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LOCAL COMPLETENESS
AND DUAL LOCAL QUASI-COMPLETENESS
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(Communicated by Dale E. Alspach)

Abstract. It is proved that lq-completeness (1 < q <∞) is equivalent to l1-
completeness (defined by Saxon and Sánchez Ruiz), and becomes a new char-
acteristic condition for local completeness. The relationship between dual local
completeness, dual local quasi-completeness and the Banach-Mackey property
is investigated. For a quasi-Mackey space, dual local quasi-completeness, c0-
quasi-barrelledness, Ruess’ property (quasi-L) and C-quasi-barrelledness are
equivalent to each other.

1. Local completeness

In this paper, every space will be assumed a Hausdorff locally convex space over
the scalar field of real or complex numbers. Let (E, t) be a space; then (E, t)′, or
briefly E′, denotes the topological dual of (E, t) and E# denotes the algebraic dual
of E. Let E′′ denote (E′, β(E′, E))′. Recall that a space E is locally complete if
and only if every bounded closed absolutely convex subset of E is a Banach disk
[4, Proposition 5.1.6]. It is easy to see that local completeness is duality invariant.
That is to say, if two spaces (E, t) and (E, s) have the same topological dual and
one is locally complete, then so is the other. P. Dierolf ([2] or [4, Theorem 5.1.11])
proved that the following conditions on a space (E, t) are equivalent:

(I) (E, t) is locally complete.
(II) The closed absolutely convex hull of every locally null sequence in (E, t) is

compact.
(III) The closed absolutely convex hull of every null sequence in (E, σ(E,E′)) is

compact in (E, σ(E,E′)).
(IV) The closed absolutely convex hull of every null sequence in (E, t) is compact.
From [4, the proof of Proposition 3.2.12], we also see that (E, t) is locally com-

plete if and only if for each null sequence (xn) in (E, t) and each scalar sequence
(λn) ∈ l1, the series

∑∞
n=1 λnxn converges in (E, t). Recently Saxon and Sánchez

Ruiz [6] proved that a space E is locally complete if and only if it is l1-complete.
Reminiscently of De Wilde [1, Proposition III.1.4 and V.3.2], they defined a space
E to be l1-complete if, for each bounded sequence (xn) ⊂ E and each (λn) ∈ l1, the
series

∑∞
n=1 λnxn converges in E. We shall extend the concept to lq-completeness
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(1 ≤ q ≤ ∞). If 1 ≤ p ≤ ∞, let lp(E) denote all sequences (xn) in E such that
(ρ(xn)) ∈ lp for each continuous seminorm ρ on E (see [4, Definition 4.8.1 and
4.8.2]). Thus, for example, l∞(E) denotes all bounded sequences in E.

Definition 1. A space E is said to be lq-complete (1 ≤ q ≤ ∞) if, for each (λn) ∈ lq
and each (xn) ∈ lp(E), the series

∑∞
n=1 λnxn converges in E, where 1

p + 1
q = 1.

Remark 1. When q = 1 we have l1-completeness defined just as in [6]. When
q =∞ we have l∞-completeness of E, clearly equivalent to the following condition:
for every (xn) ∈ l1(E), the series

∑∞
n=1 xn converges in E; i.e., every absolutely

Cauchy series converges in E. If every unconditionally Cauchy series converges, E is
said to be

∑
-complete [4, 5.3]. Here,

∑∞
n=1 xn unconditionally Cauchy means that

each
∑
n∈σ xn is arbitrarily close to the origin whenever σ is a finite set of sufficiently

large positive integers. Clearly,
∑

-complete⇒ l∞-complete. The converse fails, as
shown by the following Example 1.

Example 1. For any x = (ξn) ∈ c0, define ‖x‖ = supn |ξn|. Then (c0, ‖ ‖)′ = l1

and (l1, β(l1, c0)) = (l1, ‖ ‖1), where for any y = (ηn) ∈ l1, ‖y‖1 =
∑∞

n=1 |ηn|. As is
well known, a subset K of (l1, ‖ ‖1) is relatively compact if and only if the following
conditions are satisfied:

(I) there is M > 0 such that
∑∞
n=1 |ηn| ≤M for any y = (ηn) ∈ K;

(II) for any ε > 0, there is m0 ∈ N such that when m ≥ m0,
∑∞

n=m |ηn| < ε for
every y = (ηn) ∈ K.

For any relatively compact subset K of (l1, ‖ ‖1), we define a seminorm pK on c0
as follows:

pK(x) = sup

{∣∣∣∣∣
∞∑
n=1

ξnηn

∣∣∣∣∣ : y = (ηn) ∈ K
}
,

for any x = (ξn) ∈ c0. Let t denote the topology on c0 generated by all seminorms
pK as above. Since (l1, ‖ ‖1) is complete and in (l1, ‖ ‖1) the weakly compact sets
and strong compact sets coincide, we may conclude that (c0, t) = (c0, τ(l∞, l1)|c0).
Thus (E, t) := (c0, t) illustrates what we defined in the next section as a quasi-
Mackey space. Consider a series

∑∞
n=1 xn in E. If each xn has 1 at the nth

coordinate and 0’s elsewhere, (II) ensures that pK(
∑

n∈σ xn) < ε whenever each
member m of the finite set σ satisfies m ≥ m0. Thus the series is unconditionally
Cauchy but not even weakly convergent, provingE is not

∑
-complete. On the other

hand, given any series in E with
∑∞

n=1 ‖xn‖ =∞, we may choose a sequence (bn)
of posive scalars tending to 0 so slowly that

∑∞
n=1 bn‖xn‖ =∞ still holds. We then

choose each yn ∈ l1 with ‖yn‖ = bn and
∑∞
i=1 xn(i) ·yn(i) = ‖xn‖ ·‖yn‖1 = bn‖xn‖.

The null sequence (yn) is a relatively compact set K in (l1, ‖ ‖1) such that each
pK(xn) ≥ ‖xn‖bn, which implies that

∑∞
n=1 pK(xn) = ∞. This proves that any

absolutely Cauchy series in (E, t) is also absolutely Cauchy and then convergent in
the Banach space (c0, ‖ ‖), and therefore convergent in the weaker topology t. We
conclude that the non-

∑
-complete (E, t) is l∞-complete.

Remark 2. l∞-completeness certainly implies l1-completeness, equivalently, local
completeness [6], but the converse is false. Indeed, Pérez Carreras and Bonet [4,
Example 5.1.12] noted that. By duality invariance, E := (c0, σ(c0, l1)) is locally
complete but is not l∞-complete since the canonical unit vectors are not summable
in E. (They put “sequentially complete” in place of “l∞-complete”.)
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It is somewhat surprising that lq-completeness (1 < q < ∞) is equivalent to
l1-completeness. Thus lq-completeness (1 < q < ∞) becomes a new characteristic
condition for local completeness.

Theorem 1. For any space E the following statements are equivalent:
(I) E is locally complete.
(II) (Saxon and Sánchez Ruiz ) E is l1-complete.
(III) E is lq-complete (1 < q <∞).

Proof. The equivalence of (I) and (II) is Theorem 2.1 of [6].
(III)⇒ (II): If (λn) ∈ l1 and (xn) ∈ l∞(E), then for 1 < q < ∞ and 1

p + 1
q = 1

we have
∞∑
n=1

λnxn =
∞∑
n=1

|λn|
1
q |λn|

1
p (sgn λn)xn

converges in E by (III), since (|λn|
1
q ) ∈ lq and (|λn|

1
p (sgn λn)xn) ∈ lp.

(II)⇒ (III): Suppose (λn) ∈ lq and (xn) ∈ lp(E), with p and q as above. Since∑∞
n=1 |λn|q < ∞, we may inductively find 1 = m1 < m2 < · · · such that, defining

σk = {n ∈ N : mk ≤ n < mk+1} for k = 1, 2, · · · , we have∑
n∈σk

|λn|q ≤ 2−kq for k = 2, 3, · · · .

We must use (II) to show that
∑∞

n=1 λnxn converges in E. The series is absolutely
Cauchy by the Hölder inequality, so we need only show that its sequence of partial
sums has a convergent subsequence. Define yk = 2k

∑
n∈σk λnxn for k ≥ 1. Given

a continuous seminorm ρ, the sum (
∑∞

n=1[ρ(xn)]p)
1
p := M is finite. Thus for k ≥ 2

the triangle and Hölder inequalities imply that

ρ(yk) ≤ 2k
(∑
n∈σk

|λn|q
) 1
q
(∑
n∈σk

[ρ(xn)]p
) 1
p

≤ 2k (2−kq)
1
q M = M.

Hence (yk) ∈ l∞(E). Now (2−k) ∈ l1 and (II) implies that
∑∞
k=1 2−kyk converges

in E, so its sequence of partial sums is the desired convergent subsequence.

We end this section with a brief discussion of the relationship between convex
compactness (cc) and various notions of completeness. Recall that a space E is
said to have the convex compactness property if the closed absolutely convex hull of
every compact subset of E is still compact [10, Definition 9-2-8]. In [4, 5.3], E is said
to be p-complete (in [10, Problem 6-5-107], N-complete; see [3, §23, 9(1)]) if every
precompact subset of E is relatively compact; i.e. every closed totally bounded
set is compact. Surely, quasi-complete⇒ p-complete, Wheeler denied the converse
[10, Table 4], p-complete⇒ cc [10, Problem 9-2-111], and cc⇒ locally complete by
(iv) of Dierolf’s Theorem. An amplified Pérez Carreras/Bonet scheme (see [4, 5.3])
emerges:

complete ⇒
6⇐ q-c ⇒

6⇐ p-c ⇒
6⇐ s-c ⇒

6⇐
∑

-c ⇒
6⇐ l∞-c ⇒

6⇐ lq-c (1 ≤ q <∞)⇔ lc

⇓6⇑ 6⇓⇑
convex compactness property

Here, q-c, p-c, s-c,
∑

-c, l∞-c, lq-c and lc respectively denote “quasi-com-
plete”, “p-complete”, “sequentially complete”, “

∑
-complete”, “l∞-complete”, “lq-

complete” and “locally complete”. The convex compactness property cannot be
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better placed, since s-c 6⇒ cc 6⇒ l∞-c. Indeed, Ostling and Wilansky found an s-c
space without the cc property [10, Problem 9-2-301], and (c0, σ(c0, l1)) has the cc
property [10, Theorem 14-2-4] but is not l∞-c (Remark 2). All eight notions of
completeness coincide under metrizability [4, Corollary 5.1.9].

2. Dual local quasi-completeness

Recall that a space E is dual locally complete if (E′, σ(E′, E)) is locally complete
(cf. [6]). Saxon and Sánchez Ruiz [6] investigated dual local completeness and ob-
tained a number of interesting results. Each characterization of local completeness
gives one of dual local completeness and vice versa, since [E is locally complete]⇔
[(E, σ(E,E′)) is locally complete]⇔ [(E′, σ(E′, E)) is dual locally complete]. Thus,
for example, the Ruess characterization in [6, Theorem 2.3(4)] may be written as
follows:

(Ruess) A space E is locally complete if and only if, given any h ∈ E′
# and

any absolutely convex absorbing set A in E′ such that h|A is relatively σ(E′, E)-
continuous, it must be so that h is σ(E′, E)-continuous; i.e., there exists x0 ∈ E
such that h = x̂0, or h(f) = f(x0) for every f ∈ E′.

Following Tsirulnikov [9], a space E is called dual locally quasi-complete if its
strong dual (E′, β(E′, E)) is locally complete. Tsirulnikov, Ruess, et al. surely
knew that dual locally complete (dlc)⇒ dual locally quasi-complete (dlqc); indeed,
this follows from [4, Proposition 5.1.6(iv)], or we may observe that if

∑∞
n=1 λnfn

converges to f in (E′, σ(E′, E)) with (λn) ∈ l1, and if (fn) is β(E′, E)-bounded,
then, routinely,

∑∞
n=1 λnfn converges to f uniformly on bounded sets of E, i.e. in

(E′, β(E′, E)).
Let (E, t) be a space. An increasing sequence σ = {An : n ∈ N} of absolutely

convex subsets of E is said to be absorbing (bornivorous) if for every x in E (ev-
ery bounded subset B of E) there is a positive integer m such that Am absorbs x
(absorbs B); see [4, Definition 8.1.15]. We denote by tσ the finest locally convex
topology on E that induces the same topology as t on each An. The topology tσ
is defined by the family of those seminorms whose restrictions to the sets An are
continuous for the topology induced on An by t (cf. [6]). Absorbing and borniv-
orous sequences of absolutely convex sets were considered by Valdivia, De Wilde,
Houet, Garling, Roelcke, Ruess, et al. (cf. [4, 8.9]). Ruess [5] defined a space
(E, t) to have property ([quasi-]L) if t = tσ holds for each absorbing [bornivorous]
sequence σ, and to have the weaker property ([quasi-]LC) if each tσ is compatible
with the dual pair (E,E′). We remark that in the above definitions of Ruess’ four
properties ([quasi-]L) and ([quasi-]LC), it makes no difference whether the absorb-
ing [bornivorous] sequences are required to be closed or not, by [4, Proposition
8.1.17(i)].

Ruess’ characterizations of dual local [quasi-]completeness also make it clear that
dlc ⇒ dlqc. Please refer to [4, Proposition 8.1.29] and [6, Theorem 2.3].

Theorem 2 (Ruess). For any space E the following statements are equivalent:
(I) E is dual locally [quasi-]complete.
(II) E has property ([quasi-]LC).
(III) If f ∈ E# such that f |A is continuous, where A is a [bornivorous] barrel

in E, then f ∈ E′.
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A modern statement of the Banach-Mackey Theorem [6] is that every dlc space
E has the Banach-Mackey property; i.e., the σ(E′, E)-bounded sets are β(E′, E)-
bounded, or, equivalently, barrels in E are bornivores. The converse is evidently
true when E is dlqc, and this observation transforms the Banach-Mackey theorem
into another characterization of dual local completeness that augments, along with
dual lq-completeness (1 < q <∞), the collection in [6].

Theorem 3 (Banach-Mackey). A space E is dual locally complete if and only if it
is dual locally quasi-complete and has the Banach-Mackey property. That is to say,
a dual locally quasi-complete space is dual locally complete if and only if it has the
Banach-Mackey property.

When E is a Mazur space [10, Definition 8-6-3], then (E′, β(E′, E)) is complete
[10, Corollary 8-6-6], and is certainly locally complete; i.e., Mazur⇒ dlqc. By Theo-
rem 3, then, a Mazur space is dlc if and only if it has the Banach-Mackey property.
This is just [6, Theorem 2.6], viewed now as a corollary to the Banach-Mackey
Theorem. Note that E need not be a Mazur space even though (E′, β(E′, E)) is
complete; e.g., take E = (l1, τ(l1, c0)) [10, Problem 8-6-119]. Hence, Theorem 3
is a useful characterization of dual local completeness which properly extends [6,
Theorem 2.6].

The observations that
(I) E is dlc ⇒ E is dlqc ⇔ (E′′, σ(E′′, E′)) is dlc, and

(II) each σ(E′, E)-bounded set is β(E′, E′′)-bounded ⇔ both E, (E′′, σ(E′′, E′))
have the Banach-Mackey property

combine with Theorem 3 as follows.

Corollary 1. In a dlc space E, each σ(E′, E)-bounded set is β(E′, E′′)-bounded.

Remark 3. Banach-Mackey 6⇒6⇐ dlqc: Trivially, any non-barrelled normed space is
dlqc but is without the Banach-Mackey property. Conversely, let (X, ‖ ‖) be any
barrelled normed space which is not complete [10, Problem 3-1-4], equivalently, not
lc, and put E := (X ′, τ(X ′, X)). Then (E′, β(E′, E)) = (X, β(X,X ′)) = (X, ‖ ‖)
is not locally complete; i.e. E is not dlqc. But E does have the Banach-Mackey
property, since σ(E′, E)-bounded ⇔ σ(X,X ′)-bounded ⇔ β(X,X ′)-bounded ⇔
β(E′, E)-bounded.

Remark 4. Note in the above that E = E′′. Therefore, [each σ(E′, E)-bounded set
is β(E′, E′′)-bounded] 6⇒ [E is dlqc].

Mazon defined a space E to be C-[quasi-]barrelled [4, Definition 8.2.6] if U :=⋂∞
n=1 Un is a neighborhood of 0 whenever (Un) is a sequence of absolutely con-

vex closed neighborhoods of 0 such that any given singleton [bounded] set is con-
tained in Un for almost all n. According to Webb, (E, t) is c0-[quasi-]barrelled
if each σ(E′, E)-null [β(E′, E)-null] sequence is t-equicontinuous. It is known [4,
Proposition 8.1.29, Observation 8.2.7 and 8.2.23] that C-[quasi-]barrelled implies
both c0-[quasi-]barrelled and Ruess’ property ([quasi-]L), either of which implies
dual locally [quasi-]complete, respectively. Furthermore, each one of the four quasi-
exclusive conditions implies the corresponding quasi-inclusive condition. It has also
been known for some time that, in both the quasi-inclusive and -exclusive cases, the
latter three notions coincide under the assumption of the Mackey topology (see [4,
Proposition 8.1.29 and Observation 8.2.23(c)]). Recently, Saxon and Sánchez Ruiz
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[7] showed that [Mackey and dlc] ⇒ [C-barrelled], so that, in the quasi-exclusive
case, all four notions coincide for Mackey spaces. Their proof applies equally well
to the inclusive case.

Theorem 4 (Saxon and Sánchez Ruiz). For a Mackey space E the following are
respectively equivalent:

(a) E is dual locally [quasi-]complete.
(b) E is c0-[quasi-]barrelled.
(c) E has property ([quasi-]L).
(d) E is C-[quasi-]barrelled.

Thus a space E with dual local quasi-completeness, the weakest of the four
“quasi” properties, suddenly enjoys C-quasi-barrelledness, the strongest of the four,
when it is endowed with its Mackey topology. Let us identify another such com-
patible topology.

Definition 2. A space E is called a quasi-Mackey space if it has its quasi-Mackey
topology; i.e., the topology induced by (E′′, τ(E′′, E′)).

Köthe [3, §23,4.(6)] noted that the quasi-Mackey topology is compatible with
the pairing (E,E′) and may be strictly coarser than the Mackey topology τ(E,E′),
e.g., when E = c0 with E′ = l1. This permits a new parallel to Theorem 4’s
quasi-inclusive case.

Theorem 5. For a quasi-Mackey space E the following statements are equivalent:
(a) E is dual locally quasi-complete.
(b) E is c0-quasi-barrelled.
(c) E has property (quasi-L).
(d) E is C-quasi-barrelled.

Proof. It suffices to show that (a)⇒ (d): Suppose U :=
⋂∞
n=1 Un is given as in the

definition of C-quasibarrelled. For A ⊂ E′, let A◦ and A• denote the polar of A in
E and E′′, respectively. Since E is quasi-Mackey, for each Un there is an absolutely
convex σ(E′, E′′)-compact set Cn such that Un ⊃ C•n ∩ E = C◦n. As Cn is also
σ(E′, E)-compact and hence σ(E′, E)-closed, we have Cn = C◦◦n ⊃ U◦n. Therefore
C•n ⊂ U◦•n , and the latter is a 0-neighborhood in (E′′, τ(E′′, E′)). Given z ∈ E′′,
there exists a bounded set B ⊂ E such that z ∈ B◦•, and by definition, B ⊂ Un
for almost all n. Therefore z ∈ U◦•n for almost all n. Duality invariance and (a)
imply that (E′′, τ(E′′, E′)) is dlc; hence C-barrelled, by Theorem 4. It follows that
W :=

⋂∞
n=1 U

◦•
n is a 0-neighborhood in (E′′, τ(E′′, E′)), and thus

W
⋂
E =

∞⋂
n=1

(U◦•n ∩ E) = ∩∞n=1U
◦◦
n = U

is a 0-neighborhood in the quasi-Mackey space E.

By definition, a c0-quasi-barrelled space remains so under any finer compatible
topology. Dierolf’s Theorem and Theorem 5 each implies that if (E, t) is dlqc with
t finer than the quasi-Mackey topology, then (E, t) is c0-quasi-barrelled. This prop-
erly extends the quasi-inclusive case of (a)⇔ (b), Theorem 4.

Corollary 2. A space whose topology lies between its Mackey and quasi-Mackey
topologies is c0-quasi-barrelled if and only if it is dual locally quasi-complete.
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We cannot similarly extend the quasi-exclusive case of (a) ⇔ (b), Theorem 4:
If we take E = c0 with E′ = l1 and give E its quasi-Mackey topology, as in
Example 1, then E is dlc but is not c0-barrelled, since the canonical unit vectors
are not equicontinuous on E. A fortiori, E is not C-barrelled. Yet E does have
property (L), as noted in [8]. In fact, Theorem 5 provides a general proof: E
has property (quasi-L), and the Banach-Mackey property says that every closed
absorbing sequence is bornivorous [6, Theorem 2.4].

Corollary 3. A quasi-Mackey space has property (L) if and only if it is dual locally
complete.
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