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A NOTE ON EXTENSIONS OF ASYMPTOTIC DENSITY

A. BLASS, R. FRANKIEWICZ, G. PLEBANEK, AND C. RYLL–NARDZEWSKI

(Communicated by Dale Alspach)

Abstract. By a density we mean any extension of the asymptotic density

to a finitely additive measure defined on all sets of natural numbers. We
consider densities associated to ultrafilters on ω and investigate two additivity
properties of such densities. In particular, we show that there is a density ν
for which L1(ν) is complete.

1. Introduction

We denote the set of natural numbers by ω (= {0, 1, 2, . . .}), and often regard
any n ∈ ω as the set {0, 1, . . . , n − 1}. The symbol P(ω) stands for the family of
all subsets of ω. Recall that the asymptotic density of a set A ⊆ ω, denoted here
by d(A), is defined as

d(A) = lim
n→∞

|A ∩ n|
n

,

provided this limit exists. Note that, while d is finitely additive, the domain of d is
not an algebra. Several authors have considered extensions of asymptotic density
to a finitely additive measure defined on a certain algebra of sets; see for instance
Buck [2], Maharam [6], and Mekler [7]. In the sequel, any finitely additive ν defined
on P(ω) and extending d will be called a density.

Following Buck [2] and Mekler [7], we shall consider a certain additivity prop-
erty of densities. Say that a density ν has property AP(*) if for every increasing
sequence (Ai)i≥1 ⊆ P(ω) there is a set B ∈ P(ω) such that

(i) Ai ⊆∗ B for every i;
(ii) ν(B) = limi ν(Ai).

Here and below, we write A ⊆∗ B to denote that the set A \B is finite; in this case
we also say that A is almost included in B.

Suppose now that a σ-algebra F of subsets of an arbitrary space X is given,
and that ν is a finitely additive finite measure defined on F . One can consider the
following natural weakening of AP(*): Say that ν has property AP(null) if for
every increasing sequence (Ai)i≥1 ⊆ F there is a set B ∈ F such that

(i)′ ν(Ai \B) = 0 for every i;
(ii) ν(B) = limi ν(Ai).

Received by the editors June 29, 1999 and, in revised form, March 17, 2000.
2000 Mathematics Subject Classification. Primary 28A12; Secondary 03E05, 03E35, 11B05.
The first-named author was partially supported by NSF grant DMS–9505118.
The other authors were partially supported by KBN grant 2P03A 018 13.

c©2001 American Mathematical Society

3313



3314 A. BLASS, R. FRANKIEWICZ, G. PLEBANEK, AND C. RYLL–NARDZEWSKI

Property AP(null), which is a weak version of continuity from below, charac-
terizes those finitely additive measures ν (defined on a σ-algebra F), for which the
space L1(ν) is complete in the “usual” metric; see [5] and [4] (and see [1] for the
theory of L1 spaces over finitely additive measures).

The authors of [5] asked whether there exists a density with property AP(null).
We give below a positive answer to that question and present some related results,
some of which build on ideas from [7].

Every free ultrafilter U on ω defines, in a natural way, a certain density νU (see
section 2). We shall show that νU has property AP(null) whenever U contains a
set which is thin enough. Our next result yields a short proof of a result due to
Mekler [7]—we show that νU has property AP(*) provided U is a P-point ultrafilter.
We also prove that there is a U giving a density νU which has property AP(null)
but fails to have AP(*). Finally, we explain that, roughly speaking, one cannot
retrieve properties of U from corresponding properties of νU . In particular, νU can
have property AP(*) even if U is not a P-point.

2. Ultrafilters and densities

Let U be a free ultrafilter on a space X . Given a bounded function α : X → R,
we write a = U-limx α(x) if {x : |ax − a| < ε} ∈ U for every positive ε. If U is a
free ultrafilter on ω, then it is routine to check that the formula

νU(A) = U-lim
n

|A ∩ n|
n

,

defines a finitely additive extension of the asymptotic density to the power set of
ω (that is, νU is a density in our terminology). The averaging process involved in
densities can also be expressed in terms of the Cesàro matrix, as explained in [7].

Recall that a free ultrafilter U is called a P-point if for every sequence (Xi)
of elements of U one can find a set Y ∈ U which is almost contained in every
Xi. It is well-known that P-points do exist under Martin’s axiom; however, their
nonexistence is also relatively consistent (see [8, Section VI.4]).

Given an infinite set X ⊆ ω, we write

IXn = [max(X ∩ n), n) ∩ ω,

whenever n ∈ X . Say that a set X is thin if

lim
n∈X

|IXn |
n

= 1.

In other words, a set X is thin if, enumerating X as (nk)k in increasing order, we
have limk nk/nk+1 = 0.

Lemma 1. If an ultrafilter U contains a thin set X, then

νU (A) = U-lim
n

|A ∩ IXn |
n

= U-lim
n

|A ∩ IXn |
|IXn |

,

for every set A.

Proof. The second equation is obvious as X is thin and in U . For the first equation,
notice that

A ∩ IXn ⊆ A ∩ n ⊆ (A ∩ IXn ) ∪max(X ∩ n).
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Therefore,

|A ∩ IXn |
n

≤ |A ∩ n|
n

≤ |A ∩ I
X
n |

n
+
n− |IXn |

n
.

Taking the limit along U and remembering that X ∈ U is thin, we obtain the first
equation of the lemma.

Theorem 1. If an ultrafilter U contains a thin set X, then νU is a density having
property AP(null).

Proof. Having an ultrafilter U and a thin set X ∈ U fixed, we write ν = νU and
In = IXn for simplicity. By Lemma 1 we have ν(A) = U-limn

|A∩In|
n for every A.

To check AP(null) take an increasing sequence (Ai)i≥1 and put α = limi ν(Ai).
Passing to a subsequence we may assume that ν(Ai) ≥ α− 1/i.

Find a decreasing sequence (Xi)i≥1 of elements of U such that X1 ⊆ X , Xi∩ i =
∅, and ∣∣∣∣ |Ai ∩ In||In|

− ν(Ai)
∣∣∣∣ < 1

i
,

whenever n ∈ Xi.
Now we define a set B, separately on each segment In. Put B ∩ In = ∅ for

n ∈ X \X1 and B ∩ In = Ai ∩ In for n ∈ Xi \Xi+1.
Let n ∈ Xi; then n ∈ Xj \Xj+1 for some j ≥ i. It follows that

α− 2
i
≤ ν(Aj)−

1
j
≤ |B ∩ In||In|

=
|Aj ∩ In|
|In|

≤ ν(Aj) +
1
j
≤ α+

1
i
,

and hence for every n ∈ Xi we have∣∣∣∣ |B ∩ In||In|
− α

∣∣∣∣ < 2
i
,

which gives ν(B) = α.
Now we check that ν(Ai \ B) = 0. Indeed, if n ∈ Xi, then for some j ≥ i we

have B ∩ In = Aj ∩ In ⊇ Ai ∩ In. Thus (Ai \B) ∩ In = ∅ for every n ∈ Xi, and we
are done.

We next give a short proof of Mekler’s result [7] that a P-point yields a density
with AP(*).

Theorem 2. If U is a P-point ultrafilter, then νU is a density having property
AP(*).

Proof. For an increasing sequence (Ai)i we take sets Xi belonging to U and such
that ∣∣∣∣ |Ai ∩ n|n

− ν(Ai)
∣∣∣∣ < 1

i
,

whenever n ∈ Xi. As in the proof of Theorem 1, we write α = limi ν(Ai). Now,
since U is a P-point, there is a set Y ∈ U such that Y ⊆∗ Xi for every i. Choose
an increasing sequence of numbers mi ∈ ω so that Y ⊆ Xi ∪mi.

We define a set B so that B ∩ [mi,mi+1) = Ai ∩ [mi,mi+1) for every i. We have
Ai ⊆∗ B, since Ai \B ⊆ mi. If n ∈ [mi,mi+1), then B ∩ n ⊆ Ai ∩ n. If, moreover,
n ∈ Y , then n ∈ Xi so

|B ∩ n|
n

≤ |Ai ∩ n|
n

< ν(Ai) +
1
i
≤ α+

1
i
.
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It follows that the inequality above holds for every n ∈ Y \ mi, and therefore
νU(B) ≤ α. On the other hand, the reverse inequality holds because νU (B) ≥
νU(Ai) for every i.

Theorem 3. Suppose that U is an ultrafilter containing a thin set. Then νU has
property AP(*) if and only if U is a P-point.

Proof. One direction is Theorem 2 (and doesn’t need thinness). To prove the other
direction, fix a thin set X belonging to U ; again let In stand for IXn . Let (Xm)m
be a decreasing sequence in U . For every m write

Am =
⋃

k∈X\Xm

Ik.

Then Am ∩ In = ∅ for every n ∈ Xm, and Lemma 1 gives νU (Am) = 0.
Since νU has property AP(*), there is a set A with νU (A) = 0, and such that

Am ⊆∗ A for every m. It follows that

Y =
{
k :
|A ∩ Ik|
|Ik|

<
1
2

}
∈ U .

Since Am is almost contained in A, we have Am ⊆ A∪ km for some km ∈ X . Then
Y ⊆ Xm ∪ km. Indeed, if k ∈ Y \Xm, then

|A ∩ Ik|
|Ik|

<
1
2

and Am ∩ Ik = Ik.

Hence Am ∩ Ik 6⊆ A ∩ Ik, which means k ≤ km. The proof is complete.

In connection with Theorem 3 it is perhaps worth remarking that, assuming
Martin’s axiom, one can easily construct a P-point which does not contain any thin
set.

Given an arbitrary (infinite) thin setX , it is easy to find a free ultrafilter U which
contains X but is not a P-point (take a sequence if distinct ultrafilters containing X
and let U be its cluster point). In view of Theorem 2 and Theorem 3, this remark
yields the following.

Corollary 4. There exists a free ultrafilter U such that νU has property AP(null)
but not property AP(*).

3. Different ultrafilters giving the same density

Extending an idea suggested by Example 1.5 of [7], we shall show that rather
dissimilar ultrafilters U can lead to similar densities or even the same density.

If U is an ultrafilter on a set X and g : X −→ Y is any mapping, then g(U)
denotes the ultrafilter on Y consisting of those B ⊆ Y for which g−1(B) ∈ U . Note
that

g(U)-lim
y
α(y) = U-lim

x
α(g(x)),

for every function α from Y into [0, 1].
We consider the set ∆ = {(n, k) : n < k} and “the standard pairing function”

p : ∆ −→ ω, where

p(n, k) =
k(k − 1)

2
+ n.
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Put also q(k) = p(0, k) and denote by π : ∆ −→ ω the projection onto the second
coordinate.

Lemma 2. If U is a free ultrafilter on ∆, then νp(U) = νq◦π(U).

Proof. (1) Note first that for any A ⊆ ω and natural numbers Q,P , if Q ≤ P ≤
Q+ 2

√
Q, then ∣∣∣∣ |A ∩Q|Q

− |A ∩ P |
P

∣∣∣∣ ≤ 2√
Q
.

Indeed, (1) follows immediately from the following two inequalities:

0 ≥ |A ∩Q|
Q

− |A ∩ P |
Q

= −|A ∩ (P \Q)|
Q

≥ −P −Q
Q

≥ − 2√
Q

;

0 ≤ |A ∩ P |
Q

− |A ∩ P |
P

= |A ∩ P |( 1
Q
− 1
P

) =
|A ∩ P |
P

· P −Q
Q

≤ 2√
Q
.

(2) For every n < k we have

q(k) ≤ p(n, k) ≤ q(k) + 2
√
q(k).

Indeed, the definitions of p(n, k) and q(k) make the first inequality trivial, and they
imply that

p(n, k)− q(k) = n ≤ k − 1 ≤
√

2q(k) ≤ 2
√
q(k),

which gives the second inequality.
(3) Using (2) and (1) (where Q = q(k), P = p(n, k)), we get for any A ⊆ ω

νp(U)(A) = p(U)-lim
m

|A ∩m|
m

= U- lim
(n,k)

|A ∩ p(n, k)|
p(n, k)

= U- lim
(n,k)

|A ∩ q(k)|
q(k)

= q ◦ π(U) lim
|A ∩m|
m

= νq◦π(U)(A).

Theorem 5. (a) If there exist P-point ultrafilters on ω, then there is an ultrafilter
V which is not a P-point, and such that νV has property AP(*).

(b) There is an ultrafilter V which does not contain a thin set, and such that νV
has property AP(null) but not AP(*).

Proof. Let U1 and U2 be ultrafilters on ω and let U = U1⊗U2 denote their product.
By definition, D ∈ U1 ⊗ U2 if {n : D|n ∈ U2} ∈ U1, where D|n is defined to be
{k : (n, k) ∈ D}. Note that ∆ ∈ U1⊗U2, so we may consider the product ultrafilter
as defined on ∆. Note also that π(U1 ⊗ U2) = U2.

To check (a) take a P-point U2 and arbitrary U1, and consider U = U1 ⊗ U2.
Using Lemma 2, we get

νp(U1⊗U2) = νq◦π(U1⊗U2) = νq(U2).

Since q(U2) is a P-point, νp(U) has property AP(*). On the other hand, U and its
isomorphic copy p(U) are not P-points, for no element of U is almost contained in
every ∆N = {(n, k) ∈ ∆ : n ≥ N}.

We argue for (b) in a similar manner. Take an ultrafilter U2 which is not a
P-point and contains a thin set. Then q(U2) contains a thin set, so νq(U2) has
property AP(null). On the other hand, q(U2) is not a P-point, so νq(U2) does not
have property AP(*) by Theorem 3. Now p(U) defines the same density but it does
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not contain a thin set. Indeed, if A ⊆ ω and p−1(A) ∈ U , then there are i, j ∈ A
with i < j < 2i.

4. Densities without additivity properties

Recall that it is relatively consistent that no density has property AP(*); see
Mekler [7], where Shelah’s argument from [8] is suitably adapted. Frankiewicz,
Shelah, Zbierski [3] obtained a model of set theory, in which there are no ccc P-sets
in βω \ ω. Let us note that this result improves Mekler’s theorem. Indeed, every
density ν defines the unique Radon measure ν̂ on the compact space βω \ ω. If S
denotes the support of ν̂, then S is clearly ccc. If, moreover, ν has property AP(*)
then S is easily seen to be a P-set.

Corollary 4 above shows that no extra axioms are needed to find an ultrafilter
U such that νU fails to have AP(*). We sketch here another, more constructive,
argument for this fact.

(1) First note that there is a sequence (Ai) of subsets of ω such that for every k
and ε > 0 the system of inequalities

|Ai ∩ n|
n

< ε, i = 1, 2, . . . , k,
|Ak+1 ∩ n|

n
≥ 1

2
,

is satisfied for infinitely many n.
This may be proved by a Baire category argument but, as the referee remarked,

it suffices to put Ai = {[nk, nk+1) : k ∈ Wi}, where (nk)k is an enumeration of a
thin set, and (Wi)i is a partition of ω into infinite sets.

(2) Denote by B the family of all sets B almost including Ai for every i. Put

Xε,i =
{
n :
|Ai ∩ n|

n
< ε

}
; YB =

{
n :
|B ∩ n|
n

≥ 1
2

}
,

for every i and ε > 0, and for every B ∈ B.
(3) Note that the set

Xε,1 ∩Xε,2 ∩ . . . ∩Xε,k ∩ YB

is infinite for any ε, k, and every B ∈ B. Since YB ∩ YC ⊇ YB∩C for B,C ∈ B, it
follows that the family of all Xε,i and all YB has the strong finite intersection prop-
erty, and therefore is contained in some free ultrafilter U . Now we have νU (Ai) = 0
for every i, and νU(B) ≥ 1/2 for all B ∈ B, so νU does not have property AP(*).

Of course, property AP(null) is much harder to destroy, and we do not know
if this can be done by a suitable modification of the argument above. In response
to our question whether there is an ultrafilter giving a density without property
AP(null), David Fremlin presented the following result (in a letter of October,
1999).

Theorem 6 (Fremlin). Suppose that U is an ultrafilter on ω such that for every
A ∈ U there is a k > 0 with A + k ∈ U . Write V = g(U), where g : ω → ω,
g(n) = 2n. Then the density νV does not have property AP(null).

Proof. Clearly νV = ν, where ν is a density defined by the formula

ν(A) = U-lim
n

|A ∩ 2n|
2n

.
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For every k ∈ ω we find a set Ik ∈ U such that Ik ∩ (k + 1) = ∅ and |i − j| > k
whenever i, j ∈ Ik, i 6= j. For every k we put

Ak =
⋃
i∈Ik

[
2i−k−1, 2i−k

)
∩ ω.

Note that ν(Ak) ≤ 2−k. Indeed, if i ∈ Ik, then Ak∩[2i−k, 2i) = ∅, so |Ak∩2i|/2−i ≤
2−k.

Now we check that, given a set B with ν(B) < 1/4, we have ν(Ak \ B) > 0 for
infinitely many k. Let

J = {i : |B ∩ [2i−1, 2i)| ≤ 2i−2}.
Then J ∈ U , since otherwise we would have ν(B) ≥ 1/4.

It follows from the assumption on U that J + k ∈ U for infinitely many k. Fix a
number k with this property, put K = (J + k) ∩ Ik, and consider any i ∈ K. Since
i ∈ Ik and i− k ∈ J , we have

Ak ⊇ [2i−k−1, 2i−k) ∩ ω, |B ∩ [2i−k−1, 2i−k)| ≤ 2i−k−2.

Hence

|(Ak \B) ∩ 2i| ≥ |(Ak \B) ∩ [2i−k−1, 2i−k)| ≥ 2i−k − 2i−k−1 − 2i−k−2 = 2i−k−2;

|(Ak \B) ∩ 2i|
2i

≥ 2−(k+2),

whenever i ∈ K ∈ U . Hence ν(Ak\B) > 0. Therefore, the sequence A4, A4∪A5, . . .
witnesses that ν fails to have AP(null).

In order to get a density without property AP(null), it is now sufficent to find an
ultrafilter U such that for every A ∈ U there is a k > 0 with A+ k ∈ U . D. Fremlin
pointed out that the existence of an ultrafilter with this property may be quickly
derived form Glazer’s theorem on idempotent ultrafilters (see e.g. [9], section 15).
This suggested to us the following straightforward argument.

The formula φ(X ) = {A : A+1 ∈ X} defines a continuous mapping φ : βω\ω→
βω\ω. By compactness, there is a minimal φ–invariant closed and nonempty subset
S of βω \ω. We check that any U ∈ S has the required property. Indeed, the orbit
{φk(U) : k ≥ 1} must be dense in S, since its closure is φ–invariant. Therefore,
given A ∈ U , there is a k ≥ 1 such that the ultrafilter φk(U) is in the closed and
open set defined by A. Hence A ∈ φk(U), so A+ k ∈ U , and we are done.
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