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THE STRONG RADICAL AND FINITE-DIMENSIONAL IDEALS

BERTRAM YOOD

(Communicated by Dale Alspach)

Abstract. Let A be a semi-prime Banach algebra with strong radical R (in-
tersection of its two-sided modular maximal ideals). A minimal left or right
ideal K of A is infinite-dimensional if and only if K ⊂ R. Thus all minimal
one-sided ideals in A are finite-dimensional if A is strongly semi-simple.

1. Introduction

All ideals considered in this paper are two-sided unless otherwise specified. In
his pioneering paper [9, p. 74] Segal called an algebra strongly semi-simple if the
intersection R of its modular maximal ideals is (0). That intersection R is called
the strong radical of A. For a discussion of R see [8, p. 59] and [7, pp. 490–495].

Let A be a semi-prime algebra over a field Φ. In the special case where A is a
Banach algebra Smythe [10] showed that, for x ∈ A, xA is finite-dimensional if and
only if Ax is finite-dimensional. We show this to be valid for all A. Let F be the set
of x ∈ A where xA and Ax are finite-dimensional. It is shown that F is the direct
sum of those minimal ideals of A which are finite-dimensional. Then it is shown
that FR = (0) so that xA and Ax are infinite-dimensional for all x 6= 0 in R.

We provide more detail in the case of a semi-prime Banach algebra A. Let S

denote the socle of A. To say that F = S is to say that every minimal one-sided
ideal in A is finite-dimensional. We find that F = S if and only if R has zero socle.
Consequently F = S if A is strongly semi-simple. More specifically a minimal
one-sided ideal K is infinite-dimensional if and only if K ⊂ R.

2. On finite-dimensionality

Let A be a semi-prime algebra over a field Φ. We extend a result of Smythe
[9] to show that, for x ∈ A, xA is finite-dimensional if and only if Ax is also
finite-dimensional.

2.1. Lemma. Let W 6= (0) be a finite-dimensional right ideal in A. There exists
an idempotent p ∈W where pv = v for all v ∈ W .

Proof. We refer to the proof [5, Th. 1.4.2] of the classical theorem that if K 6= (0)
is a right ideal in a semi-prime artinian ring R there exists an idempotent p so
that K = pR. For Lemma 2.1 finite-dimensionality replaces the descending chain
condition in that elegant argument. Only a few minor changes in [5, Th. 1.4.2]
provide the proof of this lemma.
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2.2. Theorem. For x ∈ A we have xA finite-dimensional if and only if Ax is
finite-dimensional.

Proof. Let p 6= 0 be an idempotent in A. We show first that pA is finite-dimensional
simultaneously with Ap. Suppose that Ap is finite-dimensional. Then so is pAp.
For each x ∈ A we define Tpx as a mapping of Ap into pA by Tpx(yp) = pxyp.
Tpx is a linear mapping. The set Γ of all linear mappings of Ap into pAp is finite-
dimensional. The mapping px→ Tpx is a linear mapping of pAp into Γ. We show
that this mapping is injective so that pA is finite-dimensional.

Suppose that Tpv = Tpw. Then p(v−w)yp = 0 for all y ∈ A. Hence [p(v−w)A]2 =
(0). As A is a semi-prime algebra we have p(v −w)A = (0) so that, also, pv = pw.

Let FL (FR) denote the set of all x ∈ A for which xA (Ax) is finite-dimensional.
These are ideals in A. Let x ∈ FL, x 6= 0, and set V = {λx : λ ∈ Φ}. Then
K = V+xA is a finite-dimensional right ideal. By Lemma 2.1 there is an idempotent
p 6= 0 so that K = pA. Then Ap is also finite-dimensional as is Apx. But x ∈ K so
that px = x and x ∈ FR.

Henceforth we set F = FL = FR. We say that an ideal K is unital if it possesses
an identity element e so that K = eA. A simple argument shows that e lies in the
center of A ([1, Th. 4.4A]). It follows from Lemma 2.1 that any finite-dimensional
ideal is unital.

3. On minimal ideals in algebras

Let A be a semi-prime algebra over a field Φ. For a subset K of A let L(K) =
{x ∈ A : xK = (0)} and R(K) = {x ∈ A : Kx = (0)}. If K is an ideal in A, then
L(K) = R(K) by [2, p. 162] and their common value is denoted by Ka.

3.1. Lemma. Let W be a minimal ideal in A. There exists a unique prime ideal
P in A such that P ∩W = (0). Also P = W a.

Proof. As (0) is the intersection of all the prime ideals in A, then there exists a
prime ideal P where P 6⊃ W . Then P ∩ W = PW = (0) and P ⊂ W a. Now
WW a ⊂ P so, as P is a prime ideal, W a ⊂ P . Thus P = W a. This enforces the
uniqueness of P .

3.2. Lemma. If the minimal ideal W contains a non-zero idempotent p, then the
prime ideal P of Lemma 3.1 is a primitive ideal.

Proof. As p fails to be in the radical of A, there exists a primitive ideal P which
does not contain p.

The idempotent p of Lemma 3.2 has the property that, given an ideal K in A,
either p ∈ K or p ∈ Ka. For if K 6⊃ W , then KW = (0) and p ∈ Ka. Consider
an idempotent e such that eA is a minimal right ideal. Given an ideal K, either
e ∈ K or e ∈ Ka [12, Lemma 5.1]. It follows that AeA is a minimal ideal of A.

3.3. Lemma. The prime ideal P of Lemma 3.1 is a modular maximal ideal if and
only if the minimal ideal W is unital.

Proof. Suppose that W is unital with identity element q. Then W = qA and q is
in the center of A. As A = qA ⊕ (1 − q)A we have (1 − q)A = W a and W a is a
modular maximal ideal.

Suppose that W a is a modular maximal ideal. Then W ⊕W a = A. As A/W a

has an identity, we see that W is unital.
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As in [8] by the spectrum Σ of A we mean the set of its modular maximal ideals
with the hull-kernel topology. The M ∈ Σ which are of the form W a for a minimal
ideal W are precisely the M ∈ Σ for which Ma 6= (0).

3.4. Lemma. Any M ∈ Σ for which Ma 6= (0) is an isolated point of Σ. If A is
strongly semi-simple Ma 6= (0) for any isolated point M of Σ.

Proof. Suppose Ma
0 6= (0) for M0 ∈ Σ. Then, by Lemma 3.1, M0 is the unique

prime ideal of A not containing Ma
0 . Hence every M ∈ Σ, M 6= M0 contains Ma

0 .
Thus M0 is not in the closure of {M ∈ Σ : M 6= M0}.

Suppose that A is strongly semi-simple and that M0 is an isolated point of Σ.
Let Z = {M ∈ Σ : M 6= M0}; we cannot have Z = (0) for otherwise M0 is not an
isolated point. However M0Z = (0) so that Ma

0 6= (0).
In case A is not strongly semi-simple one can have an isolated point M0 of Σ

where Ma
0 = (0). Consider the algebra A of all bounded linear operators on a

separable infinite-dimensional Hilbert space H . As shown by Calkin [3] the sole
modular maximal ideal M0 of A is the set of all compact linear operators on H .
Clearly Ma

0 = (0). We say that the spectrum Σ of A is granular if the set of isolated
points of Σ is dense in Σ.

3.5. Theorem. Let Q be the direct sum of the unital minimal ideals of A. A is
strongly semi-simple and Σ is granular if and only if Qa = (0).

Proof. By our earlier remarks Qa = ∩{M ∈ Σ : Ma 6= (0)}. Suppose Qa = (0).
Clearly R as the intersection of all M ∈ Σ is (0). By Lemma 3.4 the set of isolated
points of Σ is {M ∈ Σ : Ma 6= (0)}. By the definition of closure in Σ we see that
Σ is granular.

Suppose that R = (0) and Σ is granular. Then, by Lemma 3.4, the closure of
the set of isolated points of Σ is the set of M ∈ Σ containing Qa. As Σ is granular
M ⊃ Qa for all M ∈ Σ. As R = (0) we have Qa = (0).

We turn to a discussion of F. It is readily shown [13, Lemma 1] that F is the
union of all finite-dimensional ideals of A. Each such ideal and therefore F is the
direct sum of unital finite-dimensional minimal ideals of A. In terms of the set Q

of Theorem 3.5 we have F ⊂ Q. As Qa is the intersection of some M ∈ Σ we see
that Qa ⊃ R.

3.6. Theorem. FR = (0).

Proof. As QQa = (0) we have FR = (0).

3.7. Theorem. For every x 6= 0 in R we have xA and Ax infinite-dimensional.

Proof. Let x 6= 0 be in R. As (F ∩R)2 = (0) we have F ∩R = (0). Thus x /∈ F.
As a consequence of Theorem 3.7 every minimal one-sided ideal of A which lies

in R is infinite-dimensional. In §4 we show, under the additional requirement that
A is a Banach algebra, that every such ideal must be contained in R.

3.8. Theorem. Let A be a primitive algebra. Then either F = (0) or A is finite-
dimensional and simple.

Proof. Suppose that F 6= (0). Then F contains a unital minimal ideal K with
identity v. Then A = vA ⊕ (1 − v)A. By primitivity (1 − v)A = (0) so that
A = vA = K.
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For a particular case let A be the algebra of all bounded linear operators on an
infinite-dimensional Banach space. Here F = (0).

We let S denote the socle of A. As pointed out in [13, Lemma 3] we have F ⊂ S

and S = F ⊕ (S ∩ Fa). If Fa = (0), then S = F. Also R = (0) by Theorem 3.6.
This situation occurs in the case of L1(G) for a compact group G.

4. On Banach algebras

Henceforth A is a semi-prime Banach algebra. We obtain more detailed infor-
mation in this case by employing the result [4, Th. 11] that A is finite-dimensional
if A = S.

4.1. Lemma. Let M ∈ Σ. Then M 6⊃ S if and only if M = Ka where K is a
finite-dimensional minimal ideal of A. Also M ⊃ S if and only if M ⊃ F.

Proof. Let M ∈ Σ, M 6⊃ S. There exists a minimal idempotent e /∈ M . By [12,
Lemma 5.1] we get e ∈ Ma. Then Ma is a simple Banach algebra equal to its
socle. Therefore, by [4, Th. 11], Ma = K is finite-dimensional and M = Ka. This
argument also shows that if M 6⊃ S, then M 6⊃ F.

Let W be a finite-dimensional minimal ideal. Then W is a unital ideal and also
W a ∈ Σ by Lemma 3.3.

4.2. Theorem. Fa = R if and only if Γ = {M ∈ Σ : M 6⊃ S} is dense in Σ.

Proof. By Lemma 4.1 we see that Γ = {M ∈ Σ : M 6⊃ F}. Now F is the direct
sum of unital minimal finite-dimensional minimal ideals and Ka ∈ Γ for each such
minimal ideal by Lemma 3.3. Therefore Fa =

⋂
{M : M ∈ Γ}. Clearly Fa ⊃ R.

Suppose that Fa = R. Then any M ∈ Σ contains
⋂
{M : M ∈ Γ} so that Γ is

dense in Σ. Suppose, conversely, that Γ is dense in Σ. Then our formula above for
Fa shows that every M ∈ Σ contains Fa so that R ⊃ Fa and R = Fa.

If A is a modular annihilator algebra as defined in [11] or [7, p. 683], then M 6⊃ S

for every M ∈ Σ so that Fa = R in that case.

4.3. Theorem. Fa ∩S is the socle of R.

Proof. As noted above S = F ⊕ (Fa ∩S) and F ∩ R = (0). Therefore, as R ∩ S

is the socle of R by [11, Lemma 3.10], we have R ∩ S ⊂ F a ∩ S. Suppose that
Fa ∩S 6⊂ R. Then there exists M ∈ Σ where Fa ∩ S 6⊂ M . Let p be a minimal
idempotent in Fa ∩ S where p 6∈ M . As in Lemma 4.1 we have p ∈ F which is
impossible. Then R ∩S = Fa ∩S.

We see that S is the direct sum of two ideals F and Fa ∩S where xA is finite-
dimensional for all x ∈ F and xA is infinite-dimensional for all x 6= 0 in Fa ∩S.

4.4. Corollary. A minimal one-sided ideal K in A is infinite-dimensional if and
only if K ⊂ R.

Proof. If K ⊂ R, then K is infinite-dimensional by Theorem 3.7. Let pA, p2 = p
be an infinite-dimensional right ideal. Then p /∈ F so p ∈ Fa ∩S by [12, Lemma
5.1]. Therefore pA ⊂ R by Theorem 4.3.

If A is strongly semi-simple, then any minimal one-sided ideal is finite-dimen-
sional. Since Segal’s day much progress has been made in determining when L1(G)
is strongly semisimple. If the closure of the subgroup of inner automorphisms
is compact in the Braconnier topology, then R = (0). Similarly R = (0) if all
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the continuous, topologically irreducible, unitary representations of G are finite-
dimensional. These two classes are denoted by [FIA]− and [Moore]. We refer to
the work of T. W. Palmer [6].

Corollary 4.4 shows that F = (0) if and only if R ⊃ S. By [4, Th. 11] any
simple infinite-dimensional Banach algebra A has F = (0). If that Banach algebra
A has no identity, then also Σ is the empty set and A = R. An example with
these properties is an infinite-dimensional simple H∗-algebra [8, p. 275]. Another
example with F = (0) and Σ empty is the Banach algebra of all compact linear
operators on an infinite-dimensional Banach space. Also (see Theorem 4.2) F = (0)
if and only if Σ is empty in the case of a modular annihilator Banach algebra A.
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