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THE STRUCTURE OF QUANTUM SPHERES
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Abstract. We show that the C*-algebra C
(
S2n+1
q

)
of a quantum sphere

S2n+1
q , q > 1, consists of continuous fields {ft}t∈T of operators ft in a C*-

algebra A, which contains the algebra K of compact operators with A/K ∼=
C
(
S2n−1
q

)
, such that ρ∗ (ft) is a constant function of t ∈ T, where ρ∗ : A →

A/K is the quotient map and T is the unit circle.

Introduction

Some interesting C*-algebras that arise from geometric objects have been suc-
cessfully studied, using the groupoid C*-algebraic approach [R, CM, MR, SaShU,
Sh1, Sh2]. In particular, the C*-algebra C

(
S2n+1
q

)
of a quantum sphere S2n+1

q

[VSo], q > 1, was realized as a concrete groupoid C*-algebra C∗ (Fn) independent
of q [Sh3]. Decomposing the underlying groupoid Fn, we were able to conclude that
C
(
S2n+1
q

)
is an extension of C

(
S2n−1
q

)
by C (T)⊗K, which well reflects, at the quan-

tum level, the symplectic leaf space structure [W] of the SU (n+ 1)-homogeneous
Poisson S2n+1 [D] because S2n+1

q \S2n−1
q is a disjoint union of a T-family of sym-

plectic leaves Cn, where T is the unit circle. However since the extensions of
C*-algebras are usually not unique, the algebra C

(
S2n+1
q

)
is not completely deter-

mined up to isomorphism. In this paper, we find an explicit recursive description
that completely determines the algebra C

(
S2n+1
q

)
up to isomorphism. This descrip-

tion would be very useful, for example, in the study of the cancellation problem of
“vector bundles” over S2n+1

q .

1. Quantum sphere and groupoid

In this section, we identify the C*-algebra C
(
S2n+1
q

)
of a quantum sphere S2n+1

q ,
q > 1, with a concrete groupoid C*-algebra C∗ (Gn) of a concrete groupoid Gn,
independent of q, whose description is simpler and easier to handle than that of Fn

found in [Sh3]. For the background material of groupoid and group C*-algebras,
we refer readers to the books of Renault [R] and Pedersen [P].

Recall that the C*-algebra of the quantum group SU(n)q is generated by ele-
ments uij satisfying certain commutation relations and the C*-algebra of quantum
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spheres S2n+1
q = SU(n)q\SU(n+ 1)q defined as homogeneous quantum spaces [N]

can be identified with

C(S2n+1
q ) = C∗({un+1,m| 1 ≤ m ≤ n+ 1}).

Let Z≥ = N ∪ {0}, and regard Z := Z ∪ {+∞} and Z≥ := Z≥ ∪ {+∞} as
topological spaces with their canonical topologies. We use Hn := Zn n Zn|Zn≥
to denote the transformation group groupoid Zn n Zn restricted to the positive
“cone” Zn≥ of its unit space Zn, and use Fn = Z ×

(
Zn n Zn|Zn≥

)
to denote the

direct product of the group Z and the groupoid Hn [R, MR, CM].
Let ≈ be the equivalence relation on Zn≥ :=

(
Z≥
)n

that is generated by w ≈ w′
for w,w′ ∈ Zn≥ such that for some 1 ≤ i ≤ n, wj = w′j for all j ≤ i and w′j = ∞
for all j ≥ i. This equivalence relation can be canonically extended to equivalence
relations ∼ on spaces like Hn or Fn by defining (x,w) ∼ (x′, w′) if and only if
x = x′ and w ≈ w′ for (x,w) , (x′, w′) ∈ Hn, and (z, x, w) ∼ (z′, x′, w′) if and only
if (z, x) = (z′, x′), and w ≈ w′ for (z, x, w) , (z′, x′, w′) ∈ Fn.

It is proved in [Sh3] that C(S2n+1
q ) ' C∗(Fn) with Fn := F̃n/ ∼ a subquotient

groupoid of Fn where

F̃n := {(z, x, w) ∈ Fn| for any 1 ≤ i ≤ n, if wi =∞, then

xi = −z − x1 − x2 − ...− xi−1 and xi+1 = ... = xn = 0}

is a subgroupoid of Fn.
We first note that by a “change of variables” k := z + x1 + x2 + ... + xn, the

conditions

xi = −z − x1 − x2 − ...− xi−1 and xi+1 = ... = xn = 0

in defining F̃n, can be replaced by

k = 0 and xi+1 = ... = xn = 0.

More precisely, the bijection

(z, x, w) 7→ (z + x1 + x2 + ...+ xn, x, w)

defines a homeomorphic groupoid isomorphism from F̃n to the subgroupoid

G̃n := {(k, x, w) ∈ Fn| for any 1 ≤ i ≤ n, if wi =∞,

then k = 0 = xi+1 = ... = xn}

of Fn. Defining Gn := G̃n/ ∼, we get a groupoid Gn isomorphic to Fn since the
above groupoid isomorphism preserves the equivalence relation ∼.

Proposition 1. For q > 1,

C(S2n+1
q ) ' C∗(Gn).
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2. Structure theorem

In this section, we recursively characterize C(S2n+1
q ) as an algebra of fields of

operators and hence determine C(S2n+1
q ) up to isomorphism.

We first note that G̃n ⊂ Z× H̃n ⊂ Fn and

Gn ⊂ Z× Hn

where H̃n is the subgroupoid

H̃n := {(x,w) ∈ Hn | for any 1 ≤ i ≤ n, if wi =∞,

then xi+1 = ... = xn = 0}

of Hn and Hn := H̃n/ ∼. The unit space of H̃n (or Z × H̃n, or G̃n) is W̃ := Zn≥
while the unit space of Hn (or Z× Hn, or Gn) is the quotient space W := W̃/ ≈.

The closed subset W̃n := Zn≥\Zn≥ of W̃ and its complement W̃\W̃n = Zn≥ are
closed under the equivalence relation ≈ and are invariant (under the H̃n-action)
subsets of W̃ . Correspondingly, we have the closed subset Wn := W̃n/ ≈ of W
and its complement W\Wn as invariant subsets of the unit space W of Hn. By the
general theory of groupoid C*-algebras [R], we have the short exact sequence

0→ C∗
(
Hn|W\Wn

) ι∗→ C∗ (Hn)
ρ∗→ C∗ (Hn|Wn)→ 0

where ρ∗ is induced by the restriction map ρ on Cc (Hn) and ι∗ is induced by the
inclusion map ι on Cc

(
Hn|W\Wn

)
, and similarly the short exact sequence

0→ C∗
(
(Z× Hn) |W\Wn

)
→ C∗ (Z× Hn)→ C∗ ((Z× Hn) |Wn)→ 0.

Since clearly (Z× Hn) |W\Wn
∼= Z×

(
Hn|W\Wn

)
and (Z× Hn) |Wn

∼= Z× (Hn|Wn),
we get the commuting diagram

0 → C∗
(
Z×

(
Hn|W\Wn

))
→ C∗ (Z× Hn) → C∗

(
Z ×

(
Hn|Wn

))
→ 0

↓∼= ↓∼= ↓∼=
0 → C∗ (Z) ⊗ C∗

(
Hn|W\Wn

) id⊗ι∗→ C∗ (Z)⊗ C∗ (Hn)
id⊗ρ∗→ C∗ (Z)⊗ C∗

(
Hn|Wn

)
→ 0

↓∼= ↓∼= ↓∼=
0 → C (T)⊗ C∗

(
Hn|W\Wn

) id⊗ι∗→ C (T)⊗ C∗ (Hn)
id⊗ρ∗→ C (T) ⊗ C∗

(
Hn|Wn

)
→ 0

of exact rows.
Clearly the equivalence relation≈ on W̃\W̃n = Zn≥ is trivial, and hence Gn|W\Wn

∼= G̃n|W̃\W̃n
and Hn|W\Wn

∼= H̃n|W̃\W̃n
. Furthermore

G̃n|W̃\W̃n
=
{

(k, x, w) ∈ Fn| w ∈ Zn≥
}

= Z×Hn|Zn≥ .

and similarly H̃n|W̃\W̃n
= Hn|Zn≥ . So we get Gn|W\Wn

= Z×
(
Hn|W\Wn

)
, and the

commuting diagram

0 → C∗
(
Hn|W\Wn

) ι∗→ C∗ (Hn)
ρ∗→ C∗ (Hn|Wn) → 0

↓∼= ∩
0 → K

(
`2
(
Zn≥
))

→ B
(
`2
(
Zn≥
))

via the faithful regular representation [R, MR] of C∗ (Hn) on `2
(
Zn≥
)
.

On the other hand, G̃n|W̃n
consists of (k, x, w) ∈ G̃n with wi =∞ for some i ≤ n

and hence k = 0. So G̃n|W̃n
= {0} × H̃n|W̃n

and

Gn|Wn = {0} × Hn|Wn ⊂ Z× Hn|Wn .
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Now it is clear that

Gn =
(
Gn|W\Wn

)
∪ (Gn|Wn) =

(
Z×

(
Hn|W\Wn

))
∪ ({0} × Hn|Wn)

=
(
Z×

(
Hn|W\Wn

))
∪ ({0} × Hn)

is an open subgroupoid of Z× Hn, and we have the commuting diagram
C∗

(
Gn|Wn

)
↓∼=

0 → C∗
(
Gn|W\Wn

)
→ C∗ (Gn) → C∗

(
{0} ×

(
Hn|Wn

))
→ 0

↓∼= ∩ ∩
0 → C∗

(
Z ×

(
Hn|W\Wn

))
→ C∗ (Z× Hn) → C∗

(
Z ×

(
Hn|Wn

))
→ 0

↓∼= ↓∼= ↓∼=
0 → C (T)⊗ K

(
`2
(
Zn≥

)) id⊗ι∗→ C (T)⊗ C∗ (Hn)
id⊗ρ∗→ C (T)⊗ C∗

(
Hn|Wn

)
→ 0

of exact rows, in which C∗ (Gn) is embedded in C (T)⊗C∗ (Hn) ∼= C (T, C∗ (Hn)) as
an algebra containing C (T)⊗K

(
`2
(
Zn≥
))

and C∗ (Gn|Wn) is embedded in C (T)⊗
C∗ (Hn|Wn) as

C∗ ({0} × (Hn|Wn)) ∼= C∗ ({0})⊗ C∗ ((Hn|Wn)) ∼= C⊗ C∗ ((Hn|Wn)) .

So

C∗ (Gn) ∼= (id⊗ρ∗)−1 (C⊗ C∗ ((Hn|Wn))) .

We claim that Gn|Wn is isomorphic to the groupoid Gn−1. In fact, G̃n|W̃n

consists of (k, x, w) ∈ G̃n with wi = ∞ for some i ≤ n and hence k = 0. So by
considering the smallest i with wi =∞, we get

G̃n|W̃n
= {(0, x, w) ∈ Fn| for some i ≤ n, wi =∞, xi+1 = ... = xn = 0

but wj <∞ for all j < i}.

Note that the map φ̃ sending (0, x, w) ∈ G̃n|W̃n
to (k′, x′, w′) ∈ Fn−1, where

k′ = xn, and x′i = xi and w′i = wi for all i ≤ n− 1, takes values in G̃n−1, because if
w′i =∞ for some i ≤ n− 1, then wi =∞ and hence k′ = xn = 0 and x′j = xj = 0
for all i < j ≤ n − 1. It is not hard to verify that φ̃ is a surjective groupoid
morphism from G̃n|W̃n

to G̃n−1. Furthermore φ̃ preserves the equivalence relation
∼ and hence induces a homeomorphic groupoid isomorphism φ from the quotient
groupoid Gn|Wn = G̃n|W̃n

/ ∼ to the quotient groupoid Gn−1 = G̃n−1/ ∼. So we
have

C∗ (Hn|Wn) ∼= C∗ (Gn|Wn) ∼= C∗ (Gn−1) ∼= C
(
S2n−1
q

)
.

We conclude the above discussion in the following theorem.

Theorem 2. There is a C*-subalgebra A ⊃ K
(
`2
(
Zn≥
))

of B
(
`2
(
Zn≥
))

and a short
exact sequence

0 → K
(
`2
(
Zn≥
))
⊂ A ρ∗→ C

(
S2n−1
q

)
→ 0

such that

C
(
S2n+1
q

) ∼= (
idC(T)⊗ρ∗

)−1 (C⊗ C (S2n−1
q

))
∼= {f ∈ C (T,A) | ρ∗ ◦ f is a constant function on T}

where idC(T)⊗ρ∗ : C (T) ⊗ A → C (T) ⊗ C
(
S2n−1
q

)
and C (T,A) is the algebra of

continuous fields of operators in A over the unit circle T.
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