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NOTE ON A DIOPHANTINE INEQUALITY
IN SEVERAL VARIABLES

JEFFREY T. BARTON, HUGH L. MONTGOMERY, AND JEFFREY D. VAALER

(Communicated by Dennis A. Hejhal)

Abstract. We establish estimates for the number of points that belong to an

aligned box in (R/Z)N in terms of certain exponential sums. These generalize
previous results that were known only in case N = 1.

1. Introduction

Let ξ1, ξ2, . . . , ξM be a finite set of points in (R/Z)N . A basic problem in
Diophantine approximation is to estimate the number of points in this set which
belong to an aligned box in (R/Z)N from knowledge of the exponential sums

M∑
m=1

e(` · ξm) ,

where ` is restricted to a finite subset of ZN and e(x) = e2πix. The Erdös-Turán
inequality, as stated in [2], is a result of this sort, but it is generally not useful when
the measure of the box is small. In the case of a small box the usual approach
is Vinogradov’s “method of little glasses”, as discussed in [5], pp. 32-34. In the
present note we establish inequalities that are generally sharper and easier to use
in applications. For N = 1 this is described in [1], section 2.1, and in [3], section
1.2. Here we obtain the corresponding inequalities for arbitrary N .

Let B1 denote the collection of all normalized characteristic functions ϕu,v :
R/Z→ R defined by

ϕu,v(x) =


1 if u < x− n < v for some n ∈ Z ,
1
2 if u− x ∈ Z or if v − x ∈ Z ,
0 otherwise,

(1.1)

where u < v < u + 1. Then for each positive integer L let B1(L) ⊆ B1 be the
subcollection of functions (1.1) such that (v − u)(L + 1) is a positive integer. We
write BN for the collection of functions Φu,v : (R/Z)N → R of the form

Φu,v(x) =
N∏
n=1

ϕun,vn(xn) ,(1.2)
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where u and v are points in RN with un < vn < un + 1 in each coordinate. If L
in ZN has positive coordinates Ln, n = 1, 2, . . . , N , we write BN(L) ⊆ BN for the
subcollection of functions (1.2) such that (vn− un)(Ln + 1) is a positive integer for
each n = 1, 2, . . . , N . Given L and Φu,v in BN it will be convenient to set

(vn − un)(Ln + 1) = wn , n = 1, 2, . . . , N ,(1.3)

so that 0 < wn < Ln + 1. Thus Φu,v belongs to BN (L) if and only if wn ∈
{1, 2, . . . , Ln} for each n. Also, we use the lattice point L to determine the subset
L = L(L) ⊆ ZN defined by

L = {` ∈ ZN : |`n| ≤ Ln , n = 1, 2, . . . , N} .(1.4)

Now a precise form of the problem we consider in this note is as follows. If
ξ1, ξ2, . . . , ξM is a finite set of points in (R/Z)N , we wish to estimate sums of the
type

M∑
m=1

Φu,v(ξm)

from knowledge of the exponential sums

M∑
m=1

e(` · ξm) ,

where ` is in L. Here we are concerned with the case where the measure∫
(R/Z)N

Φu,v(x) dx =
N∏
n=1

(vn − un)

of the aligned box is small. Thus our main result is a lower bound for the number
of points in the box.

Theorem 1. Let Φu,v belong to BN (L) with w1, w2, . . . , wN determined by (1.3).
Assume that δ > 0 and η > 0 satisfy

N∑
n=1

w−1
n ≤ δ(1.5)

and ∑
`∈L
6̀=0

∣∣∣ M∑
m=1

e(` · ξm)
∣∣∣ ≤ ηM .(1.6)

Then we have

M(1− δ − η − δη)
N∏
n=1

(vn − un) ≤
M∑
m=1

Φu,v(ξm) .(1.7)

As an application of Theorem 1, we obtain a generalization to (R/Z)N of the
inequality given in [1] as Theorem 2.2 and in [4] as Corollary 21. We write ‖x‖ for
the distance from the real number x to the nearest integer.
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Corollary 2. Let 0 < εn ≤ 1
2 and set Ln = [Nε−1

n ] for each n = 1, 2, . . . , N .
Assume that

max
1≤n≤N

‖ξnm‖
εn

≥ 1(1.8)

for each point ξm in (R/Z)N , m = 1, 2, . . . ,M . Then we have

M ≤ 3
∑
`∈L
6̀=0

∣∣∣ M∑
m=1

e(` · ξm)
∣∣∣ .(1.9)

There is an upper bound analogous to (1.7), but this is much easier to prove.

Theorem 3. Let L in ZN have positive coordinates, let Φu,v belong to BN with
w1, w2, . . . , wN determined by (1.3). Assume that δ > 0 and η > 0 satisfy

N∏
n=1

(1 + w−1
n ) ≤ (1 + δ)(1.10)

and ∑
`∈L
6̀=0

∣∣∣ M∑
m=1

e(` · ξm)
∣∣∣ ≤ ηM .(1.11)

Then we have
M∑
m=1

Φu,v(ξm) ≤M(1 + δ + η + δη)
N∏
n=1

(vn − un) .(1.12)

2. Preliminary lemmas

As in [4] we define entire functions H, J and K by

H(z) =
(

sinπz
π

)2{ ∞∑
m=−∞

sgn(m)(z −m)−2 + 2z−1

}
,(2.1)

J(z) =
1
2
H ′(z) , and K(z) =

(
sinπz
πz

)2

.

We note that each of these functions is real valued on the real axis and has ex-
ponential type 2π. The functions J and K are integrable on R and their Fourier
transforms

Ĵ(t) =
∫ ∞
−∞

J(x)e(−tx) dx and K̂(t) =
∫ ∞
−∞

K(x)e(−tx) dx

are continuous functions supported on [−1, 1]. These Fourier transforms are given
explicitly by

Ĵ(t) = πt(1 − |t|) cotπt+ |t| if 0 < |t| < 1 ,

K̂(t) = (1− |t|) if 0 ≤ |t| ≤ 1 ,

Ĵ(0) = 1 , and Ĵ(t) = K̂(t) = 0 if 1 ≤ |t| .
If L is a positive integer we write JL+1(z) = (L+1)J((L+1)z) so that JL+1(z) has
exponential type 2π(L + 1). Then the Fourier transforms Ĵ and ĴL+1 are related
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by the identity Ĵ((L+ 1)−1t) = ĴL+1(t) for all real t. Similar remarks apply to K
and KL+1.

For each positive integer L we define trigonometric polynomials jL(x) and kL(x)
by

jL(x) =
∞∑

m=−∞
JL+1(x +m) =

L∑
`=−L

ĴL+1(`)e(`x)(2.2)

and

kL(x) =
∞∑

m=−∞
KL+1(x+m) =

L∑
`=−L

K̂L+1(`)e(`x) .(2.3)

The identities (2.2) and (2.3) follow from the Poisson summation formula. We also
define the periodic function ψ(x) by

ψ(x) = x− [x]− 1
2 if x /∈ Z , and ψ(x) = 0 if x ∈ Z .

The trigonometric polynomials

ψ ∗ jL(x) =
∫ 1/2

−1/2

ψ(x− y)jL(y) dy

=
L∑

`=−L
` 6=0

(−2πi`)−1Ĵ

(
`

L+ 1

)
e(`x)

and kL(x) satisfy the basic inequality

|ψ(x)− ψ ∗ jL(x)| ≤ (2L+ 2)−1kL(x)(2.4)

for all x in R/Z. A proof of (2.4) is given in [3], Chapter 1, and in [4], Theorem 18.
If u < v < u + 1, then the periodic functions ϕu,v(x) and ψ(x) are related by the
elementary identity

ϕu,v(x) = (v − u) + ψ(u− x) + ψ(x − v) .(2.5)

By combining (2.4) and (2.5) we obtain the inequality

|ϕu,v(x)− ϕu,v ∗ jL(x)|(2.6)

≤ |ψ(u− x)− ψ ∗ jL(u− x)|+ |ψ(x − v)− ψ ∗ jL(x− v)|
≤ (2L+ 2)−1{kL(u− x) + kL(x − v)}

for all x in R/Z. Alternatively, (2.6) follows directly from [4], Theorem 19.
We now establish some new inequalities.

Lemma 4. Let α and β be real numbers such that β−α = M is a positive integer.
Then

0 ≤ H(x− α) +H(β − x)(2.7)

for all real x.
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Proof. From (2.1) we have

H(x) +H(1− x) =
(

sinπx
π

)2{ ∞∑
m=−∞

sgn(m)(x −m)−2 + 2x−1

−
∞∑

n=−∞
sgn(n− 1)(x− n)−2 + 2(1− x)−1

}

=
(

sinπx
π

)2

{x−2 + 2(1− x)−1 + 2x−1 + (1− x)−2}

=
(

sinπx
π

)2

{x−1 + (1 − x)−1}2

≥ 0

for all real x. As H is an odd function, we conclude that

H(x) +H(M − x) =
M−1∑
m=0

{H(x−m) +H(1 +m− x)} ≥ 0 .(2.8)

The lemma follows from (2.8) by replacing x with x− α.

Lemma 5. Assume that the periodic function ϕu,v(x) belongs to B1(L). Then the
trigonometric polynomial

ϕu,v ∗ jL(x) =
∫ 1/2

−1/2

ϕu,v(x− y)jL(y) dy(2.9)

satisfies the inequality

0 ≤ ϕu,v ∗ jL(x) ≤ 1(2.10)

for all x in R/Z.

Proof. Write

χu,v(x) = 1
2{sgn(x − u) + sgn(v − x)}

for the normalized characteristic function of the real interval having endpoints u
and v. As u < v < u+ 1 we have the obvious identity

ϕu,v(x) =
∞∑

m=−∞
χu,v(x+m) .(2.11)

Next we apply (2.7) with α = u(L+ 1), β = v(L+ 1), and conclude that

0 ≤ 1
2

{
H((L+ 1)(x− u)) + H((L+ 1)(v − x))

}
(2.12)

= 1
2 (L + 1)

∫ v

u

H ′((L+ 1)(x− y)) dy

=
∫ ∞
−∞

JL+1(x− y)χu,v(y) dy
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for all real x. Then we use (2.2), (2.11), (2.12) and the fact that JL+1 is integrable,
to establish the inequality

0 ≤
∞∑

n=−∞

∫ ∞
−∞

JL+1(x + n− y)χu,v(y) dy(2.13)

=
∫ ∞
−∞

jL(x− y)χu,v(y) dy

=
∞∑

m=−∞

∫ m+1/2

m−1/2

jL(x− y)χu,v(y) dy

=
∫ 1/2

−1/2

jL(x− y)
{ ∞∑
m=−∞

χu,v(y +m)
}
dy

= ϕu,v ∗ jL(x) .

Now let

ϕv,u+1(x) = (u+ 1− v) + ψ(v − x) + ψ(x − u− 1)

be the normalized characteristic function of the complimentary interval in R/Z.
Then

ϕu,v ∗ jL(x) + ϕv,u+1 ∗ jL(x) =
∫ 1/2

−1/2

jL(y) dy = 1(2.14)

and we have just proved that

0 ≤ ϕv,u+1 ∗ jL(x)(2.15)

for all x in R/Z. Therefore (2.14) and (2.15) verify the inequality on the right of
(2.10).

Lemma 6. For each integer n = 1, 2, . . . , N , let αn, βn and εn be real numbers
such that 0 ≤ αn ≤ 1, 0 ≤ βn, αn − βn ≤ εn, and either εn = 0 or εn = 1. Then
we have

N∏
n=1

αn −
N∑
n=1

βn

N∏
m=1
m 6=n

αm ≤
N∏
n=1

εn .(2.16)

Proof. If εn = 1 for each n = 1, 2, . . . , N , then (2.16) is obvious. Assume that
ε` = 0 for some index `, 1 ≤ ` ≤ N . It follows that 0 ≤ α` ≤ β` and therefore

N∏
n=1

αn −
N∑
n=1
n6=`

βn

N∏
m=1
m 6=n

αm − β`
N∏
m=1
m 6=`

αm ≤ −
N∑
n=1
n6=`

βn

N∏
m=1
m 6=n

αm ≤ 0 .

This proves the lemma.

Let L be a point in ZN with positive coordinates and Φu,v a function in BN
having the representation (1.2). For each integer n = 1, 2, . . . , N , we define trigono-
metric polynomials

αn(xn) = ϕun,vn ∗ jLn(xn)

and

βn(xn) = (2Ln + 2)−1{kLn(xn − un) + kLn(xn − vn)} .
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We assemble these into multiple trigonometric polynomials

A(x) =
N∏
n=1

αn(xn) ,(2.17)

B(x) =
N∑
n=1

βn(xn)
N∏
m=1
m 6=n

αm(xm) ,(2.18)

and

C(x) =
N∏
n=1

{αn(xn) + βn(xn)} .(2.19)

Here A,B and C depend on u and v, but we drop reference to these points so as
to simplify our notation. It is clear that the Fourier coefficients of A,B and C are
supported on L ⊆ ZN . In particular, we find that

Â(0) =
∫

(R/Z)N
A(x) dx =

N∏
n=1

(vn − un) ,(2.20)

B̂(0) =
N∑
n=1

(Ln + 1)−1
N∏
m=1
m 6=n

(vm − um)(2.21)

=
{ N∑
n=1

w−1
n

} N∏
m=1

(vm − um) ,

and

Ĉ(0) =
N∏
n=1

{(vn − un) + (Ln + 1)−1}(2.22)

=
{ N∏
n=1

(1 + w−1
n )
} N∏
m=1

(vm − um) .

In case A,B and C take nonnegative values, we also get the estimates

|Â(`)| ≤ Â(0) , |B̂(`)| ≤ B̂(0) and |Ĉ(`)| ≤ Ĉ(0)(2.23)

for all ` in ZN . Lemma 5 shows that A and B take nonnegative values if Φu,v

belongs to BN (L), while (2.6) implies that C always takes nonnegative values.

Theorem 7. We have

Φu,v(x) ≤ C(x)(2.24)

for all x in (R/Z)N , and if Φu,v belongs to BN (L), then

A(x)−B(x) ≤ Φu,v(x)(2.25)

for all x in (R/Z)N .

Proof. The inequality (2.24) is obvious from (2.6) and the definition of C.
In order to verify (2.25) let

Eu,v = {x ∈ (R/Z)N : xn = un or xn = vn for some n , 1 ≤ n ≤ N} .
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Then either ϕun,vn(xn) = 0 or ϕun,vn(xn) = 1 for each point x in (R/Z)N \ Eu,v.
From Lemma 5 we know that

0 ≤ αn(xn) ≤ 1 and 0 ≤ βn(xn)(2.26)

for all xn in R/Z. And (2.6) implies that

αn(xn)− βn(xn) ≤ ϕun,vn(xn)(2.27)

for all xn in R/Z. It follows using (2.26), (2.27) and Lemma 6 that

A(x)−B(x) ≤ Φu,v(x)(2.28)

for all points x in (R/Z)N \ Eu,v. As the left hand side of (2.28) is a continuous
function of x, we have

A(x)−B(x) ≤ 0 ≤ Φu,v(x)

when x is in Eu,v.

We note that the entire functions H and K satisfy the basic inequality

| sgn(x)−H(x)| ≤ K(x)(2.29)

for all real x. This is established in [4], Lemma 5. If we use (2.29) in place of (2.4)
and apply Lemma 6, then it is possible to construct an entire function of N complex
variables having exponential type and such that its restriction to RN minorizes the
characteristic function of an aligned box in RN . We do not pursue these ideas here
as we require only the periodic version of this construction.

3. Proof of Theorems 1 and 3

Assume, as in the statement of Theorem 1, that Φu,v belongs to BN(L). Then
we apply (2.20), (2.21), (2.23) and (2.25). In this way we obtain the inequality

M
N∏
n=1

(vn − un)−
M∑
m=1

Φu,v(ξm)(3.1)

≤M
N∏
n=1

(vn − un) +
M∑
m=1

{B(ξm)−A(ξm)}

=
∑
`∈L

B̂(`)
M∑
m=1

e(` · ξm)−
∑
`∈L
6̀=0

Â(`)
M∑
m=1

e(` · ξm)

= M

{ N∑
k=1

w−1
k

} N∏
n=1

(vn − un) +
∑
`∈L
` 6=0

{B̂(`)− Â(`)}
M∑
m=1

e(` · ξm)

≤Mδ
N∏
n=1

(vn − un) + {B̂(0) + Â(0)}
∑
`∈L
6̀=0

∣∣∣ M∑
m=1

e(` · ξm)
∣∣∣

≤M(δ + η + δη)
N∏
n=1

(vn − un) .

The inequality (1.7) plainly follows from (3.1).
The proof of Theorem 3 is essentially the same but uses (2.22), (2.23) and (2.24).
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4. Proof of Corollary 2

Select L in ZN so that Ln = [Nε−1
n ] and note that

2 ≤ Ln and
N

Ln + 1
< εn(4.1)

for each n = 1, 2, . . . , N . Then select u and v in RN by setting

un = −N(Ln + 1)−1 and vn = N(Ln + 1)−1

for each n = 1, 2, . . . , N . From (1.8) and (4.1) we conclude that

Φu,v(ξm) = 0(4.2)

for each m = 1, 2, . . . ,M . Now let 0 < δ and 0 < η satisfy (1.5) and (1.6) in the
statement of Theorem 1. In view of (4.2) and the conclusion (1.7) of Theorem 1,
we must have

1− δ − η − δη ≤ 0 .(4.3)

As wn = (vn − un)(Ln + 1) = 2N for each n = 1, 2, . . . , N , we can take δ = 1/2.
Then 1/3 ≤ η follows immediately from (4.3). This verifies the corollary.
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