PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 11, Pages 3307–3311 S 0002-939(01)06042-7 Article electronically published on April 2, 2001

THE STRUCTURE OF QUANTUM SPHERES

ALBERT JEU-LIANG SHEU

(Communicated by David R. Larson)

ABSTRACT. We show that the C*-algebra $C(\mathbb{S}_q^{2n+1})$ of a quantum sphere \mathbb{S}_q^{2n+1} , q > 1, consists of continuous fields $\{f_t\}_{t\in\mathbb{T}}$ of operators f_t in a C*-algebra \mathcal{A} , which contains the algebra \mathcal{K} of compact operators with $\mathcal{A}/\mathcal{K} \cong C(\mathbb{S}_q^{2n-1})$, such that $\rho_*(f_t)$ is a constant function of $t \in \mathbb{T}$, where $\rho_* : \mathcal{A} \to \mathcal{A}/\mathcal{K}$ is the quotient map and \mathbb{T} is the unit circle.

INTRODUCTION

Some interesting C*-algebras that arise from geometric objects have been successfully studied, using the groupoid C*-algebraic approach [R, CM, MR, SaShU, Sh1, Sh2]. In particular, the C*-algebra $C\left(\mathbb{S}_q^{2n+1}\right)$ of a quantum sphere \mathbb{S}_q^{2n+1} [VSo], q > 1, was realized as a concrete groupoid C*-algebra $C^*\left(\mathfrak{F}_n\right)$ independent of q [Sh3]. Decomposing the underlying groupoid \mathfrak{F}_n , we were able to conclude that $C\left(\mathbb{S}_q^{2n+1}\right)$ is an extension of $C\left(\mathbb{S}_q^{2n-1}\right)$ by $C\left(\mathbb{T}\right)\otimes\mathcal{K}$, which well reflects, at the quantum level, the symplectic leaf space structure [W] of the $SU\left(n+1\right)$ -homogeneous Poisson \mathbb{S}^{2n+1} [D] because $\mathbb{S}_q^{2n+1} \setminus \mathbb{S}_q^{2n-1}$ is a disjoint union of a T-family of symplectic leaves \mathbb{C}^n , where \mathbb{T} is the unit circle. However since the extensions of \mathbb{C}^* -algebras are usually not unique, the algebra $C\left(\mathbb{S}_q^{2n+1}\right)$ is not completely determined up to isomorphism. In this paper, we find an explicit recursive description that completely determines the algebra $C\left(\mathbb{S}_q^{2n+1}\right)$ up to isomorphism. This description would be very useful, for example, in the study of the cancellation problem of "vector bundles" over \mathbb{S}_q^{2n+1} .

1. Quantum sphere and groupoid

In this section, we identify the C*-algebra $C(\mathbb{S}_q^{2n+1})$ of a quantum sphere \mathbb{S}_q^{2n+1} , q > 1, with a concrete groupoid C*-algebra $C^*(\mathfrak{G}_n)$ of a concrete groupoid \mathfrak{G}_n , independent of q, whose description is simpler and easier to handle than that of \mathfrak{F}_n found in [Sh3]. For the background material of groupoid and group C*-algebras, we refer readers to the books of Renault [R] and Pedersen [P].

Recall that the C*-algebra of the quantum group $SU(n)_q$ is generated by elements u_{ij} satisfying certain commutation relations and the C*-algebra of quantum

©2001 American Mathematical Society

Received by the editors March 15, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46L05; Secondary 17B37, 46L89, 47B35, 58B32, 81B50.

Key words and phrases. Quantum spheres, quantum groups, groupoid C*-algebras, Toeplitz algebras.

The author was partially supported by NSF Grant DMS-9623008.

spheres $S_q^{2n+1} = SU(n)_q \backslash SU(n+1)_q$ defined as homogeneous quantum spaces [N] can be identified with

$$C(S_q^{2n+1}) = C^*(\{u_{n+1,m} | 1 \le m \le n+1\}).$$

Let $\mathbb{Z}_{\geq} = \mathbb{N} \cup \{0\}$, and regard $\overline{\mathbb{Z}} := \mathbb{Z} \cup \{+\infty\}$ and $\overline{\mathbb{Z}}_{\geq} := \mathbb{Z}_{\geq} \cup \{+\infty\}$ as topological spaces with their canonical topologies. We use $\mathcal{H}^n := \mathbb{Z}^n \ltimes \overline{\mathbb{Z}}^n |_{\overline{\mathbb{Z}}^n_{\geq}}$ to denote the transformation group groupoid $\mathbb{Z}^n \ltimes \overline{\mathbb{Z}}^n$ restricted to the positive "cone" $\overline{\mathbb{Z}}^n_{\geq}$ of its unit space $\overline{\mathbb{Z}}^n$, and use $\mathcal{F}^n = \mathbb{Z} \times \left(\mathbb{Z}^n \ltimes \overline{\mathbb{Z}}^n |_{\overline{\mathbb{Z}}^n_{\geq}}\right)$ to denote the direct product of the group \mathbb{Z} and the groupoid \mathcal{H}^n [R, MR, CM]. Let \approx be the equivalence relation on $\overline{\mathbb{Z}}^n_{\geq} := \left(\overline{\mathbb{Z}}_{\geq}\right)^n$ that is generated by $w \approx w'$

Let \approx be the equivalence relation on $\mathbb{Z}_{\geq}^{n} := (\mathbb{Z}_{\geq})^{n}$ that is generated by $w \approx w'$ for $w, w' \in \mathbb{Z}_{\geq}^{n}$ such that for some $1 \leq i \leq n$, $w_{j} = w'_{j}$ for all $j \leq i$ and $w'_{j} = \infty$ for all $j \geq i$. This equivalence relation can be canonically extended to equivalence relations \sim on spaces like \mathcal{H}^{n} or \mathcal{F}^{n} by defining $(x, w) \sim (x', w')$ if and only if x = x' and $w \approx w'$ for $(x, w), (x', w') \in \mathcal{H}^{n}$, and $(z, x, w) \sim (z', x', w')$ if and only if (z, x) = (z', x'), and $w \approx w'$ for $(z, x, w), (z', x', w') \in \mathcal{F}^{n}$.

It is proved in [Sh3] that $C(S_q^{2n+1}) \simeq C^*(\mathfrak{F}_n)$ with $\mathfrak{F}_n := \widetilde{\mathfrak{F}_n} / \sim$ a subquotient groupoid of \mathcal{F}^n where

$$\widetilde{\mathfrak{F}_n} := \{ (z, x, w) \in \mathcal{F}^n | \text{ for any } 1 \le i \le n, \text{ if } w_i = \infty, \text{ then}$$

 $x_i = -z - x_1 - x_2 - \dots - x_{i-1} \text{ and } x_{i+1} = \dots = x_n = 0 \}$

is a subgroupoid of \mathcal{F}^n .

We first note that by a "change of variables" $k := z + x_1 + x_2 + \ldots + x_n$, the conditions

$$x_i = -z - x_1 - x_2 - \dots - x_{i-1}$$
 and $x_{i+1} = \dots = x_n = 0$

in defining $\widetilde{\mathfrak{F}_n}$, can be replaced by

$$k = 0$$
 and $x_{i+1} = \dots = x_n = 0$.

More precisely, the bijection

$$(z, x, w) \mapsto (z + x_1 + x_2 + \dots + x_n, x, w)$$

defines a homeomorphic groupoid isomorphism from $\widetilde{\mathfrak{F}_n}$ to the subgroupoid

$$\widetilde{\mathfrak{G}_n} := \{(k, x, w) \in \mathcal{F}^n | \text{ for any } 1 \le i \le n, \text{ if } w_i = \infty,$$

then
$$k = 0 = x_{i+1} = \dots = x_n$$

of \mathcal{F}^n . Defining $\mathfrak{G}_n := \widetilde{\mathfrak{G}_n} / \sim$, we get a groupoid \mathfrak{G}_n isomorphic to \mathfrak{F}_n since the above groupoid isomorphism preserves the equivalence relation \sim .

Proposition 1. For q > 1,

$$C(S_q^{2n+1}) \simeq C^*(\mathfrak{G}_n).$$

3308

2. Structure theorem

In this section, we recursively characterize $C(S_q^{2n+1})$ as an algebra of fields of operators and hence determine $C(S_q^{2n+1})$ up to isomorphism.

We first note that $\widetilde{\mathfrak{G}_n} \subset \mathbb{Z} \times \widetilde{\mathfrak{H}_n} \subset \mathcal{F}^n$ and

$$\mathfrak{G}_n\subset\mathbb{Z} imes\mathfrak{H}_n$$

where $\widetilde{\mathfrak{H}_n}$ is the subgroupoid

$$\widetilde{\mathfrak{H}_n} := \{(x, w) \in \mathcal{H}^n \mid \text{for any } 1 \le i \le n, \text{ if } w_i = \infty,$$

then
$$x_{i+1} = \dots = x_n = 0$$

of \mathcal{H}^n and $\mathfrak{H}_n := \widetilde{\mathfrak{H}_n} / \sim$. The unit space of $\widetilde{\mathfrak{H}_n}$ (or $\mathbb{Z} \times \widetilde{\mathfrak{H}_n}$, or $\widetilde{\mathfrak{G}_n}$) is $\widetilde{W} := \overline{\mathbb{Z}}_{\geq}^n$ while the unit space of \mathfrak{H}_n (or $\mathbb{Z} \times \mathfrak{H}_n$, or \mathfrak{G}_n) is the quotient space $W := \widetilde{W} / \approx$.

The closed subset $\widetilde{W}_n := \overline{\mathbb{Z}}_{\geq}^n \setminus \mathbb{Z}_{\geq}^n$ of \widetilde{W} and its complement $\widetilde{W} \setminus \widetilde{W}_n = \mathbb{Z}_{\geq}^n$ are closed under the equivalence relation \approx and are invariant (under the $\widetilde{\mathfrak{H}}_n$ -action) subsets of \widetilde{W} . Correspondingly, we have the closed subset $W_n := \widetilde{W}_n / \approx$ of Wand its complement $W \setminus W_n$ as invariant subsets of the unit space W of \mathfrak{H}_n . By the general theory of groupoid C*-algebras [R], we have the short exact sequence

$$0 \to C^* \left(\mathfrak{H}_n |_{W \setminus W_n} \right) \xrightarrow{\iota_*} C^* \left(\mathfrak{H}_n \right) \xrightarrow{\rho_*} C^* \left(\mathfrak{H}_n |_{W_n} \right) \to 0$$

where ρ_* is induced by the restriction map ρ on $C_c(\mathfrak{H}_n)$ and ι_* is induced by the inclusion map ι on $C_c(\mathfrak{H}_n|_{W\setminus W_n})$, and similarly the short exact sequence

$$0 \to C^*\left(\left(\mathbb{Z} \times \mathfrak{H}_n\right)|_{W \setminus W_n}\right) \to C^*\left(\mathbb{Z} \times \mathfrak{H}_n\right) \to C^*\left(\left(\mathbb{Z} \times \mathfrak{H}_n\right)|_{W_n}\right) \to 0.$$

Since clearly $(\mathbb{Z} \times \mathfrak{H}_n)|_{W \setminus W_n} \cong \mathbb{Z} \times (\mathfrak{H}_n|_{W \setminus W_n})$ and $(\mathbb{Z} \times \mathfrak{H}_n)|_{W_n} \cong \mathbb{Z} \times (\mathfrak{H}_n|_{W_n})$, we get the commuting diagram

of exact rows.

Clearly the equivalence relation \approx on $\widetilde{W} \setminus \widetilde{W}_n = \mathbb{Z}_{\geq}^n$ is trivial, and hence $\mathfrak{G}_n|_{W \setminus W_n} \cong \widetilde{\mathfrak{G}_n}|_{\widetilde{W} \setminus \widetilde{W}_n}$. Furthermore

$$\widetilde{\mathfrak{G}_n}|_{\widetilde{W}\setminus\widetilde{W}_n} = \left\{ (k, x, w) \in \mathcal{F}^n | \ w \in \mathbb{Z}^n_{\geq} \right\} = \mathbb{Z} \times \mathcal{H}^n|_{\mathbb{Z}^n_{\geq}}.$$

and similarly $\widetilde{\mathfrak{H}}_n|_{\widetilde{W}\setminus\widetilde{W}_n} = \mathcal{H}^n|_{\mathbb{Z}^n_{\geq}}$. So we get $\mathfrak{G}_n|_{W\setminus W_n} = \mathbb{Z} \times (\mathfrak{H}_n|_{W\setminus W_n})$, and the commuting diagram

via the faithful regular representation [R, MR] of $C^*(\mathfrak{H}_n)$ on $\ell^2(\mathbb{Z}^n_>)$.

On the other hand, $\widetilde{\mathfrak{G}_n}|_{\widetilde{W_n}}$ consists of $(k, x, w) \in \widetilde{\mathfrak{G}_n}$ with $w_i = \infty$ for some $i \leq n$ and hence k = 0. So $\widetilde{\mathfrak{G}_n}|_{\widetilde{W_n}} = \{0\} \times \widetilde{\mathfrak{H}_n}|_{\widetilde{W_n}}$ and

$$\mathfrak{G}_n|_{W_n} = \{0\} \times \mathfrak{H}_n|_{W_n} \subset \mathbb{Z} \times \mathfrak{H}_n|_{W_n}.$$

Now it is clear that

$$\begin{split} \mathfrak{G}_n &= \left(\mathfrak{G}_n|_{W \setminus W_n}\right) \cup \left(\mathfrak{G}_n|_{W_n}\right) = \left(\mathbb{Z} \times \left(\mathfrak{H}_n|_{W \setminus W_n}\right)\right) \cup \left(\{0\} \times \mathfrak{H}_n|_{W_n}\right) \\ &= \left(\mathbb{Z} \times \left(\mathfrak{H}_n|_{W \setminus W_n}\right)\right) \cup \left(\{0\} \times \mathfrak{H}_n\right) \end{split}$$

is an open subgroupoid of $\mathbb{Z} \times \mathfrak{H}_n$, and we have the commuting diagram

of exact rows, in which $C^*(\mathfrak{G}_n)$ is embedded in $C(\mathbb{T})\otimes C^*(\mathfrak{H}_n) \cong C(\mathbb{T}, C^*(\mathfrak{H}_n))$ as an algebra containing $C(\mathbb{T})\otimes \mathcal{K}\left(\ell^2\left(\mathbb{Z}^n_{\geq}\right)\right)$ and $C^*(\mathfrak{G}_n|_{W_n})$ is embedded in $C(\mathbb{T})\otimes C^*(\mathfrak{H}_n|_{W_n})$ as

$$^{*}\left(\{0\}\times(\mathfrak{H}_{n}|_{W_{n}})\right)\cong C^{*}\left(\{0\}\right)\otimes C^{*}\left((\mathfrak{H}_{n}|_{W_{n}})\right)\cong\mathbb{C}\otimes C^{*}\left((\mathfrak{H}_{n}|_{W_{n}})\right)$$

 So

 C°

$$C^*(\mathfrak{G}_n) \cong (\mathrm{id} \otimes \rho_*)^{-1} (\mathbb{C} \otimes C^*((\mathfrak{H}_n|_{W_n})))$$

We claim that $\mathfrak{G}_n|_{W_n}$ is isomorphic to the groupoid \mathfrak{G}_{n-1} . In fact, $\mathfrak{G}_n|_{\widetilde{W}_n}$ consists of $(k, x, w) \in \widetilde{\mathfrak{G}_n}$ with $w_i = \infty$ for some $i \leq n$ and hence k = 0. So by considering the smallest i with $w_i = \infty$, we get

$$\widetilde{\mathfrak{G}}_n|_{\widetilde{W}_n} = \{(0, x, w) \in \mathcal{F}^n | \text{ for some } i \le n, w_i = \infty, x_{i+1} = \dots = x_n = 0$$

but $w_j < \infty$ for all j < i}.

Note that the map $\tilde{\phi}$ sending $(0, x, w) \in \widetilde{\mathfrak{G}_n}|_{\widetilde{W_n}}$ to $(k', x', w') \in \mathcal{F}^{n-1}$, where $k' = x_n$, and $x'_i = x_i$ and $w'_i = w_i$ for all $i \leq n-1$, takes values in $\widetilde{\mathfrak{G}_{n-1}}$, because if $w'_i = \infty$ for some $i \leq n-1$, then $w_i = \infty$ and hence $k' = x_n = 0$ and $x'_j = x_j = 0$ for all $i < j \leq n-1$. It is not hard to verify that $\tilde{\phi}$ is a surjective groupoid morphism from $\widetilde{\mathfrak{G}_n}|_{\widetilde{W_n}}$ to $\widetilde{\mathfrak{G}_{n-1}}$. Furthermore $\tilde{\phi}$ preserves the equivalence relation \sim and hence induces a homeomorphic groupoid isomorphism ϕ from the quotient groupoid $\mathfrak{G}_{n-1} = \widetilde{\mathfrak{G}_n}|_{\widetilde{W_n}} / \sim$ to the quotient groupoid $\mathfrak{G}_{n-1} = \widetilde{\mathfrak{G}_{n-1}} / \sim$. So we have

$$C^*(\mathfrak{H}_n|_{W_n}) \cong C^*(\mathfrak{G}_n|_{W_n}) \cong C^*(\mathfrak{G}_{n-1}) \cong C\left(\mathbb{S}_q^{2n-1}\right).$$

We conclude the above discussion in the following theorem.

Theorem 2. There is a C*-subalgebra $\mathcal{A} \supset \mathcal{K}\left(\ell^2\left(\mathbb{Z}^n_{\geq}\right)\right)$ of $\mathcal{B}\left(\ell^2\left(\mathbb{Z}^n_{\geq}\right)\right)$ and a short exact sequence

$$0 \quad \to \quad \mathcal{K}\left(\ell^2\left(\mathbb{Z}^n_{\geq}\right)\right) \quad \subset \quad \mathcal{A} \quad \stackrel{\rho_*}{\to} \quad C\left(\mathbb{S}^{2n-1}_q\right) \quad \to \quad 0$$

such that

$$C\left(\mathbb{S}_{q}^{2n+1}\right)\cong\left(\mathrm{id}_{C(\mathbb{T})}\otimes\rho_{*}\right)^{-1}\left(\mathbb{C}\otimes C\left(\mathbb{S}_{q}^{2n-1}\right)\right)$$

$$\cong \{ f \in C(\mathbb{T}, \mathcal{A}) \mid \rho_* \circ f \text{ is a constant function on } \mathbb{T} \}$$

where $\operatorname{id}_{C(\mathbb{T})} \otimes \rho_* : C(\mathbb{T}) \otimes \mathcal{A} \to C(\mathbb{T}) \otimes C(\mathbb{S}_q^{2n-1})$ and $C(\mathbb{T}, \mathcal{A})$ is the algebra of continuous fields of operators in \mathcal{A} over the unit circle \mathbb{T} .

3310

References

- [CM] R. E. Curto and P. S. Muhly, C*-algebras of multiplication operators on Bergman spaces, J. Funct. Anal. 64 (1985), 315-329. MR 86m:47044
- [D] V. G. Drinfeld, On Poisson homogeneous spaces of Poisson Lie groups, Theo. Math. Phys. 95 (1993), 226-227. MR 94k:58045
- [MR] P. S. Muhly and J. N. Renault, C*-algebras of multivariable Wiener-Hopf operators, Trans. Amer. Math. Soc. 274 (1982), 1-44. MR 84h:46074
- [N] G. Nagy, On the Haar measure of the quantum SU(N) group, Comm. Math. Phys. 153 (1993), 217-228. MR 94e:46124
- [P] G. K. Pedersen, "C*-algebras and their Automorphism Groups", Academic Press, New York, 1979. MR 81e:46037
- [R] J. Renault, A Groupoid Approach to C*-algebras, Lecture Notes in Mathematics, Vol. 793, Springer-Verlag, New York, 1980. MR 82h:46075
- [SaShU] N. Salinas, A. J. L. Sheu, and H. Upmeier, Toeplitz operators on pseudoconvex domains and foliation C*-algebras, Annals of Mathematics 130 (1989), 531-565. MR 91e:47026
- [Sh1] A. J. L. Sheu, Reinhardt domains, boundary geometry and Toeplitz C*-algebras, J. Func. Anal. 92 (1990), 264-311. MR 92a:46068
- [Sh2] _____, Compact quantum groups and groupoid C*-algebras, J. Func. Anal. 144 (1997), 371-393. MR 98e:46090
- [Sh3] _____, Quantum spheres as groupoid C*-algebras, Quarterly J. Math. 48 (1997), 503-510. MR 99b:46112
- [VSo] L. L. Vaksman and Ya. S. Soibelman, The algebra of functions on the quantum group SU(n+1), and odd-dimensional quantum spheres, Leningrad Math. J. 2 (1991), 1023-1042. MR **92e**:58021
- [W] A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523-557. MR 86i:58059

Department of Mathematics, University of Kansas, Lawrence, Kansas 66045 $E\text{-}mail\ address:\ \texttt{sheu@falcon.cc.ukans.edu}$