A COMPACT SET WITH NONCOMPACT DISC-HULL

BUMA FRIDMAN, LOP-HING HO, AND DAOWEI MA

(Communicated by Steven R. Bell)

ABSTRACT. The disc-hull of a set is the union of the set and all H^{∞} discs whose boundaries lie in the set. We give an example of a compact set in \mathbb{C}^2 whose disc-hull is not compact, answering a question posed by P. Ahern and W. Rudin.

The polynomial hull of a compact set $X \subset \mathbb{C}^n$ is the set \widehat{X} of all points $x \in \mathbb{C}^n$ at which the inequality $|P(x)| \leq \max\{|P(z)| : z \in X\}$ holds for every polynomial P. Let U denote the unit disc in \mathbb{C} . In [1] P. Ahern and W. Rudin introduced the following definition.

"If $\Phi: U \to \mathbb{C}^n$ is a non-constant map whose components are in $H^{\infty}(U)$, its range $\Phi(U)$ is called an H^{∞} -disc, parametrized by Φ . If $\lim_{r \nearrow 1} (\Phi(re^{i\theta})) \in X$ for almost all $e^{i\theta}$ on the unit circle T, then $\Phi(U)$ is an H^{∞} -disc whose boundary lies in X."

They further define the disc-hull D(X) to be the union of X and all H^{∞} -discs whose boundaries lie in X. Because of the maximum principle, $D(X) \subset \widehat{X}$. One of the questions posed in [1] (see p. 25) is whether the disc-hull D(X) is always compact for a compact set $X \subset \mathbb{C}^n$.

Below we answer this question negatively by constructing a counter-example in \mathbb{C}^2

- 1. Define $\omega = \{z \in U : \operatorname{Re} z > \frac{1}{2}\}$. Let $\varphi : \overline{U} \to \overline{\omega}$ be the Riemann map satisfying $\varphi(\pm i) = \frac{1}{2} \pm \frac{\sqrt{3}}{2}i$ and $\varphi(1) = 1$. Therefore $\operatorname{Re} \varphi(e^{i\theta}) = \frac{1}{2}$ for $\operatorname{Re} e^{i\theta} \leq 0$. Also, $0 \notin \varphi(\overline{U})$, $|\varphi(0)| < 1$, and hence $\lim_{n \to \infty} \varphi^n(0) = 0$.
- 2. Let $X = \{(\zeta, \eta) \in \mathbb{C}^2 : \zeta \in T, \eta \in \Gamma_{\zeta}\}$, where the fiber Γ_{ζ} is defined as follows. $\Gamma_{\zeta} = T$ for $\operatorname{Re} \zeta > 0$, $\Gamma_{\zeta} = \overline{U}$ for $\zeta = \pm i$, and $\Gamma_{\zeta} = \{\varphi^n(\zeta) : n \in \mathbb{N}\} \cup \{0\}$ for $\operatorname{Re} \zeta < 0$.

One can check that the complement $\mathbb{C}^2\backslash X$ of X is an open set and, since X is also bounded, it is compact. One can also notice that X is connected.

3. For each n consider

$$\Phi_n(z) = (z, \varphi^n(z)) : U \to \mathbb{C}^2.$$

By construction, $\Phi_n(T) \subset X$, so, $\Phi_n(U) \in D(X)$. One can see that $\lim_{n\to\infty} \Phi_n(0) = (0,0)$; therefore $(0,0) \in \overline{D(X)}$.

Received by the editors August 31, 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 32E20.

Key words and phrases. Polynomial convexity, disc-hull.

4. To complete the example we now need to show that $(0,0) \notin D(X)$. If not, then there is an H^{∞} -disc $\Phi(U)$, $\Phi(z) = (\alpha(z), \beta(z)) : U \to \mathbb{C}^2$, such that $\lim_{r \nearrow 1} (\Phi(rt)) \in X$ for almost all $t \in T$ and $(0,0) \in \Phi(U)$. Without loss of generality we may assume that $\Phi(0) = (\alpha(0), \beta(0)) = (0,0)$ (one can consider $\Phi \circ \psi$ in place of Φ for a suitable Möbius transformation ψ). Since by construction $\lim_{r \nearrow 1} (\alpha(re^{i\theta})) \in T$ for almost all $e^{i\theta}$, $\alpha(z)$ is a nonconstant inner function.

For any function $u(z) \in H^{\infty}(U)$ the radial $\lim_{r \nearrow 1} (u(re^{i\theta}))$ exists for almost all $t = e^{i\theta} \in T$. Let u(t) denote the corresponding limit. The following property of an H^{∞} function u(z) (see [2], p. 339) will be used:

(1) If
$$u(t) = 0$$
 for $t \in T' \subset T$, and T' has positive measure, then $u(z) = 0$ for all $z \in U$.

For the function $\alpha(z)$ we introduce the set

$$T_0 = \{t \in T : \alpha(t) \text{ exists and } \alpha(t) \in T\},\$$

so T_0 is almost all of T. Consider the following sets:

$$S^{-} = \alpha^{-1} \{ e^{i\theta} : \operatorname{Re} e^{i\theta} < 0 \} \cap T_0,$$

$$S^{+} = \alpha^{-1} \{ e^{i\theta} : \operatorname{Re} e^{i\theta} > 0 \} \cap T_0,$$

$$S^{0} = \alpha^{-1} \{ e^{i\theta} : \operatorname{Re} e^{i\theta} = 0 \} \cap T_0.$$

Our main goal now is to prove that S^- has positive measure. Notice that $S^- \cup S^+ \cup S^0 = T_0$ which has full circle measure.

The set $\alpha(S^0)$ consists of two points and if S^0 had positive measure, then according to (1), $\alpha(z)$ would be constant. Therefore, S^0 has measure 0. If S^+ had the full measure, then $\operatorname{Re} \alpha(0)$ would be positive since it is the average of its values on T, but $\alpha(0) = 0$. Therefore, the measure of S^- is positive.

Introduce now the following functions: $u_p(z) = \beta(z) - \varphi^p(\alpha(z))$ for p = 1, 2, ...; $u_0(z) = \beta(z)$. All of them are in $H^{\infty}(U)$. Define $S_p = \{t \in T : u_p(t) = 0\}$. One can see that by construction almost all points of S^- lie in $\bigcup S_p$. Therefore there exists a q such that S_q has positive measure.

If q = 0, then by (1), $\beta(z) = u_0(z) = 0$ on U. This implies that X (containing almost all of $\Phi(T)$) contains almost all points $(e^{i\theta}, 0)$. This is impossible since for all Re $e^{i\theta} > 0$, the point $(e^{i\theta}, 0) \notin X$.

Therefore q > 0. So, by (1), $u_q(z) = \beta(z) - \varphi^q(\alpha(z)) = 0$ for all of U. Now $0 = \beta(0) = \varphi^q(\alpha(0))$, and $\varphi(0) = 0$, contradicting $0 \notin \varphi(\overline{U})$.

Remark. One can see that the entire disc $(U,0) \subset \widehat{X}$ and all the points of this disc belong to $\overline{D(X)}$ but not to D(X).

Added after posting

After the galley proofs were returned, the authors were informed by J. Globevnik that a different counterexample was published by Herb Alexander in "A disc-hull in \mathbb{C}^2 ", Proc. Amer. Math. Soc. **120** (1994), 1207–1209.

References

- [1] Patrick Ahern and Walter Rudin. Hulls of 3-spheres in \mathbb{C}^3 . Contemporary Math., v 137, Amer. Math. Soc., Providence, RI, 1992, 1-27. MR 93k:32020
- [2] Walter Rudin. Real and Complex Analysis, 2nd ed. McGraw-Hill, New York, 1974. MR 49:8783

Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-0033

 $E\text{-}mail\ address: \texttt{fridman@math.twsu.edu}$

Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-0033

 $E\text{-}mail\ address{:}\ \texttt{lho@twsuvm.uc.twsu.edu}$

Department of Mathematics and Statistics, Wichita State University, Wichita, Kansas 67260-0033

 $E\text{-}mail\ address{:}\ \mathtt{dma@math.twsu.edu}$