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EXISTENCE-UNIQUENESS AND LONG TIME BEHAVIOR
FOR A CLASS OF NONLOCAL NONLINEAR PARABOLIC

EVOLUTION EQUATIONS
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(Communicated by David S. Tartakoff)

Abstract. We establish existence and uniqueness of solutions for a general
class of nonlocal nonlinear evolution equations. An application of this theory
to a class of nonlinear reaction-diffusion problems that arise in population dy-
namics is presented. Furthermore, conditions on the initial population density
for this class of problems that result in finite time extinction or persistence of
the population is discussed. Numerical evidence corroborating our theoretical

results is given.

1. Introduction

In this paper we consider the following class of nonlinear nonlocal evolution
equations on the Banach space B:{

u̇(t) = 1
a(u(t))Au(t) + F (u(t)), t > 0,

u(0) = u0.
(1.1)

Here, the linear operator A is assumed to be an infinitesimal generator of a C0

semigroup T (t) on B, with domain D (A) ⊂ B. The reaction function F : B →
B is locally Lipschitz continuous in u satisfying F (0) = 0. The functional a :
B → [0,+∞) is assumed to be locally Lipschitz continuous in u. Furthermore,
we assume a(ξ) > 0 for all ξ 6= 0, and a(0) ≥ 0. Our first goal is to establish
existence-uniqueness of solutions to (1.1). By a solution we mean a B -valued
function u(t) that satisfies the following:

i) u(t) is continuous for t ≥ 0 and continuously differentiable for t > 0.
ii) u(t) ∈ D(A) for t > 0.
iii) u(t) satisfies (1.1).

Our motivation for investigating (1.1) arises from reaction-diffusion equations
that model population dynamics. For example, the following equation that de-
scribes the density of a population subject to spreading falls under the class of
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evolution equations presented in (1.1):
ut = 1

a(u(t,·))∆u+ F (u) in Ω× (0, T ),
u(t, x) = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x) on Ω.

(1.2)

Here Ω is a bounded open subset in Rn, n ≥ 1, with smooth boundary ∂Ω. The
diffusion coefficient 1/a then depends on a nonlocal quantity related to the total
population in the domain, i.e., the diffusion of individuals is guided by the global
state of the population in the medium. If the coefficient 1/a is an unbounded func-
tion around the origin (e.g., a(u(t, ·)) =

∫
Ω u(t, x)dx), then a diffusion of this type

could model a population that is anxious to move quickly out of zones experiencing
a sharp decrease in population densities (see [7]). For example, consider a popu-
lation attempting to leave a spatial region due to a sudden dangerous situation.
The individuals in the population move randomly (due to lack of information) in
an attempt to leave the area. In this case, diffusion out of the region will increase
as population decreases due to a decrease in the interaction between individuals
that hinders their movement out. One can imagine such an occurrence related to
an epidemic (see [7]). The function F describes the reaction or growth of the pop-
ulation. Two commonly used forms for F in the literature are the logistic equation
F (u) = ru(k−u) and the Monod kinetics F (u) = ru/(k+u) (see, e.g., [6, 9, 10, 12]).

Local evolution equations of type (1.1) (i.e., a(u(t)) ≡ 1) have been extensively
studied in the literature (see, e.g., [1, 2, 3, 4, 5, 8, 9, 11, 13] and the many refer-
ences therein). Existence-uniqueness of solutions for the local linear and semilinear
problems of type (1.1) has been discussed in [1, 9, 11, 13], while in [2, 3, 4, 5, 8]
these results were extended to the nonlinear local case (where A is assumed to
be a nonlinear operator). In [7], a homogeneous nonlocal case of type (1.1) (i.e.,
F (u(t)) = 0) was discussed. Therein existence and uniqueness of solutions were
established. Our first goal in this paper is to extend these results to the setting
presented in (1.1).

This paper is organized as follows. In Section 2, a local existence-uniqueness
result for (1.1) is established. Section 3 is devoted to the study of a class of
reaction-diffusion problems which falls under the class of equations presented in
(1.1). Conditions on the initial population density which result in the population
finite time extinction or persistence for all times is established. Finally, in Section
4 we develop a finite difference scheme to approximate the solution of a nonlocal
quasilinear reaction-diffusion equation. This scheme is then used to numerically
study the long time behavior of the quasilinear model.

2. Existence-uniqueness of solutions

We start this section by introducing the following auxiliary nonlocal semilinear
evolution equation: {

v̇(t) = Av(t) + a(v(t))F (v(t)), t > 0,
v(0) = u0.

(2.1)

Using (2.1), we can show the following:

Theorem 2.1. For u0 ∈ D(A) with u0 6= 0, assume that there exists a positive
constant Tmax such that (2.1) has a unique solution v on [0, Tmax). Then there
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exists a unique solution u to (1.1) on the interval [0, Tmax), where Tmax is given by

Tmax =
∫ Tmax

0

a(v(s))ds.

Proof. Let τ = τ (t) be the solution to the ordinary differential equation τ̇(t) =
1

a(v(τ(t)))
, t > 0,

τ(0) = 0.
(2.2)

Separating variables and integrating in t we get the following equation:∫ τ(t)

0

a(v(s))ds = t, t ∈ [0, Tmax).

Setting

G(ξ) =
∫ ξ

0

a(v(s))ds,

it can be easily shown that G is a C1 diffeomorphism from [0, Tmax) onto [0, Tmax).
Hence, (2.2) has a unique solution given by τ(t) = G−1(t) on [0, Tmax).

Now let

u(t) = v(τ(t)).(2.3)

Then clearly the B-valued function u satisfies the following: u(0) = v(τ(0)) = u0

and u(t) is continuous for t ≥ 0, continuously differentiable and u(t) ∈ D(A) for
t > 0. Furthermore, we have that

u̇(t) = v̇(τ(t))τ̇ (t) = (Av(τ(t)) + a(v(τ(t)))F (v(τ(t))))
1

a(v(τ(t)))

=
1

a(u(t))
Au(t) + F (u(t)), t > 0.

Hence, u is a local solution of equation (1.1). Conversely let u be a local solution
to (1.1) and let G be the solution to the differential equation{

Ġ(s) = a(u(G(s))), t > 0,
G(0) = 0.

(2.4)

Set

v(t) = u(G (t)).

We have that v(0) = u0, v(t) is continuous for t ≥ 0, continuously differentiable
and v(t) ∈ D(A) for t > 0. Moreover,

v̇(t) = u̇(G(t))Ġ(t) = Av(t) + a(v(t))F (v(t)), t > 0.

From (2.4) we can show that G is given by

G(t) =
∫ t

0

a(v(s))ds

and thus G(τ(t)) = t. This shows that u is necessarily given by (2.3) and the proof
is complete.
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Remark 2.2. Under the Lipschitz continuity requirement on the functions F and a
discussed in the previous section, (2.1) has a unique mild solution, i.e., a solution
that satisfies the integral equation

v(t) = T (t)u0 +
∫ t

0

T (t− s)F(v(s))ds

for t ∈ [0, Tmax), where the mapping F : B → B is defined by F(v) = a(v)F (v).
In general, a sufficient condition for this mild solution to be a solution of (2.1)
(i.e., to satisfy i)-iii) given in Section 1) is for the mapping F to be continuously
differentiable fromB into B (see Chapter 6 in [11]). However, in the case T (t) is
an analytic semigroup, then (2.1) has a unique solution for t ∈ [0, Tmax), provided
that F is locally Lipschitz continuous only ([13], page 39).

3. Finite time extinction and persistence

for a class of parabolic equations

Choose the Banach space B = L2(Ω),where Ω is a bounded region in Rn with
smooth boundary ∂Ω. Let L be a uniform linear elliptic operator given by

Lu =
n∑
i=1

∂

∂xi

 n∑
j=1

aij(x)
∂u

∂xj


with sufficiently smooth and symmetric coefficients aij(x), and consider the follow-
ing class of reaction-diffusion equations:

ut =
1∫

Ω u(t, x)dx
Lu+ f(u) in Ω× (0, Tmax),

u = 0 on ∂Ω× (0, Tmax),
u(0, x) = u0(x) on Ω̄,

(3.1)

with

f(u) =
ru

k + u
or f(u) = ru(k − u),

where r and k are constants. For the rest of this section, we assume that the initial
population density u0 ∈ C2

0 (Ω) satisfying u0 ≥ 0 and u0 6= 0. Our goal is to find a
function u0(x) such that if u0(x) < u0(x), then the population goes to extinction
in finite time (i.e., the solution to equation (3.1) satisfies limt→Tmax

∫
Ω
u(t, x) = 0)

and a function u0(x) such that if u0(x) ≥ u0(x), then the population persists (i.e.,
lim inft→∞

∫
Ω u(t, x) > 0).

With the second order differential operator L we associate the operator A on
L2(Ω) as follows:

a) The domain of definition D (A) = H2(Ω) ∩H1
0 (Ω).

b) Au = Lu for u ∈ D(A).
It is well known that the linear operator A is an infinitesimal generator of an

analytic semigroup of contractions T (t) on L2(Ω) (e.g., [11], page 215).

3.1. Finite time extinction. Let φ(x) be the first eigenfunction of{
−Lφ = λφ in Ω,
φ = 0 on ∂Ω,
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with ||φ||∞ = 1, and let λ0 be the first eigenvalue. Recall that φ is a positive

function in Ω. For the case f(u) = ru/(k + u), defining u0(x) =
λ0

c
φ where

c = r
k

∫
Ω
φdx we have the following theorem:

Theorem 3.1. If u0(x) < u0(x), then the solution u to equation (3.1) goes to
extinction in finite time.

Proof. Define F (v) = max{rv/(k+ v), 0} and a(v(t)) =
∫

Ω
|v(t, x)|dx, and consider

the following semilinear problem: vt = Lv + a(v(t))F (v(t)) in Ω× (0, Tmax),
v = 0 on ∂Ω× (0, Tmax),
v(0, x) = u0(x) on Ω̄.

(3.2)

Clearly, F and a defined above are locally Lipschitz continuous. Hence, rewriting
(3.2) as an evolution equation of the form (2.1) and using Remark 2.2 we get
that there exists a unique solution to equation (3.2) on the interval [0, Tmax), for
some Tmax > 0. Since the initial density u0 is twice continuously differentiable and
satisfies the boundary condition, the comparison principle discussed in [12], Section
2.7, applies to (3.2). Hence, we start by constructing upper and lower solutions to
(3.2).

Clearly the zero function is a lower solution to equation (3.2). Next, we construct
an upper solution, v̄, to equation (3.2) of the form

v̄ = p(t)φ(x).

Then

v̄t − Lv̄ = (ṗ+ λ0p)φ.

Hence, v̄ is an upper solution provided that

p(0)φ(x) ≥ u0(x)

and

(ṗ+ λ0p)φ ≥
∫

Ω

v̄(t, x)dx
rpφ

k + pφ
.(3.3)

Since ∫
Ω

v̄(t, x)dx
rpφ

k + pφ
≤ p

∫
Ω

φdx
rpφ

k + pφ
≤ p2

∫
Ω

φdx
rφ

k
,

then (3.3) is true if the following equality holds:

ṗ+ λ0p = p2

∫
Ω

φdx
r

k
.

Solving for p we get

p(t) =
λ0p(0)e−λ0t

λ0 − cp(0) + cp(0)e−λ0t

where c is defined above.
Hence, if p(0) = α < λ0/c, then p(t) exists globally and approaches zero as

t → ∞. Therefore, if the initial condition of the population is small enough such
that

u0(x) <
λ0

c
φ = u0(x),(3.4)
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then (3.2) has a global classical solution v (see Theorem 7.1, page 83 in [12]). It is
not too difficult to argue that this solution coincides with the semigroup solution
of Remark 2.2. Furthermore, v satisfies the following:

0 < v(t) ≤ λ0αe
−λ0tφ

λ0 − cα+ cαe−λ0t
, t > 0.

Hence, v (t)→ 0 as t→∞. Applying Theorem 2.1, we get that

Tmax =
∫ ∞

0

a(v(s))ds =
∫ ∞

0

∫
Ω

v(s, x)dxds ≤
∫ ∞

0

λ0αe
−λ0t

∫
Ω
φdx

λ0 − cα+ cαe−λ0t
dt <∞.

(3.5)

From the nonnegativity of v, the solution to (3.1) satisfies

u(t) = v(τ(t))→ 0, as t→ Tmax.

This establishes the desired result.

For the case f(u) = ru(k − u), we set u0(x) =
λ0

c
φwhere c = rk

∫
Ω φdx. Then

we have the following theorem:

Theorem 3.2. If u0(x) < u0(x), then the solution u to equation (3.1) goes to
extinction in finite time.

Proof. Similar arguments as those in the proof of Theorem 3.1 establish the result.

3.2. Persistence. Let us consider first the case f(u) = ru/(k + u). Assume that
r
∫

Ω φdx > λ0, set

δ =
kλ0

r
∫

Ω
φdx − λ0

,

and define u0(x) = δφ where φ and λ0 are the same as before. Then we have the
following:

Theorem 3.3. If u0(x) ≥ u0(x), then the solution u to equation (3.1) is persistent.

Proof. Clearly p(t) = p(0) e|Ω| t with p(0) ≥ ‖u0‖∞ is an upper solution to (3.2).
Furthermore, letting v̂ = δφ, then using similar arguments as above it can be easily
verified that v̂ is a lower solution to (3.2), provided that u0 ≥ δφ. Hence, we see
that a classical solution v(t) to equation (3.2) exists globally and for u0 ≥ δφ we
have

v(t) ≥ v̂ = δφ.

By a similar argument as in the proof of Theorem 3.1 we can apply Theorem 2.1
to obtain

Tmax =
∫ ∞

0

a(v(s))ds =
∫ ∞

0

∫
Ω

v(s, x)dxds =∞.

Hence the solution to (3.1) satisfies

u(t) = v(τ(t)) ≥ δφ.

This establishes the desired result.
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For the case f(u) = ru(k− u), assume that 4λ0 < rk2
∫

Ω
φdx, let δ be a positive

solution of

λ0 = r(k − δ)δ
∫

Ω

φdx(3.6)

and define u0(x) = δφ. Then we have the following:

Theorem 3.4. If u0(x) ≥ u0(x), then the solution u to equation (3.1) is persistent.

Proof. For this case, an upper solution to (3.2) can be easily constructed as v̄ = M
where M = max{k, ‖u0‖∞}. Using similar arguments as in the proof of Theorem
3.3 we can show that v̂ = δφ is a lower solution to (3.2). Therefore, we obtain that
(3.2) has a classical global solution v(t), and the result can then be established by
repeating the arguments above.

Remark 3.5. In the proofs of Theorems 3.1-3.4 we establish more than finite time
extinction and persistence of the total population. In particular, from the proofs
of Theorems 3.1-3.2 we conclude that

lim
t→Tmax

sup
x∈Ω

u(t, x) = 0 .

Furthermore, from the proofs of Theorems 3.3-3.4 it follows that for any compact
set Q ⊂ Ω the solution to (3.1) satisfies lim inft→∞ u(t, x) > 0, for all x ∈ Q.

Remark 3.6. The results of this section can be extended to the following setting:
ut =

1
b(
∫

Ω u(t, x)dx)
Lu+ f(u) in Ω× (0, Tmax),

u = 0 on ∂Ω× (0, Tmax),
u(0, x) = u0(x) on Ω̄,

with b being an increasing continuously differentiable function with
∣∣∣ dbdξ (ξ)

∣∣∣ ≤ β, for
all ξ ≥ 0, and b(0) = 0.

4. Numerical results

In this section we consider the following special case of equation (3.1):
ut =

1∫ 1

0
u(t, x) dx

uxx + ru(k − u), (x, t) ∈ (0, 1)× (0, Tmax),

u(t, 0) = 0 = u(t, 1), t ∈ (0, Tmax),
u(0, x) = u0(x), x ∈ [0, 1].

(4.1)

To numerically solve this equation the following implicit backward finite difference
approximation was employed:


ui+1
j −uij

∆t = 1∑
N
j=1 ∆xuij

ui+1
j+1−2ui+1

j +ui+1
j−1

∆x2 + ruij(k − uij), j = 1, . . . , N − 1,

i = 1, . . . ,M,

ui+1
0 = 0 = ui+1

N , i = 1, . . . ,M,
u0
j = u0(xj), j = 0, . . . , N,

(4.2)

where ∆t = Tmax/M , ∆x = 1/N , xj = j∆x, j = 0, . . . , N , and ti = i∆t,
i = 0, . . . ,M . In (4.2) uij denotes the difference approximations of u(ti, xj). The
timeTmax is determined in our simulation as the time that satisfies the stopping
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criteria uMj < ε, where ε is a given tolerance. Hence, solving the discrete system
(4.2) is equivalent to solving the following tridiagonal system of linear equations:

Ai−→u i+1 = −→f i for i = 1, . . . ,M,

where

Ai =



(
1 +

2µ
P i

) (
− µ

P i

)
0 0 . . . 0(

− µ

P i

) (
1 +

2µ
P i

) (
− µ

P i

)
0 . . . 0

0
(
− µ

P i

) (
1 +

2µ
P i

) (
− µ

P i

)
. . . 0

. . . . . . . . . . . . . . . . . .

0 . . . 0
(
− µ

P i

) (
1 +

2µ
P i

) (
− µ

P i

)
0 . . . 0 0

(
− µ

P i

) (
1 +

2µ
P i

)


,

µ =
∆t

(∆x)2 ,
−→u i+1 =

[
ui+1

1 , ui+1
2 , . . . , ui+1

N−1

]
, P i =

N−1∑
j=1

uij∆x, and

−→
f i =

[
ui1 + ∆trui1

(
k − ui1

)
, ui2 + ∆trui2

(
k − ui2

)
, . . . , uiN−1 + ∆truiN−1

(
k − uiN−1

)]
.

In all of our simulations presented in this section we set r = 1, k = 10 and ε = 10−5.
Recall that the first eigenvalue and corresponding eigenfunction of{

−φ′′ = λφ in (0, 1),
φ(0) = 0 = φ(1)

is given by λ0 = π2 and φ = sinπx. Hence, for equation (4.1) c = rk
∫ 1

0
sinπxdx ≈

6.4 and u0(x) = π2

c sinπx ≈ 1.55 sinπx. In our numerical simulations, we set
u0(x) = 1.5 sinπx and present the results in Figure 1. The simulation indicates
that extinction occurs at Tmax = 0.32 for this case. From (3.5) simple calculations
reveal that an upper bound on Tmax is 0.34 which is in agreement with the numerical
result presented in Figure 1.

As for persistence, we choose u0(x) = δ sinπx, where δ = 1.92 is the first
positive solution of equation (3.6). Hence, for u0(x) ≥ u0(x) the solution should
persist for all times. Figure 2 presents the result of our simulation with u0(x) =
1.95 sinπx.This simulation indicates that the population converges to a positive
steady state.

Finally, we mention that we have performed numerical simulations for initial
conditions 1.55 sinπx ≤ u0(x) < 1.92 sinπx. While our theoretical results do not
conclude what the long time behavior is for such initial conditions, simulation
results indicate that extinction occurs for all u0(x) < 1.84 sinπx. However, if
u0(x) ≥ 1.84 sinπx, then the population persists. In fact, it tends to a positive
steady state.
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Figure 1. Extinction of the population density u(t, x) at time
Tmax = 0.32.
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Figure 2. Persistence of the population density u(t, x).
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