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ON A CONJECTURE OF DUKE–IMAMOḠLU

STEFAN BREULMANN AND MICHAEL KUSS

(Communicated by Dennis A. Hejhal)

Abstract. In this note we present some theoretical results and numerical
calculations on a recent conjecture of W. Duke and Ö. Imamoḡlu.

Introduction

The purpose of this note is to present some remarks and numerical calculations
on a recent conjecture of W. Duke and Ö. Imamoḡlu which can be considered as a
generalization of the Saito–Kurokawa correspondence.

In the first section we present the conjecture saying that for any elliptic Hecke
eigenform f of weight 2k − g > 0 where g and k are positive even integers there is
a Siegel eigenform F of weight k and degree g such that the standard L-series of F
essentially is the product of shifted Hecke L-series of f . We proceed in giving a local
version of this conjecture as well as equivalent relations between the eigenvalues in
the case g = 4.

The second section deals with the examination of non-cusp forms with respect
to the conjecture. We prove that for a pair (F, f) satisfying the conjecture F is
cuspidal if and only if f is cuspidal. Furthermore we show that Siegel Eisenstein
series fulfill the conjecture.†

As an example for g = 4 we show in the third section that the Schottky form
and the Delta function satisfy the local conjecture for small primes. Tables of
some Fourier coefficients and eigenvalues of the Schottky form are given in two
appendices.

In the last section we prove that the conjecture – formulated as in the first
section – does not hold if g = k = 12 using recent results of Borcherds, Freitag and
Weissauer.

The authors would like to thank E. Freitag and W. Kohnen for useful hints.

Notation. Let Mk(Γg), resp. Sk(Γg), be the space of Siegel modular forms, resp.
cusp forms, of weight k ∈ Z and degree g ∈ N for the Siegel modular group Γg :=
Sp(g;Z). For a Siegel modular form F we denote by a(S) (S half-integral and
symmetric) the Fourier coefficients of F . For simplicity of notation we put a(S) = 0
if S is not half-integral.
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Let T (n) (n ∈ N) be the Hecke operators acting on Mk(Γg), resp. Sk(Γg),
in the usual way (cf. [Ma], [An1]). Furthermore, we denote by Ti,j(p2) (i, j ∈
N0, i + j = g, p prime) the Hecke operator corresponding to the double coset
Γgdiag(I(i), pI(j), p2I(i), pI(j))Γg where I(m) is the m-rowed identity matrix.

As usual, for matrices A and B of appropriate size we put A[B] := AtBA where
At is the transpose of A.

1. The conjecture

The following conjecture is due to W. Duke and Ö. Imamoḡlu.

Conjecture (DIC). Let k and g be positive even integers with 2k − g > 0, f ∈
M2k−g(Γ1) a Hecke eigenform. Then there exists a Hecke eigenform F ∈ Mk(Γg)
such that for s ∈ C, Res� 0

Lst(F, s) = ζ(s)
g−1∏
j=1
j odd

L̃H(f, s− j
2 )L̃H(f, s+ j

2 )(1)

with Lst(F, s) denoting the standard L-function of F , L̃H(f, s) denoting the Hecke
L-function of f normalized such that its functional equation is with respect to s 7→
1− s, and ζ(s) is the Riemann zeta function.

For g = 2 the DIC reduces to the Saito–Kurokawa correspondence (see e.g. [EZ]).
Since the weight of f is 2k − g, one has L̃H(f, s) = LH(f, s + 2k−g−1

2 ) with
LH(f, s) denoting the usual Hecke L-function of f (with functional equation with
respect to s 7→ 2k − g − s) and we can reformulate (1) to

Lst(F, s) = ζ(s)

g
2∏

j=1

LH(f, s+ k − g
2 − j)LH(f, s+ k − g

2 + j − 1)

= ζ(s)
g∏
j=1

LH(f, s+ k − j).(2)

It is not difficult to see that this factorization is equivalent to a formal factor-
ization of the corresponding local p-factors where p is an arbitrary prime, i.e.

Lstp (F,X) :=

(
(1 −X)

g∏
i=1

(1− αp,iX)(1− α−1
p,iX)

)−1

(3)

=

(1 −X)

g
2∏
j=1

(1− λ(p)p
g
2−k+jX + p2j−1X2)

× (1− λ(p)p
g
2−k−j+1X + p1−2jX2)

−1

.

Here, αp,i (i = 1, . . . , g) are Satake parameters of F , λ(p) is the eigenvalue of f
with respect to T (p) and X is an indeterminant.

In the whole paper we use the normalization of Andrianov ([An1]) for Hecke
operators and Satake parameters.
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Now fix a prime p, choose a, b ∈ C× such that

a+ b = λ(p), ab = p2k−g−1(4)

and define aj := p
g
2−k+ja, bj := p

g
2−k+jb (j = 1, . . . , g2 ). Then (3) can be rewritten

as

Lstp (F,X) =

(1−X)

g
2∏
j=1

(1− ajX)(1− bjX)(1− a−1
j X)(1− b−1

j X)

−1

(5)

so that we can regard (aj , bj) (j = 1, . . . , g2 ) as Satake parameters of F since these
parameters are determined up to the action of the Weyl group only.

Since the Satake parameters αp,i (i = 0, . . . , g) satisfy the relation

α2
p,0αp,1 · . . . · αp,g = pgk−

g(g+1)
2 ,

we are led to the following

Local Version of the DIC. Let k and g be positive even integers with 2k−g > 0,
f ∈M2k−g(Γ1) a Hecke eigenform with Satake parameters βp,0, βp,1 for every prime
p. Then there exists a Hecke eigenform F ∈ Mk(Γg) such that Satake parameters
αp,0, . . . , αp,g of F for every prime p are given by

αp,0 = ±p
4gk−3g2−2g

8 ,

αp,j = p
g
2−k+jβp,0 (j = 1, . . . , g2 ),(6)

αp, g2 +j = p
g
2−k+jβp,0βp,1 (j = 1, . . . , g2 ).

To bring this local version into a more convenient form for our purposes let us
introduce some notation. Let Ei(X1, . . . , Xg) (i = 0, . . . , g) be the i-th elementary
symmetric polynomial in the variables X1, . . . , Xg. For 0 ≤ ν ≤ g define

Rgν(X1, . . . , Xg) :=
∑

(r1,...,rg)∈{0,1,−1}g
|r1|+···+|rg|=ν

Xr1
1 . . .Xrg

g .

If F ∈Mk(Γg) is a Hecke eigenform with local Satake parameters αp,0, . . . , αp,g and
eigenvalues t(p) (resp. ti,j(p2)) under the Hecke operators T (p) (resp. Ti,j(p2)) for
a prime p, then (cf. [Fr], note the different normalization)

t(p) = αp,0

g∑
i=0

Ei(αp,1, . . . , αp,g),(7)

ti,j(p2) = pgk−
3g(g+1)

2

i∑
ν=0

cν(i, j)Rgν(αp,1, . . . , αp,g)

with certain constants cν(i, j) which were computed in [Kr].
Especially in the case g = 4 we have a quite explicit version of the DIC:
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Remark. Let F ∈Mk(Γ4) and f ∈M2k−4(Γ1) be eigenforms with eigenvalues t(p),
ti,j(p2), resp. λ(p), for every prime p. Then F and f satisfy the DIC if and only if

± t(p) = λ(p)2 + pk−4(p+ 1)(p2 + 1)λ(p) + p2k−7(p3 + 1)(p+ 1),

t1,3(p2) = p3k−15(p+ 1)(p2 + 1)λ(p) + p4k−20(p4 − 1),

t2,2(p2) = p2k−10(p2 + p+ 1)(p2 + 1)λ(p)2(8)

+p3k−15(p4 − 1)(p2 + p+ 1)λ(p) + p4k−18(p6 − 1)(p2 + 1),

t3,1(p2) = pk−5(p+ 1)(p2 + 1)λ(p)3 + p2k−10(p4 − 1)(p2 + p+ 1)λ(p)2

+p3k−13(p4 − 1)(p+ 1)(p3 + p2 + 1)λ(p)

+p4k−18(p6 − 1)(p4 − 1).

Indeed, assume the DIC holds. Putting (6) into (7) yields the formulas (8).
Conversely, let the formulas in (8) hold. Define parameters αp,0, . . . , αp,g by (6)

and consider the homomorphism Lgp → C, T 7→ t(F, T ) where Lgp is the local Hecke
algebra and t(F, T ) is the eigenvalue of F under the Hecke operator T (cf. [An2], p.
165 ff.). The above calculation shows that this homomorphism is parameterized by
αp,0, . . . , αp,g whence this in fact defines Satake parameters of F ([An2], p. 168).

2. Non-cusp forms

For g ∈ N and k ∈ Z even, k > g+1 we denote by Egk the Siegel Eisenstein series
of weight k with respect to Γg. Our aim in this section is to prove the following

Theorem. a) Let F ∈Mk(Γg) and f ∈M2k−g(Γ1) be as in the DIC.
(i) If f is a cusp form, then so is F .
(ii) If f is not cuspidal, then f ∈ CE1

2k−g and local Satake parameters αp,i (p
prime, i = 0, . . . , g) of F are given by

αp,0 = 1, αp,i = pk−i (i = 1, . . . , g).(9)

In particular, F is not cuspidal.
b) Suppose k > g+1 even. Local Satake parameters of an eigenform F ∈Mk(Γg)

for every prime p are given by (9) if and only if F ∈ CEgk .

Corollary. If g and k are positive even integers with k > g+1, then the Eisenstein
series Egk and E1

2k−g satisfy the DIC.

Proof of the theorem. a) (i) Assume ΦF 6= 0 where Φ is the Siegel operator. The
Žarkovskaja relations ([Za]) imply

Lst(F, s) = ζ(s− k + g)ζ(s+ k − g)Lst(ΦF, s) (Re s� 0).

This means that for the local components we have

Lstp (F,X) =
(
(1− pk−gX)(1− pg−kX)

)−1
Lstp (ΦF,X)(10)

where p is a prime and X is an indeterminant. In the notation of (4) and (5) we
obtain from (10) the existence of j ∈ {1, . . . , g2} such that

pk−g = p
g
2−k+ja,

resp.
pk−g = p−

g
2 +k−ja−1

(or with b instead of a). In any case, by the condition a+ b = λ(p) we have

p2k−g−j + pj−1 = λ(p)(11)
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for a j ∈ {1, . . . , g}. Since f is a cusp form, the famous theorem of Deligne ([De])
implies that

|λ(p)| ≤ 2pk−
g
2−

1
2 .

Together with (11) we obtain

pk−
g
2−j + p−k+ g

2 +j−1 ≤ 2
√
p

with j ∈ {1, . . . , g} and this is easily seen to be impossible. Hence we obtain a
contradiction which proves (i).

(ii) It is well-known that if f is a non-cuspidal Hecke eigenform in M2k−g(Γ1),
then f has to be a constant multiple of E1

2k−g. Hence, in the notation of (i) we
have λ(p) = 1 + p2k−g−1 for every prime p so (3) implies that

Lst(F, s) = ζ(s)
g∏
i=1

ζ(s+ k − i)ζ(s− k + i)(12)

for Re s� 0. By [We] this is only possible if ΦgF 6= 0. Since Φg−1F is an eigenform
of the Hecke algebra (cf. e.g. [Fr]), we must have Φg−1F ∈ C×E1

k by the arguments
at the beginning of (ii). That means that local Satake parameters of Φg−1F are
given by

1, pk−1

and the Žarkovskaja relations prove what we want.
b) That the Eisenstein series Egk has the Satake parameters (9) is obvious. Let

us prove the converse. By the arguments above we must have ΦgF 6= 0 and Φg−1 =
cE1

k with a suitably chosen c ∈ C×. This means that Φg−2F − cE2
k is zero or a

cuspidal Hecke eigenform with local Satake parameters

1, pk−1, pk−2.

By [We] the latter is impossible, so Φg−2F = cE2
k . Inductively we obtain F = cEgk

and the theorem is proved.

3. An example:

Schottky form versus delta function

In this section we prove that the Schottky form J , the (up to a scalar) unique
cusp form in M8(Γ4) (for a nice proof of this cf. [DI]), and the Delta function ∆,
the (up to a scalar) unique cusp form in M12(Γ1), satisfy the local DIC for small
primes. To construct the Schottky form in a numerically nice way, we essentially
proceed as in [Mi].

To be precise, let Q = (I(4), iI(4)) ∈ M(4, 8;C) and E8 := {(x1, . . . , x8) ∈ 1
2Z :

xν − xµ ∈ Z for all ν and µ, x1 + · · ·+ x8 ∈ 2Z} be the (up to equivalence) unique
even unimodular lattice of rank 8 and consider the Theta series

Θ(Z) :=
∑

v1,...,v4∈E8

det(Q(v1, . . . , v4))4 exp(πitr((〈vi, vj〉)Z)).(13)

Here, tr is the trace of a square matrix, 〈·, ·〉 is the standard scalar product on C8

and Z is an element of Siegel’s upper half-space H4 := {X + iY ∈ Sym(4;C) :
Y positive definite}. By [Fr], Θ ∈ S8(Γ4) and as the calculation of some Fourier
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coefficients shows, Θ 6= 0. The Schottky form J is a constant multiple of Θ nor-

malized such that its Fourier coefficient a
(

1
2

(
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

))
equals 1.

We proceed to calculate some eigenvalues t(p) and ti,j(p2) of J for small primes
p. For F ∈ Mk(Γg) a short calculation shows that the S-th Fourier coefficient
a(S, T (p)) of F |T (p), resp. a(S, Ti,j(p2)) of F |Ti,j(p), is given by the formula (cf.
[Ma], [Fr])

a(S, T (p)) =
∑

0≤r≤g
U∈G(r,g−r,0)

p
r(r−2g+2k−1)

2 a( 1
pS[UD(r, g − r, 0)]),(14)

a(S, Ti,j(p2)) =
∑

0≤r,s≤g
r+s≤g

U∈G(r,s,g−r−s)

p(2r+s)(k−g+r−1)−r(r−1)e(S,U)(15)

× a( 1
p2S[UD(r, s, g − r − s)]).

Here, the following notations are applied: D(r, s, t) := diag(I(r), pI(s), p2I(t)),
G(r, s, t) := GLg(Z)/GLg(Z) ∩D(r, s, t)GLg(Z)D(r, s, t)−1 (g = r + s+ t) and

e(S,U) :=
∑

M mod p
rkp(M)=s−j

exp(2πi
p tr(S[U ]diag(0(r),M (s), 0(g−r−s)))),(16)

where rkp(M) denotes the rank of M considered as an element of M(g;Z/pZ).
By means of Siegel’s formula for the number of solutions of matrix congruences

mod p (cf. [Si]), it is possible to express the exponential sum e(S,U) for p > 2 in
terms of lower determinants of S[U ]. Since we are only dealing with small primes
and e(S,U) is integral (replace M in (16) by λM with λ ∈ (Z/pZ)×), it is easier to
calculate e(S,U) using a C++ program.

By straightforward induction one can show that a set of representatives for
G(r, s, t) can be chosen in the form

{(
x 1
U 0

) ∣∣U (g−1) ∈ G(r, s, t− 1), x = (pa, 0), a(1,r) mod p
}

∪̇
{(

1 0
0 U

)(
1 0
x I

) ∣∣U (g−1) ∈ G(r − 1, s, t), x = (0, a, b)t, a(1,s) mod p, b(1,t) mod p2
}

∪̇
{(

0 1 0
U1 0 U2

)( I 0 0
0 1 0
0 x I

) ∣∣ (U (g−1,r)
1 , U

(g−1,g−r−1)
2 ) ∈ G(r, s− 1, t),

x = (0, a)t, a(1,t) mod p
}
,

where g = r + s+ t and G(r, s, t) = ∅ if r < 0 or s < 0 or t < 0.
To calculate the Fourier coefficients a(S, T (p)), a(S, Ti,j(p2)) from (14) and (15)

we used a C++ program. The program also Minkowski-reduces (cf. [Fr]) the
matrices belonging to the Fourier coefficients contributing to the right-hand side of
(14), resp. (15).
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For p = 2 we get the following results:

a

(
1
2

(
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

)
, T (2)

)
= + 1 · a

(
1
2

(
4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

))
+ 80 · a

(
1
2

(
2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 4

))
a

(
1
2

(
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

)
, T13(22)

)
= + 2.560 · a

(
1
2

(
2 1 1 1
1 2 1 0
1 1 2 1
1 0 1 6

))
+ 5.120 · a

(
1
2

(
2 1 0 1
1 2 0 0
0 0 2 0
1 0 0 4

))
− 20.480 · a

(
1
2

(
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

))
a

(
1
2

(
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

)
, T22(22)

)
= + 640 · a

(
1
2

(
2 1 1 1
1 2 0 0
1 0 6 2
1 0 2 6

))
+ 960 · a

(
1
2

(
2 0 0 0
0 2 0 0
0 0 4 2
0 0 2 6

))
+ 640 · a

(
1
2

(
2 1 1 1
1 4 0 0
1 0 4 0
1 0 0 4

))
− 12.800 · a

(
1
2

(
2 1 1 1
1 2 1 0
1 1 2 1
1 0 1 6

))
− 5.120 · a

(
1
2

(
2 1 0 1
1 2 0 0
0 0 2 0
1 0 0 4

))
+ 327.680 · a

(
1
2

(
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

))
a

((
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

)
, T31(22)

)
= + 80 · a

(
1
2

(
2 0 0 0
0 6 2 2
0 2 6 2
0 2 2 6

))
+ 40 · a

(
1
2

(
4 0 0 2
0 4 0 2
0 0 4 2
2 2 2 8

))
− 1.920 · a

(
1
2

(
2 1 1 1
1 2 0 0
1 0 6 2
1 0 2 6

))
− 960 · a

(
1
2

(
2 0 0 0
0 2 0 0
0 0 4 2
0 0 2 6

))
+ 640 · a

(
1
2

(
2 1 1 1
1 4 0 0
1 0 4 0
1 0 0 4

))
+ 20.480 · a

(
1
2

(
2 1 1 1
1 2 1 0
1 1 2 1
1 0 1 6

))
+ 102.400 · a

(
1
2

(
2 1 0 1
1 2 0 0
0 0 2 0
1 0 0 4

))
− 901.120 · a

(
1
2

(
2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

))
By calculating the corresponding Fourier coefficients (cf. Appendix A) we find
t(2) = 8.640, t13(2) = −122.880, t22(2) = 5.160.960 and t31(2) = −11.059.200 in
accordance with (8) (for eigenvalues of the Delta function see e.g. [Le]). Further
examples of eigenvalues proving the local DIC for the pair (J,∆) for p ∈ {2, 3, 5, 7}
are given in Appendix B.

4. A counterexample in a small weight

The aim of this section is to show that the DIC – in the form presented in the
first section – does not hold in the special case g = k = 12.

So let f := ∆ ∈ S12(Γ1) be the Delta function as above and assume that there
is a F ∈M12(Γ12) such that (2) holds. By the theorem of the second section F has
to be cuspidal. Since LH(∆, 6) 6= 0, Lst(F, s) has a pole at s = 1 which implies
that F is a linear combination of the Theta series attached to the 24 classes of even
unimodular positive definite matrices of size 24 (see [Bö]).
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On the other hand, in [BFW] Borcherds, Freitag and Weissauer prove that the
vector space of cusp forms spanned by these Theta series has dimension one. Fur-
thermore, they construct a cuspidal eigenform F0 in this space.

To have a counterexample it hence suffices to show that the pair (F0,∆) does
not satisfy the DIC.

By [BFW] the eigenvalue t(2) of F0 (in the notation of the first section) is given
by

2? · 311 · 5 · 17 · 901.141

where the exact exponent of the prime 2 depends on the normalization of the Hecke
operator T (2). On the other hand, if F0 and ∆ fulfilled the DIC, local Satake
parameters of F0 would be given by (cf. (6))

α2,0 = ±215,

α2,i = 2i−6β2,0 (i = 1, . . . , 6),(17)

α2,6+i = 2i−6β2,0β2,1 (i = 1, . . . , 6),

where

β2,0(1 + β2,1) = λ(2) = −24.

Substituting the terms on the right-hand sides of (17) into (7) yields

t(2) = ±213 · 310 · 54 · 41 · 167;

thus we obtain a contradiction.

Appendix A. Some Fourier coefficients of the

Schottky form

The main difficulty in calculating Fourier coefficients a(S) with S = (sij) of the
Schottky form by means of (13) is to produce all quadruples (v1, v2, v3, v4) ∈ E4

8

satisfying (〈vi, vj〉)1≤i,j≤4 = S very fast.
First of all it is convenient to have a matrix S with small diagonal entries, so we

Minkowski-reduce S (cf. [Fr]). Then for every diagonal element sii of S we create
a list Li of vectors v in E8 satisfying 〈v, v〉 = sii. Now we let v1 run in L1. For fixed
v1 we create sublists Li1 of vectors in Li satisfying 〈v1, vi〉 = s1i. Then we let v2

run in L21 and create sublists of L31 and L41 and so on. A lot of computing time
can be saved if symmetries in v1, v2, v3, v4, their components and their signs are
considered.

The computations were done on a dual Pentium-II 300 MHz machine using the
C++ programming language. The “smaller” coefficients were calculated in a few
seconds while the “largest” one we have computed —

a

(
1
2

(
62 31 31 31
31 62 31 31
31 31 62 31
31 31 31 62

))
= 22.942.589.386.402.160.704

— took about 60 hours.
Some Fourier coefficients of the Schottky form are listed in the Table 1. For a

longer table please contact the authors.
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Table 1.

det(2S) 2S a(S) det(2S) 2S a(S)

5
(

2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

)
1 80

(
2 1 1 1
1 2 0 0
1 0 6 2
1 0 2 6

)
1.344

8
(

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

)
−40 80

(
2 1 1 1
1 4 0 0
1 0 4 0
1 0 0 4

)
2.368

20
(

2 1 1 1
1 2 1 0
1 1 2 1
1 0 1 6

)
−56 80

(
4 2 2 2
2 4 2 2
2 2 4 2
2 2 2 4

)
2.880

20
(

2 1 0 1
1 2 0 0
0 0 2 0
1 0 0 4

)
8 256

(
4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

)
−96.768

20
(

2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 4

)
72 320

(
2 0 0 0
0 6 2 2
0 2 6 2
0 2 2 6

)
−159.232

80
(

2 0 0 0
0 2 0 0
0 0 4 2
0 0 2 6

)
1.856 320

(
4 0 0 2
0 4 0 2
0 0 4 2
2 2 2 8

)
143.872

Appendix B. Some eigenvalues of the Schottky form

The following eigenvalues were calculated using the method indicated in the third
section.

t(2) = 8.640 t(17) = 7.526.180.295.259.920
t(3) = 3.084.480 t(19) = 54.445.724.082.232.000
t(5) = 1.970.816.400 t(23) = 592.703.957.533.674.240
t(7) = 95.252.550.400 t(29) = 12.925.469.303.112.042.000
t(11) = 49.434.346.166.976 t(31) = 23.706.533.697.033.220.096
t(13) = 287.383.591.359.760

t13(22) = −122.880 t13(52) = 1.623.984.375.000
t22(22) = 5.160.960 t22(52) = 2.955.676.303.125.000
t31(22) = −11.059.200 t31(52) = 202.084.501.846.500.000
t13(32) = 240.919.920 t13(72) = −237.053.228.960.800
t22(32) = 45.996.809.040 t22(72) = 3.991.151.395.782.045.600
t31(32) = 872.539.516.800 t31(72) = −54.454.444.234.093.120.000

Notes added in proof

1) It seems that T. Ikeda very recently has proved the DIC in general. Unfortu-
nately the authors are not aware of any details.

2) E. Freitag kindly informed the authors that the calculations he and his coau-
thors made in [BFW] and which the authors used to provide a counterexample in
section 4 might be incorrect. Fortunately this would coincide with 1).

References

[An1] A.N. Andrianov, Euler products corresponding to Siegel modular forms of genus 2, Russ.
Math. Surveys 29, No. 3 (1974), 45-116. MR 55:5540

[An2] A.N. Andrianov, Quadratic Forms and Hecke Operators, Springer-Verlag, Berlin, Heidel-
berg, New York, 1987. MR 88g:11028

http://www.ams.org/mathscinet-getitem?mr=55:5540
http://www.ams.org/mathscinet-getitem?mr=88g:11028


1604 STEFAN BREULMANN AND MICHAEL KUSS
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