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ABSTRACT. Theorem 5 yields the condition sufficient for a group to be a direct
product of a m-group and an abelian 7’-group. We also obtain characterizations
of nilpotent groups, prime power groups, p-nilpotent and p-closed groups in
the language of characters. Proofs of some results depend on the classification
of finite simple groups. Some problems are posed and discussed.

Only finite groups are considered. Let 7, 7" be complementary sets of primes. A
group G is said to be m-nilpotent (m-closed) if the set of all its n’-elements (-
elements) is a subgroup of G. A group is 7-closed if and only if it is 7’-nilpotent.
Let ®(G) be the Frattini subgroup of G. In what follows, we use the following
known facts (see, for example, [BZ]), Lemma 14.1(a), (c)):

(®1) G/®(G) is m-closed if and only if G is.

(®2) If A < ®(B), B <G and A is normal in G, then A < &(G).

Let w(m) be the set of prime divisors of m € N, n(G) = 7(|G|). For m € N, m,
denotes the maximal 7-divisor of m. Let Irr(G) be the set of (complex) irreducible
characters of G. If x € Irr(G), then the subset Z(x) = {z € G | |x(x)] = x(1)}
is a normal subgroup of G — the quasikernel of x. In that case, Z(x)/ ker(x) =
Z(G/ ker(x)) is cyclic.

Let Syl,(G) be the set of Sylow p-subgroups of G, p a prime. If K is a normal
subgroup of G, then Irr(G | K) is the set of x € Irr(G) such that K £ ker(x).

Recall that a character y of G is said to be monolithic if x is irreducible and
G/ ker() is a monolith, i.e., has only one minimal normal subgroup (see [BZ],
Chapter 30, and [BIK]). Note that every irreducible character of a p-group is
monolithic.

It is known that the degree of an irreducible character x of G divides |G/Z(x)|.
So we may assume that the structure of G depends essentially on quotients |G|/x(1),
|G/ ker(x)|/x(1) and |G/Z(x)|/x(1) for some nonlinear x € Irr(G).

Chillag and Herzog have classified the nonabelian groups G such that |G|/x(1) is
a prime power for every nonlinear x € Irr(G) (see [BZ], Theorem 14.31). It appears
that then |G|/x(1)| is a power of the prime independent of x, and G is solvable of
very special structure. In the following lemma we consider a more general situation.
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Lemma 1 (Compare to [BZ], Exercise 14.25). Let x € Irr(G). Suppose that
G/ ker(x) has a normal abelian subgroup A/ ker(x) such that |G : A| = p®-x(1) for
some prime power p°. Then x is monomial. In particular, if the above holds for all
nonlinear monolithic characters x of G with p® depending on x, then G is solvable.

Proof. Note that x(1) divides |G : A|, where x and A as in the lemma, by [I],
Theorem 6.15 (Ito’s Theorem). By [BZ|, Proposition 30.18(e), the second assertion
follows from the first one. To prove that y is monomial, one may assume that
ker(x) = {1}. Set H = PA, where P € Syl,(G). Let {u1,...,pur} be the set of
irreducible constituents of xg, p1(1) < -+ < ug(1l). By Ito’s Theorem, p;(1) are
powers of p for all 4. It follows that pq(1) divides x(1). Furthermore, |G : H| divides
x(1) by hypothesis, and (|G : H|, u1(1)) = 1. It follows that |G : H|u1(1) = p§ (1)
also divides x(1). Therefore, by reciprocity, x = p§’. By Huppert’s monomiality
criterion (see [BZ], Theorem 7.61), H is an M-group. Therefore, 3 = A for some
F < H and a linear character A of F. Thus y = (11)¢ = (A)¢ = A&, completing
the proof. O

We will define some characteristic subgroups of G.

Let G(p') (Go(p')) be the intersection of kernels (quasikernels) of nonlinear ir-
reducible characters of G having p’-degrees. Obviously, G(p') < Go(p'). By [BZ,
Remark 25.2, if P € Syl,,(G), then p divides degrees of all nonlinear irreducible char-
acters of PG(p'). In particular, G(p’) is p-nilpotent and solvable (see [I], Corollary
12.2, and [BZ], Proposition 25.9 and the remark following it).

Let G(p) (Go(p)) be the intersection of kernels (quasikernels) of irreducible char-
acters of G whose degrees are divisible by p. It is known that G(p) is p-closed (see
IBZ], Theorem 14.27(c)); obviously, G(p) < Go(p). By [BZ], Remark 25.3, all non-
linear irreducible characters of G(p) have p’-degrees so G(p) is p-closed with abelian
Sylow p-subgroup. It is known that Go(p’) N Go(p) = Z(G) (see [I], Corollary 2.28,
or [BZ], Theorem 4.35(b)).

It is known (see [B], Lemma 2(b)) that the intersection of kernels of nonlinear
monolithic characters of G is contained in Z(G) (the strong containment is possible:
let G be a nonabelian primary group with cyclic center). Let p be a prime divisor of
|G|. Set G (p') = [, ker(x), where x runs over all nonlinear monolithic characters
of G of p’-degrees. Obviously, G(p') < G (p').

Let Gy, (p) be the intersection of kernels of monolithic characters of G, whose
degrees are divisible by p; obviously, G(p) < G,,(p). By what has been said already,
G (p') N Gi(p) < Z(G).

In Theorem 2 we will consider the structure of the subgroups introduced above.

Theorem 2. Let p be a prime divisor of the order of a group G, P € Syl,(G).
Then

(a) All nonlinear irreducible characters of PGo(p') have degrees divisible by p;
in particular, Go(p') is p-nilpotent and solvable.

(b) G (p') is p-nilpotent and solvable.

(c) All nonlinear irreducible characters of Go(p) have p'-degrees; in particular,
Go(p) is p-closed with abelian Sylow p-subgroup.

(d) G (p) is p-closed.

Proof. Suppose, in all the cases, that G is a counterexample of minimal order.
(a) Let A be a nonlinear irreducible character of PGq(p') of p’-degree. Then p
does not divide \9(1) = |G : PGo(p')|A(1) so A€ has an irreducible constituent
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x of p’-degree. By reciprocity, x is nonlinear so, by hypothesis, Go(p') < Z(x).
All irreducible constituents of xz(,) are linear and the same is true for Ag, (-
It follows that Go(p’) < ker(A), by Clifford’s Theorem. Since PGo(p')/Go(p') is
an extension of the abelian group Go(p’)/Go(p’)’ by the p-group PGy(p')/Go(p’),
it follows that A(1) is a power of p, by Ito’s Theorem, which is a contradiction.
Thus, degrees of all nonlinear irreducible characters of PGy(p’) are divisible by p
so PGy(p’) is p-nilpotent by [I], Corollary 12.2, and solvable by [BZ|, Proposition
25.9 and the remark following it. ((a) generalizes [BZ|, Remark 25.2.)

(b) Write D = G,,(p’). We may assume that D > {1}. Let K be a minimal
normal subgroup of G contained in D. By the inductive hypothesis, D/K is p-
nilpotent and solvable (indeed, (G/K)n,(p') = D/K) so p divides |K|. Assume
that K is another minimal normal subgroup of G contained in D; then D/Kj is p-
nilpotent and solvable. Since K N K7 = {1}, D is also p-nilpotent and solvable, and
G is not a counterexample. Thus, K is the unique minimal normal subgroup of G
contained in D. Let M be a normal subgroup of G maximal such that KNM = {1}.
By what we just proved, DN M = {1}. Assume that M > {1}. As DM/M <
(G/M)m(p') and DM /M = D is p-nilpotent, by the inductive hypothesis, we obtain
a contradiction. Thus M = {1}. In that case, G is a monolith.

Let x € Irr(G | K). Since K < G’ as the unique minimal normal subgroup of
G, x is nonlinear monolithic. We have D ¢ ker(x) = {1} so p divides x(1). It
follows that K < G(p’) so K is solvable (see the text preceding the theorem). Since
p divides |K|, we see that K is a p-subgroup and so D is solvable. By the above,
D/K has the normal p-complement F/K. Since D is not a p-subgroup and G is a
monolith, we have F' > K and Oy (F) = {1}. Let P € Syl,(G). Then, K £ ®(P)
(otherwise, K < ®(G), by (92), and D is p-nilpotent, by (®1)). In that case, there
is a linear character A € Irr(P | K). Since p does not divide A9(1) = |G : P|,
A% has an irreducible constituent y of p’-degree. On the other hand, K % ker(x),
by reciprocity so x is nonlinear monolithic (recall that K < G’). It follows from
D « ker(x) that y is of degree divisible by p, which is a contradiction. (This
generalizes [BZ]), Proposition 30.18(b).)

(c) Let A be an irreducible character of Go(p) of degree divisible by p and let x
be an irreducible constituent of A%. Since p divides x(1), by Clifford’s Theorem, we
get Go(p) < Z(x), by definition. As all irreducible constituents of x7,) are linear,
the same is true for x¢g,(p). Since A is nonlinear, we get a contradiction. Thus,
all nonlinear irreducible characters of Go(p) have p’-degrees so Go(p) is p-closed
with abelian Sylow p-subgroup, by Ito-Michler Theorem for p-solvable groups ([I],
Corollary 12.34, is also true for p-solvable groups). ((c) generalizes [BZ|, Remark
25.3.)

(d) Write D = G,,(p). Let K be a minimal normal subgroup of G contained
in D. By the inductive hypothesis, D/K is p-closed. As in (b), K is the unique
minimal normal subgroup of G contained in D. Let M be a normal subgroup
of G maximal such that K " M = {1}. Since DN M = {1} (so DM/M = D)
and DM/M < (G/M)n(p), we see that M = {1}, by the inductive hypothesis.
It follows that G is a monolith so it possesses a faithful irreducible character x;
obviously, x is nonlinear monolithic. Since D £ ker(x), x is of p’-degree. It follows
that K < G(p) so K is p-closed (see the text preceding the theorem). As D is not
p-closed, K is a p’-subgroup so O, (D) = {1} since G is a monolith.

Let F/K be a minimal normal p-subgroup of G/K contained in D/K; then
F/K > {1} is an elementary abelian p-subgroup (recall that D/K is p-closed and
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p divides |D/K|). Then O,(F) = {1} since G is a monolith. By the Ito-Michler
Theorem, F' has a nonlinear irreducible character A of degree divisible by p. Since
F/K is abelian, we have K £ ker()). Let x be an irreducible constituent of
AY. By reciprocity, x is monolithic, and p divides x(1), by Clifford’s Theorem.
Then K < D < ker(x), by definition, which is a contradiction. Thus there is
no counterexample and so D is p-closed. ((d) generalizes the main part of [BZ],
Proposition 30.18(c).) O

Proposition 3. Let p be a prime divisor of the order of a group G.

(a) G is p-nilpotent if and only if for every nonlinear monolithic character x of
G such that p does not divide x(1), G/ ker(x) is p-nilpotent.

(b) G is p-closed if and only if for every nonlinear monolithic character x of G
such that p divides x(1), G/ ker(x) is p-closed.

Proof. Suppose that G is a counterexample of minimal order. Then it has only one
minimal normal subgroup K.

(a) In that case, G/K is p-nilpotent. Let y be a nonlinear monolithic character
of G of p’-degree (if such a x does not exist, we have G = G,,,(p’), and this group
is p-nilpotent and solvable, by Theorem 2(b)). By hypothesis, G/ker(x) is p-
nilpotent. Then G/G,,(p’) is p-nilpotent as an epimorphic image of G/ker(x) so
{1} < G (p) < G, K < G, (p') and K is solvable, by Theorem 2(b). It follows
that K is a p-subgroup. Let P € Syl,(G); then K < P and K £ ®(P) (see the
proof of Theorem 2(b)). Repeating, word for word, the last rows of the proof of
Theorem 2(b), we complete the proof of (a).

(b) In that case, G/K is p-closed. Let x be a nonlinear monolithic character of
G of degree divisible by p (if such a x does not exist, we have G = G,,,(p), and this
group is p-closed, by Theorem 2(d)). By hypothesis, G/ ker(x) is p-closed. It follows
that G/G, (p) is p-closed as an epimorphic image of G/ ker(x) so {1} < G, (p) < G;
thus K < Gy, (p) and K is p-closed. It follows that K is a p’-subgroup. Let F/K
be a minimal normal p-subgroup of G/K contained in D/K; then F/K > {1} is
elementary abelian. As G is a monolith, O,(F') = {1}. Repeating, word for word,
the last rows of the proof of Theorem 2(d), we complete the proof of (b). O

It follows from Proposition 3(a) that G is nilpotent if and only if 7(G/Z(x)) =
m(x(1)) for every monolithic character x of G. Indeed, let p € 7(G) and p does
not divide x(1). Then G/Z(x) is a p’-group, by assumption. It then follows that
G/ ker(x) is p-nilpotent, and our claim is true, by Proposition 3(a) since p is arbi-
trary. Next, a nonabelian group G is nilpotent if and only if 7(G/ ker(x)) = 7(x(1))
for every nonlinear monolithic character x of G (the same reasoning!). If the last
condition holds for all nonlinear x € Irr(G), then G is a prime power group as it is
easy to check.

Assertions (a), (b) of Proposition 3 characterize p-nilpotent and p-closed groups,
respectively.

Lemma 4 (Compare to [BZ], Theorem 14.45). If m(G/Z(x)) C wUn(x(1)) for ev-
ery monolithic character x of G, then G is w-closed. Furthermore, if P is a w-Hall
subgroup of G, then G/P is nilpotent.

Proof. Let G be a n’-group. Then by hypothesis, 7(G/Z(x)) C w(x(1)) for every
monolithic character x of G; the converse inclusion follows from Ito’s Theorem. So
G is nilpotent, by the remark preceding the lemma. Therefore, we may assume
that 7 N 7(G) is nonempty.
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Suppose that G is a counterexample of minimal order. Let H be a minimal
normal subgroup of G. By the inductive hypothesis, G/H is w-closed. It follows that
H is the unique minimal normal subgroup of G. Assume that Z(G) > {1}. Then
H < Z(G), and since G/H is m-closed so is G, a contradiction. Thus Z(G) = {1}.
Since H is unique, G possesses a faithful irreducible character y; obviously, x is
monolithic and Z(x) = {1}. Then by hypothesis, 7(G) C 7 Um(x(1)), and we see
that x(1) is divisible by all ¢ € 7(G)N7’. Since x is an arbitrary faithful irreducible
character of G, we conclude that H < G(¢') for every q € n(G)N7’ so H is solvable,
by Theorem 2(b). Thus, H is a p-group for some p € 7’ since G/H is w-closed and
G is not.

Let H < P € Syl,(G). If H < ®(P), then H < &(G), by (92), and G is m-closed
since G/H is, by (®1). Thus H £ ®(P); then H £ P’. In that case, there is a
linear character A of P such that H £ ker()\). Every irreducible constituent of \¢
is faithful, by reciprocity so monolithic. Since p does not divide A\%(1) = |G : P|,
there is an irreducible constituent x of A¢ of p’-degree. Then 7(G) Z 7 Ur(x(1))
since p  m Um(x(1)), which is a contradiction. The last assertion follows from the
first paragraph of the proof. O

If x is a nonlinear irreducible character of G, then |G/ker(x)| = ¢, - x(1) for
some t, € N. It is possible that 7(G) # U, cn(q), y1)>1 T(x)- As Theorem 5(c)
shows, in that case G has very special structure (in particular, it is solvable).

In Theorem 5(a) we will consider a special case when y(1)? divides |G| for all
x € Irr(G). It is interesting that the set of groups satisfying this property is
very large: every nonabelian group is a direct factor of such a group (see the
Remark below). I think that if G > {1} satisfies the above condition, then its
Fitting subgroup is nontrivial. Note that x(1)? divides |G/ ker(x)| for all irreducible
characters x of every nilpotent group G (it is remarkable that the converse is also
true; see the Remark preceding Corollary 6). Corollary 6 characterizes nonabelian
p-groups. If there is t, € N such that |G| = t, - x(1)? for every nonlinear monolithic
Zharacter x of G, then G is m-closed, where m = U, c1,,(@), x(1)>1 T(tx), by Lemma

Let us consider, for y € Irr(G), the following condition:

) |G/ ker(x)| =t- x(1)® for some natural s = s, and t = t,.

Theorem 5. Let G be a nonabelian group.

(a) Suppose that every nonlinear monolithic character x of G satisfies (*) with
sy = 2. Set m =, 7(ty), where x runs over all nonlinear monolithic characters
of G. Then G = P x A, where A is an abelian 7'-Hall subgroup of G.

(b) Suppose that every nonlinear irreducible character x of G satisfies (*) with
sy =2. Set ™ =U, e, x(1)>1 T(tx). Then n(G) = .

(c) Suppose that every nonlinear irreducible character x of G satisfies (*) with
sy = 1. Let m = U, crrma), x(1)>1 T(tx). Then G has the normal w-Hall subgroup
P and G/P is cyclic. Furthermore, if P < G, then P is solvable. In that case, if
F is a 7'-Hall subgroup of G and K a normal subgroup of G such that K < G’ and
G'/K is a minimal normal subgroup of G/K, then every element of F# induces a
fized-point-free automorphism on G'/ K.

Proof. Assume that G is a 7n'-group and a constant s € {1,2}. Then, for every
nonlinear monolithic character x of G, we have |G/ ker(x)| = x(1)®, which is not
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the case. Since a nonabelian group has a nonlinear monolithic character, G is not
a 7'-group. By Lemma 4, G is m-closed; let P be a (normal) w-Hall subgroup of
G. Since G/P is a ©'-group, by what we just proved, it is abelian. Let G be a
counterexample of minimal order.

Note that if G = P x A, then by the result of the previous paragraph A is abelian
and then in cases (b) and (c) we have A = {1}, as is easy to check.

(a) Let s = s,, = 2 for all nonlinear monolithic characters x of G, and suppose
that G is not a w-group. Obviously, nonabelian epimorphic images of G satisfy
the hypothesis. Let H be a minimal normal subgroup of G. By the inductive
hypothesis, G/H = P;/H x Ai/H, where A;/H is the abelian 7’'-Hall subgroup
of G/H. It follows that H is the unique minimal normal subgroup of G. Then
H < P so H is a m-group. In that case, G possesses a faithful irreducible character
X; obviously, x is monolithic. By hypothesis, |G| = t, - x(1)? so |G| = (x(1)?).
Since x is arbitrary faithful, it follows that H < G(¢') for all g € 7(G) — 7 # 0 so H
is solvable, by Theorem 2(a). Thus, H is a p-subgroup for some p € 7. By (®1) and
the result of the second paragraph of the proof, H ¢ ®(G). Therefore, G = M - H,
a semidirect product, where M is maximal in G. We have M =~ G/H. Let Ay be
a m’-Hall subgroup of M (then Ag is also a 7’-Hall subgroup of G). Take x € A# .
Since H is the unique minimal normal subgroup of G and Ay is abelian, we get
Ce(z) = M. Tt follows that Ay = Ag- H is a Frobenius group. Let A be a nonlinear
irreducible character of Ay; then A(1) = |Ag| = |G|r. Let 6 be an irreducible
constituent of A\4. By reciprocity, 6 is monolithic. By (*), |G| = (0(1)?), a
contradiction since |G| > 1 divides (1), by Clifford’s Theorem (recall that A; is
normal in G). This proves (a).

(b) follows from (a), by the second paragraph of the proof.

(c) Let s = s, = 1 for all nonlinear x € Irr(G). By the first paragraph of the
proof, G/P is abelian. Assume that P < G.

We will prove that G is solvable. Suppose there G has two distinct minimal
normal subgroups Hy, Ho. We may assume that H; < P, i.e., H; is a m-subgroup.
Then by induction, G/Hj is solvable. If G/Hs is not a m-group, then G/Hs is also
solvable. Then G is solvable as a subgroup of (G/H;) x (G/Hs). It remains to
consider the case when G/H; is a m-group. Then |Hs| =p € 7’ and G = P x Ho,
contrary to the second paragraph of the proof. Thus, we may assume that H is the
unique minimal normal subgroup of G. Then G has a faithful irreducible character
X so |G| = ty - x(1). It follows that |G|, divides x(1) so H < G(¢') for every
q € m(G)N 7' # 0. By Theorem 2(a), H is solvable. As G/H is solvable so is G.

We have G’ < P. To prove the remaining assertion, we may assume that G’ is
a minimal normal subgroup of G. Then G’ is a p-subgroup for some p € 7.

By the result of the second paragraph of the proof, G is not nilpotent. Then
G' £ Z(G) and G’ £ ®(G) so G has a maximal subgroup M such that G’ £ M;
then G = M - G’, a semidirect product since G’ is an abelian minimal normal
subgroup of G. Obviously, M = G/G’ is abelian. Let F be a 7’-Hall subgroup of
M and let z € F# such that its order is a power of a prime ¢q. Then Cg(z) > M
so we have Cg/(z) < G. Assume that Ce/(x) = G'. Then x € Z(G), and since

(@), x(1)>1 ker(x) = {1} (see [BZ], Theorem 4.35), there is a nonlinear x €
Irr(G) such that x € ker(x). As by Ito’s Theorem x(1) divides |G : ({x) x ker(x))|;
altogether with our hypothesis we conclude that

q-|G = ({z) x ker(x))| [ |G/ ker(x)| = txx(1) | tx - |G = ({x) x ker(x))]
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and thus ¢ divides t,, contradicting ¢, being a m-number. So since G’ is an abelian
minimal normal subgroup of G, we have Cg/(z) = {1} and since x € F# is an
arbitrary of prime power order, we see that F'G’ is a Frobenius group; in particular
F = G/P is cyclic, and (c) is proven. O

In Theorem 5(a), the hypothesis s, = 2 is essential. It is impossible to change
that condition by s, > 1 for all nonlinear monolithic characters x of G (take, for
example, a nonabelian group of order p* and sy = 3 for all nonlinear irreducible

X)-

Remark. Let G be nonabelian. If x(1)? divides |G| for all x € Irr(G), then G need
not be solvable: take, for example, G = H x C,g|, where C,, is the cyclic group
of order m and H nonsolvable. It follows from the classification of finite simple
groups that G is not simple. (The simple groups of Lie type do not satisfy this
condition: by [W], they have an irreducible character of p-defect 0 for every prime
p. The alternating group A, does not satisfy that condition since it possesses an
irreducible character of degree divisible by a prime p such that p? does not divide
|A,|. As it is easy to check, using [CCNPW], the remaining simple groups do not
satisfy the above condition either.) I think that each group satisfying the above
condition has a nontrivial abelian normal subgroup. If x(1)? divides |G/ ker(x)|
for all x € Irr(G), it is possible to prove that G is solvable, using the classification
of finite simple groups and working by induction. After completing this note, I.M.
Isaacs informed me that S. Gagola and M. Lewis have proved that, in fact, the group
under consideration is nilpotent; this yields a new characterization of nilpotent
groups.

Corollary 6 (Compare to [BZ|], Theorem 9.16). Let G be a nonabelian group and
p a prime divisor of |G|. Then the following assertions are equivalent:

(a) For any nonlinear irreducible character x of G, there exists s = s, € N such
that |G/ ker(x)| = p* - x(1)?.

(b) G is a p-group.

Proposition 7. Let G be a nonabelian group.
(a) Suppose that, for every monolithic character x of G, there are a prime p = p,,
and an integer € = €, € {0,1} such that |G/ Z(x)| = p¢-x(1)%. Then G is nilpotent.
(b) Suppose that, for any nonlinear monolithic character x of G, there is a prime
p = py such that |G/ker(x)| = p- x(1)?. Then G is nilpotent. Furthermore, if the
above condition holds for all nonlinear x € Irr(G), then G is a prime power group.

Proof. (a) We will use induction on |G|. Let H be a minimal normal subgroup
of G. By the inductive hypothesis, G/H is nilpotent. Therefore, we may assume
that H is the unique minimal normal subgroup of G. In that case, G possesses a
faithful irreducible character x; obviously, x is monolithic. Since G is not nilpotent,
Z(G) = {1} so Z(x) = {1} and |G| = p- x(1)?, where p depends on x. We see that
|Glq is not a square for exactly one ¢ € 7(G) (obviously, ¢ must be equal to p).
Therefore, if § is another faithful irreducible character of G, then |G| = p - 0(1)?
with the same p so 6(1) = x(1), i.e., all faithful irreducible characters of G have
the same degree x(1). If ¢ € 7(G) — {p} and a nonlinear 7 € Irr(G) is such that
q 1 7(1), then, by the above, 7 is not faithful; it follows that H < ker(7) and so
H < G(q¢'). Tt follows that H is solvable, by Theorem 2(b). Let H be a g-group.
Assume that G is not nilpotent. Then H £ ®(G), by (®1), so G = M - H, where
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M is maximal in G. Since H is unique and M is nilpotent, H € Syl,(G). By Ito’s
Theorem, ¢ does not divide x(1). In that case, by hypothesis, |[H| = ¢ so p, = g.
Since Cq(H) = H, G/H is cyclic, and G is a Frobenius group so x(1) = |G/H|, by
[I], Theorem 6.34. As x(1)? does not divide |G|, we get a contradiction.

(b) The first assertion follows from (a) immediately. The second assertion follows
from Corollary 6. |

In particular, |G/Z(x)| = x(1)? for all x € Irr(G) if and only if G is nilpotent and
all its Sylow subgroups satisfy the same condition (this also follows from Lemma
4). Probably, the derived length of such G is bounded.

There is no nonabelian p-group G such that |G/Z(x)| = p-x(1)? for all nonlinear
X € Irr(G); indeed, the p-groups G with |G’| = p do not satisfy this condition.
Therefore, in Proposition 7(a), e € {0,1}. This example also explains why a p-
group G is abelian if x(1)? divides |G /Z ()| for all irreducible characters x of G.

Proposition 8. Let G be a nonabelian solvable group.

(a) Suppose that, for any nonlinear monolithic character x of G, there is a square
free number t,, € N such that |G/ Z(x)| = t, - x(1)* (|G/ ker(x)| =ty - x(1)?). Then
G is nilpotent.

(b) Let, in addition, G is of odd order. Suppose that, for any monolithic character
X of G, there is a cube free number t, such that |G/Z(x)| =ty - x(1)®. Then G is
nilpotent.

Proof. Working by induction on |G|, we may assume that G has only one minimal
normal subgroup H, and G/H is nilpotent. Assuming that G is not nilpotent, we
have Z(G) = {1} and H £ ®(G).

If x € Irr(G) is faithful (such a x exists since G is a monolith), then |G| =
ty - x(1)?, where t, is square free in (a) and cube free in (b). Let M be a maximal
subgroup of G such that H £ M. Then G = M - H, a semidirect product. Since
H is unique, Mg = (\,c M* = {1}. In that case, H € Syl,(G) for some prime p,
and this implies that |H| = p or p?, by Ito’s Theorem. It follows that Cg(H) = H
so M is a nilpotent p’-subgroup of GL(1, p) or GL(2, p).

In case (a), G is a Frobenius group; then x(1)? does not divide |G| (see [,
Theorem 6.34), which is a contradiction.

In case (b), since M is a nilpotent p’-subgroup of odd order in GL(n,p), n < 2,
it follows that M is abelian. So, if + € M#, then Cg(z) = M since Mg = {1}.
It follows that G is a Frobenius group. If y is a faithful irreducible character of
G, then x(1) = |G : H|, by [I], Theorem 6.34, and so x(1)? does not divide |G|, a
contradiction. |

Probably, Proposition 8(a) is true without assumption on solvability of G (I think
that the proof of this must depend on the classification of finite simple groups).

The group G of the Chillag-Herzog Theorem (see [BZ], Theorem 14.31) possesses,
as a rule, a few irreducible character degrees. In the opposite direction, I'd like to
pose the following.

Problem 1. Let G be a nonabelian group such that, for every divisor m of its order
such that m? < |G|, G possesses an irreducible character of degree m. Describe the
structure of G. Is it true that G’ < G?
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Let G be as in Problem 1 and |G| is divisible by p?. Then, by [BZ], Corollary
3.23, Z(x) > {1} for every irreducible character y of degree p. In spite of the set of
these groups being very small, their classification is surprisingly difficult.

Problem 2. Suppose that for every nonlinear irreducible character y of G, one
has |7(G/Z(x)) — m(x(1))| < 1. Describe the structure of G.

For related results, see [BZ], Chapters 9, 14, 30, and [BIK].
I am indebted to the referee for numerous remarks and suggestions which im-
proved this note considerably.

(B]
[BIK]

[BZ]

[CCNPW]
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