of infinite subsets of ω such that $I_{S} \leq I_{T}$. Assume towards a contradiction that $S \not \mathscr{F}^{*} T$. As in [2] again (Lemma 2) we can observe that if there is a Borel reduction, then there exists a continuous one (possibly for smaller S) and that we can assume $S, T \in[\omega]^{\omega}$ are disjoint. Let us define submeasures φ_{S}, φ_{T} on ω connected with the ideals I_{S}, I_{T}, respectively:

$$
\varphi_{S}(Y)=\sup _{n \in S}\|Y\|_{n}
$$

and φ_{T} in the similar way. We will prove:
Lemma 1. Assume that $F: \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$ is continuous and reduces I_{S} to I_{T}. Then we can find $K \in \omega, S^{\prime} \in[S]^{\omega}, F^{\prime}: \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$ continuously reducing $I_{S^{\prime}}$ to I_{T} such that:

$$
\begin{equation*}
\forall X, Y \subset \omega\left[\left(\varphi_{S^{\prime}}(X \triangle Y) \leq 1\right) \Rightarrow\left(\varphi_{T}\left(F^{\prime}(X) \triangle F^{\prime}(Y)\right) \leq K\right)\right] \tag{*}
\end{equation*}
$$

Proof. The proof will be split into two facts:
Fact 2. Assume that $F: \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$ continuously reduces I_{S} to I_{T}. Then there exist an $S^{\prime} \in[S]^{\omega}$ and F^{\prime} reducing $I_{S^{\prime}}$ to I_{T} satisfying:
$(* *) \quad \forall n \in \omega \exists m_{n} \in \omega \forall X, Y \subset \omega\left[((X \triangle Y) \subset n) \Rightarrow\left(\varphi_{T}\left(F^{\prime}(X) \triangle F^{\prime}(Y)\right) \leq m_{n}\right)\right]$.

Fact 3. Assume that F is a continuous function reducing $I_{S^{\prime}}$ to I_{T} and satisfying $(* *)$. Then F also satisfies $(*)$.

Proof of Fact We will define first a suitable dense G_{δ}-set and then we will proceed as in [2], Lemma 2. For $m, n \in \omega$ let:

$$
C_{m}^{n}=\left\{x: \forall y\left[(x \backslash n=y \backslash n) \Rightarrow\left(\varphi_{T}(F(x) \triangle F(y)) \leq m\right)\right]\right\} .
$$

For any $n \in \omega,\left(C_{m}^{n}\right)_{m}$ is an increasing family of closed sets and $\bigcup_{m \in \omega} C_{m}^{n}=\mathcal{P}(\omega)$. Hence, by the Baire category theorem, the set $\bigcup_{m \in \omega} \operatorname{int}\left(C_{m}^{n}\right)$ is open dense for any $n \in \omega$. Our G will be of the form $\bigcap_{n \in \omega} G_{n}$ where $G_{n}=\bigcup_{n \in \omega} \operatorname{int}\left(C_{m}^{n}\right)$. Proceeding as in [2], Lemma 2, take $S^{\prime} \in[S]^{\omega}$ and $Z \subset \omega \backslash \omega_{S^{\prime}}$ such that $\forall A \subset \omega_{S^{\prime}}(A \cup Z \in G)$. The set $\left\{A \cup Z: A \subset \omega_{S^{\prime}}\right\}$ is compact and contained in every G_{n}. Hence:

$$
\forall n \exists m_{n}\left[\left\{A \cup Z: A \subset \omega_{S^{\prime}}\right\} \subset \operatorname{int}\left(C_{m_{n}}^{n}\right)\right],
$$

i.e.,

$$
\forall n \forall x, y \in\left\{A \cup Z: A \subset \omega_{S^{\prime}}\right\}\left[(x \triangle y \subset n) \rightarrow\left(\varphi_{T}(F(x) \triangle F(y)) \leq m_{n}\right)\right]
$$

Define $F^{\prime}: \mathcal{P}(\omega) \rightarrow \mathcal{P}(\omega)$ by the formula: $F^{\prime}(X)=F\left(\left(X \cap \omega_{S^{\prime}}\right) \cup Z\right)$. Then F^{\prime} is as required.

Proof of Fact 3. We know that: $\left\{F(X) \triangle F(Y): \varphi_{S}(X \triangle Y) \leq 1\right\}$ is a compact set covered by the countable union of closed sets: $\bigcup_{n \in \omega}\left\{A: \varphi_{T}(A) \leq n\right\}$. Hence, by the Baire category theorem applied to this space there exist a $u \in 2^{<\omega}$ and $m_{1} \in \omega$ such that $\varnothing \neq\left\{F(X) \triangle F(Y): \varphi_{S}(X \triangle Y) \leq 1\right\} \cap \hat{u} \subset\left\{A: \varphi_{T}(A) \leq m_{1}\right\}$. By the continuity of F we can also find $s_{1}, t_{1} \in 2^{<\omega}$ such that $\operatorname{lh}\left(s_{1}\right)=\operatorname{lh}\left(t_{1}\right)$, $\varphi_{S}\left(s_{1}^{-1}\{1\} \triangle t_{1}^{-1}\{1\}\right) \leq 1$ and

$$
\left\{F(X) \triangle F(Y): \varphi_{S}(X \triangle Y) \leq 1, X \in \hat{s}_{1}, Y \in \hat{t}_{1}\right\} \subset\left\{A: \varphi_{T}(A) \leq m_{1}\right\}
$$

Take any $X, Y \subset \omega$ such that $\varphi_{S}(X \triangle Y) \leq 1$. Let $C=\bigcup_{k \in \omega: P_{k} \cap \operatorname{dom}\left(s_{1}\right) \neq \varnothing} P_{k}$, $X_{1}=s_{1}^{-1}\{1\} \cup(X \backslash C), Y_{1}=t_{1}^{-1}\{1\} \cup(Y \backslash C)$. Let $n=\sup (C)$. Using Fact 2 we can find m_{2} such that: $\forall Z_{1}, Z_{2}\left[\left(Z_{1} \triangle Z_{2} \subset n\right) \Rightarrow\left(\varphi_{T}\left(F\left(Z_{1}\right) \triangle F\left(Z_{2}\right)\right) \leq m_{2}\right)\right]$. Now we have:

$$
\begin{aligned}
\varphi_{T}\left(F(X) \triangle F\left(X_{1}\right)\right) & \leq m_{2}, \\
\varphi_{T}\left(F\left(X_{1}\right) \triangle F\left(Y_{1}\right)\right) & \leq m_{1}, \\
\varphi_{T}\left(F\left(Y_{1}\right) \triangle F(Y)\right) & \leq m_{2} .
\end{aligned}
$$

From the above we infer that: $\varphi_{T}(F(X) \Delta F(Y)) \leq m_{1}+2 m_{2}$, which concludes the proof of Fact 3 and the lemma.

Next we will prove two interesting properties of the sequence $\left(P_{n},\| \|_{n}\right)_{n}$.
Lemma 4. Let $n<m$ and let $\left(A_{k}\right)_{k<l \leq b_{n}}$ be a family of subsets of P_{m}. Then

$$
\left\|\bigcup_{k<l} A_{k}\right\|_{m} \leq \sup _{k<l}\left\|A_{k}\right\|_{m}+\frac{1}{2^{n+1}}
$$

Proof.

$$
\begin{aligned}
\log _{2}\left(\left|\bigcup_{k<l} A_{k}\right|+1\right) & \leq \log _{2}(l)+\sup _{k<l} \log _{2}\left(\left|A_{k}\right|+\frac{1}{l}\right) \\
& \leq \log _{2}\left(b_{n}\right)+\sup _{k<l}\left[\log _{2}\left(\left|A_{k}\right|+1\right)\right]
\end{aligned}
$$

Dividing $\log _{2}\left(b_{n}\right)+\sup _{k<l}\left[\log _{2}\left(\left|A_{k}\right|+1\right)\right]$ by a_{m} for $m>n$, and noting that $\frac{\log _{2}\left(b_{n}\right)}{a_{n+1}} \leq \frac{1}{2^{n+1}}$, we infer the lemma.

Lemma 5. Let $n<m$ and assume that $f: \mathcal{P}\left(P_{n}\right) \rightarrow \mathcal{P}\left(P_{m}\right)$ satisfies:

$$
\forall A, B \subset P_{n}\left[\left(\|A \triangle B\|_{n} \leq 1\right) \Rightarrow\left(\|f(A) \triangle f(B)\|_{m} \leq K\right)\right]
$$

Then

$$
\forall A, B \subset P_{n}\left(\|f(A) \triangle f(B)\|_{m} \leq K+\frac{1}{2^{n+1}}\right)
$$

Proof. Enumerate $A \triangle B=\left\{t_{k}: k<l\right\}$ where $l \leq b_{n}$. For $p \leq l$ let $U_{p}=$ $A \triangle\left\{t_{k}: k<p\right\}$. We have $U_{0}=A, U_{l}=B$. For every $p<l,\left|U_{p} \triangle U_{p+1}\right|=1$, hence $\left\|U_{p} \triangle U_{p+1}\right\|_{n} \leq 1$. Thus from our assumptions on f we have $\left\|f\left(U_{p}\right) \triangle f\left(U_{p+1}\right)\right\|_{m} \leq$ K. Using Lemma 4 we can calculate:

$$
\begin{aligned}
\|f(A) \triangle f(B)\|_{m} & =\left\|\bigwedge_{p=0}^{l-1}\left(f\left(U_{p}\right) \triangle f\left(U_{p+1}\right)\right)\right\|_{m} \\
& \leq\left\|\bigcup_{p=0}^{l-1}\left(f\left(U_{p}\right) \triangle f\left(U_{p+1}\right)\right)\right\|_{m} \leq K+\frac{1}{2^{n+1}}
\end{aligned}
$$

Now we want to construct a sequence of natural numbers $\left(i_{n}\right)_{n} \subset S$ and two sequences $\left(A_{n}\right)_{n}$ and $\left(B_{n}\right)_{n}$ of subsets of ω such that
i) $A_{n}, B_{n} \subset m_{i_{n}} ; A_{n+1} \cap m_{i_{n}}=A_{n} ; B_{n+1} \cap m_{i_{n}}=B_{n}$,
ii) $\left\|A_{n+1} \triangle B_{n+1}\right\|_{i_{n}} \geq n$,
iii) $\forall X \subset \omega \backslash m_{i_{n}}\left[\varphi_{T}\left[F\left(A_{n} \cup X\right) \triangle F\left(B_{n} \cup X\right)\right] \leq K+1-\frac{1}{2^{n}}\right]$.

We start the construction by taking $i_{1}=$ the first element of S and $A_{1}, B_{1} \subset m_{i_{1}}$ such that $\varphi_{S}\left(A_{1} \triangle B_{1}\right) \leq 1$. Now we describe how to do the inductive step. Let us find a family $\mathcal{F} \subset \mathcal{P}\left(P_{i_{n}}\right)$ such that $|\mathcal{F}| \geq 2^{m_{i_{n}}}+1$, consisting of disjoint sets, each of cardinality $2^{n a_{i_{n}}}$. This is possible because:

$$
b_{i_{n}}=\left|P_{i_{n}}\right|=2^{i_{n}\left(b_{i_{n}-1}+a_{i_{n}}+1\right)}=2^{i_{n}+i_{n} b_{i_{n}-1}} 2^{i_{n} a_{i_{n}}} \geq\left(2^{m_{i_{n}}}+1\right) 2^{n a_{i_{n}}}
$$

From the pigeon-hole principle it follows that we can find $A, B \in \mathcal{F}$ such that:

$$
F\left(A_{n} \cup A\right) \cap m_{i_{n}}=F\left(A_{n} \cup B\right) \cap m_{i_{n}}
$$

Let us choose $i_{n+1}>i_{n}, i_{n+1} \in S$, such that for any $X \subset \omega \backslash i_{n+1}$

$$
\begin{aligned}
& F\left(A_{n} \cup A \cup X\right) \cap m_{i_{n}}=F\left(A_{n} \cup A\right) \cap m_{i_{n}} \\
& F\left(A_{n} \cup B \cup X\right) \cap m_{i_{n}}=F\left(A_{n} \cup B\right) \cap m_{i_{n}}
\end{aligned}
$$

Finally we put:

$$
\begin{aligned}
& A_{n+1}=A_{n} \cup A \\
& B_{n+1}=B_{n} \cup B
\end{aligned}
$$

By the properties of the family \mathcal{F}, A and B are disjoint and the submeasure $\left\|\|_{i_{n}}\right.$ is $\geq n$ on both of them. Therefore $\left\|A_{n+1} \triangle B_{n+1}\right\|_{i_{n}} \geq\|A \triangle B\|_{i_{n}} \geq n$. Now we want to check if iii) holds for $n+1$. Take any $X \subset \omega \backslash i_{n+1}$ and $m \in T$. We want to show that:

$$
\left\|F\left(A_{n+1} \cup X\right) \triangle F\left(B_{n+1} \cup X\right)\right\|_{m} \leq K+1-\frac{1}{2^{n+1}}
$$

We can partition this symmetric difference introducing the intermediate factor $F\left(A_{n} \cup B \cup X\right)$. We obtain:

$$
\begin{aligned}
& F\left(A_{n+1} \cup X\right) \triangle F\left(B_{n+1} \cup X\right) \\
& \quad=\left[F\left(A_{n+1} \cup X\right) \underset{(I)}{\triangle} F\left(A_{n} \cup B \cup X\right)\right] \triangle\left[F\left(A_{n} \cup B \cup X\right) \underset{(I I)}{\triangle} F\left(B_{n+1} \cup X\right)\right] .
\end{aligned}
$$

For our $m \in T$ there are two possibilities: $m<i_{n}$ and $m>i_{n}$. Recall that because $i_{n} \in S$ and S and T are disjoint, the case $m=i_{n}$ is impossible. When $m<i_{n}$, then $\|(I)\|_{m}=0$ and $\|(I I)\|_{m}$ is small by our inductive assumption iii). When $m>i_{n}$, then, if we take $f: \mathcal{P}\left(P_{i_{n}}\right) \rightarrow \mathcal{P}\left(P_{m}\right)$ defined by $f(C)=F\left(A_{n} \cup C \cup X\right) \cap P_{m}$, then from Lemma 5 we have $\|(I)\|_{m} \leq K+\frac{1}{2^{i n}} \leq K+\frac{1}{2^{n}}$ and from our inductive assumption $\|(I I)\|_{m} \leq K+1-\frac{1}{2^{n}}$. From Lemma 4 we obtain:

$$
\|(I) \triangle(I I)\|_{m} \leq\|(I) \cup(I I)\|_{m} \leq \sup \left(\|(I)\|_{m},\|(I I)\|_{m}\right)+\frac{1}{2^{n+1}} \leq K+1-\frac{1}{2^{n+1}}
$$

Finally, if we put $\widetilde{A}=\bigcup_{n \in \omega} A_{\widetilde{\sim}}, \widetilde{B}=\bigcup_{n \in \omega} B_{n}$, then $\widetilde{A} \triangle \widetilde{B} \notin I_{S}$ but $\varphi_{T}[F(\widetilde{A}) \triangle F(\widetilde{B})]$ $\leq K+1$. Thus the pair $\widetilde{A}, \widetilde{B}$ is an example showing that F does not reduce I_{S} to I_{T}.

Let us recall the definitions of two important Borel ideals:

$$
\begin{aligned}
& \text { Fin } \times \varnothing={ }^{d f}\left\{x \subset \omega^{2}: \exists n[x \subset n \times \omega]\right\}, \\
& \varnothing \times \text { Fin }={ }^{d f} \quad\left\{x \subset \omega^{2}: \forall m \exists n \forall k \geq n\langle m, k\rangle \notin x\right\} .
\end{aligned}
$$

It is not difficult to prove that the original Louveau and Veličkovič family of ideals $\left(I_{S}^{\prime}\right)_{S \in[\omega] \omega}$ satisfies:

$$
\forall S \in[\omega]^{\omega}\left[I_{S}^{\prime} \geq \varnothing \times F i n\right]
$$

Similarly the family $\left(I_{S}\right)_{S \in[\omega] \omega}$ constructed above satisfies:

$$
\forall S \in[\omega]^{\omega}\left[I_{S} \geq \text { Fin } \times \varnothing\right]
$$

Thus, in connection with the results of Solecki (see [3], Theorems 2.1 and 3.3), stating that every ideal not greater in the sense of reducibility from either $\varnothing \times$ Fin or $\operatorname{Fin} \times \varnothing$ is a p-ideal of the class F_{σ}, it is interesting to ask the following

Question 6. Does there exist a family of p-ideals of the class F_{σ}, $\left(I_{S}^{*}\right)_{S \in[\omega]^{\omega}}$, satisfying the formula analogous to (3)?

References

[1] L. Harrington, A. S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel Equivalence relations, J. Amer. Math. Soc., 3(4) p. 903-927, 1990. MR 91h:28023
[2] A. Louveau and B. Veličkovič, A note on Borel equivalence relations, Proc. Amer. Math. Soc., p. 120, 255-259, 1994. MR 94f:54076
[3] S. Solecki, Analytic Ideals, Bull. Symb. Logic. 2 (1996), p. 339-348. MR 97i:04002
Department of Mathematics, University of Warsaw, 02-097, Warsaw, Banacha 2, Poland

E-mail address: krzymaz@mimuw.edu.pl

[^0]: Received by the editors December 9, 1997 and, in revised form, January 6, 1998 and May 4, 1998.

 1991 Mathematics Subject Classification. Primary 04A15; Secondary 04A20.
 Key words and phrases. F_{σ}-ideal, Borel reducibility, reducing function.
 The author passed away on October 30, 1998.

