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To the memory of my father, Professor Guang-Da Zhang

Abstract. This paper gives explicit evaluations for a Ramanujan-Selberg con-
tinued fraction in terms of class invariants and singular moduli.

§1. Introduction

Let, for |q| < 1,

N(q) = 1 +
q

1+
q + q2

1 +
q3

1 +
q2 + q4

1 + · · · .(1.1)

Set

(a; q)∞ :=
∞∏
k=1

(1− aqk−1).(1.2)

In his notebooks [14, p. 290], Ramanujan asserted that

N(q) =
(−q; q2)∞
(−q2; q2)∞

.(1.3)

This formula was first proved in print by A. Selberg [18]. Other proofs have been
given by K. G. Ramanathan [12], G. Andrews et al. [1] and the author [21].

In his “Lost” Notebooks [16, p. 44], Ramanujan also stated that if |q| < 1, and

L(q) =
1 + q

1 +
q2

1 +
q + q3

1 +
q4

1 + · · · ,(1.4)

then

L(q) =
(−q; q2)∞
(−q2; q2)∞

.(1.5)

Here, we just point out that (1.5) can be proved by using the well-known Heine [10]
continued fraction formula in the same fashion as the proof of (1.3) in the author’s
paper [21]. Set, for |q| < 1,

S1(q) =
q1/8

1 +
q

1+
q + q2

1 +
q3

1 +
q2 + q4

1 + · · · .(1.6)
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From (1.1), (1.3) and (1.5), we have

S1(q) =
q1/8

N(q)
=
q1/8

L(q)
=
q1/8(−q2; q2)∞

(−q; q2)∞
.(1.7)

We call S1(q) the Ramanujan-Selberg continued fraction.
Also, set

S2(q) =
q1/8

1 +
−q
1 +
−q + q2

1 +
−q3

1 +
q2 + q4

1 + · · · .(1.8)

Replacing q by −q in (1.1) and (1.3), one can see that

S2(q) =
q1/8

N(−q) =
q1/8

L(−q) =
q1/8(−q2; q2)∞

(q; q2)∞
.(1.9)

The famous Rogers-Ramanujan continued fraction is defined by

F (q) =
q1/5

1 +
q

1+
q2

1 +
q3

1 +
q4

1 + · · · ,(1.10)

and let S(q) = −F (−q). In his first letter to G. H. Hardy, Ramanujan asserted
that

F (e−2π) =

√
5 +
√

5
2

−
√

5 + 1
2

,(1.11)

S(e−π) =

√
5−
√

5
2

−
√

5− 1
2

,(1.12)

and

F (e−π
√
n) can be exactly found if n is any positive rational quantity.(1.13)

Identities (1.11) and (1.12) were first proved by G. N. Watson [19]. Watson vaguely
discussed (1.13) and merely claimed that F (e−π

√
n) is an algebraic number.

Ramanathan [13] computed F (e−2π
√
n) and S(e−π

√
n) for several positive ratio-

nal numbers n for which the ideal class groups of K = Q(
√
−n) have the property

that each genus contains a single class. By using Weber-Ramanujan’s class invari-
ants and a modular equation of degree 5, Berndt, Chan and the author [4] were
able to establish general formulas for F (e−2π

√
n) and S(e−π

√
n).

The aim of this note is to establish general formulas for the Ramanujan-Selberg
continued fraction and its companion in terms of class invariants, or equivalently
in terms of singular moduli.

§2. Explicit formulas for S1(q) and S2(q)

For q =exp(−π
√
n), where n is positive rational, let

Gn := 2−1/4q1/24(−q; q2)∞(2.1)

and

gn := 2−1/4q1/24(q; q2)∞.(2.2)

We shall refer to Gn and gn as the Ramanujan-Weber class invariants, which can
be roughly viewed as generators of the Hilbert class field of the complex quadratic
field of K = Q(

√
−n). The reader is referred to the important paper of B. Birch [7]

and the excellent books of Cox [9] and Lang [11]. We also use modular equations in
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the sequel, and refer to [2, pp. 213, 214] for this terminology. The singular modulus
α := αn is that unique positive number αn between 0 and 1 satisfying

√
n = 2F1(1

2 ,
1
2 ; 1; 1− αn)

2F1(1
2 ,

1
2 ; 1;αn)

,(2.3)

where 2F1 is the hypergeometric function. Moreover (cf. [2, p. 102]),

2F1(
1
2
,

1
2

; 1;α) =
2
π

∫ π
2

0

dφ√
1− α sin2 φ

.(2.4)

Then we have [3, p. 185]

Gn = (4αn(1− αn))−1/24(2.5)

and

gn = (4αn(1− αn)−2)−1/24.(2.6)

Let α and β be moduli. We say that β is of degree d over α if

2F1(1
2 ,

1
2 ; 1; 1− β)

2F1(1
2 ,

1
2 ; 1;β)

= d
2F1(1

2 ,
1
2 ; 1; 1− α)

2F1(1
2 ,

1
2 ; 1;α)

.(2.7)

Therefore, if α = αn and β is of degree d over α, then, by (2.3), β = αd2n. A
modular equation of second degree is an equation connecting α = αn and β = α4n

which will be used in our proofs.

Theorem (modular equations of second degree [2, p. 214]). Let β be of second de-
gree over α and

m = 2F1(1
2 ,

1
2 ; 1;α)

2F1(1
2 ,

1
2 ; 1;β)

.

Then

m
√

1− α+
√
β = 1(2.8)

and

m2
√

1− α+ β = 1.(2.9)

Now, we state and prove the main theorems.

Theorem 2.1. Let q = e−π
√
n and α = αn. Then

S1(q) =
α1/8

√
2
.(2.10)

Proof. First, it is easy to show that (cf. [2, p. 37, (22.3)])

(−q2; q2)∞ =
1

(q2; q4)∞
,(2.11)

which is a very famous theorem of Euler. By (1.7), (2.11), (2.1) and (2.2) we have

S1(q) =
q1/8

(−q; q2)∞(q2; q4)∞
=

1√
2Gng4n

.(2.12)

Set α = αn and β = α4n. Then β is of second degree over α. From (2.8) and (2.9),
we find that √

β =
1−
√

1− α
1 +
√

1− α
(2.13)
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and

1− β =
4
√

1− α
(1 +

√
1− α)2

.(2.14)

It follows that, by (2.6) and (2.14),

g4n =
(

4β
(1− β)2

)−1/24

=
(

2
√
β

1− β

)−1/12

=
(

2
(1−

√
1− α)

(1 +
√

1− α)
(1 +

√
1− α)2

(4
√

1− α)

)−1/12

=
(

α

2
√

1− α

)−1/12

.

(2.15)

Therefore, from (2.12), (2.5) and (2.15),

S1(q) =
1√
2

(4α(1 − α))1/24

(
α2

4(1− α)

)1/24

=
α1/8

√
2
.

This completes the proof.

Corollary 2.2. Let q = e−π
√
n, G = Gn and g = gn. Then

S1(q) = 2−5/8
(

1−
√

1−G−24
)1/8

(2.16)

and

S1(q) = 2−1/2
(

(1 + 2g24)−
√

(1 + 2g24)2 − 1
)1/8

.(2.17)

Proof. From (2.5) and (2.6), we have

α =
1
2

(
1−

√
1−G−24

)
(2.18)

and

α = (1 + 2g24)−
√

(1 + 2g24)2 − 1.(2.19)

Then, by (2.10), Corollary (2.2) follows immediately.

Theorem 2.3. Let q = e−π
√
n and α = αn. Then

S2(q) =
1√
2

(
α

1− α

)1/8

.(2.20)

Proof. By (1.9), (2.11) and (2.2), we have

S2(q) =
q1/8

(q; q2)∞(q2; q4)∞
=

1√
2gng4n

.(2.21)

Then the theorem follows from (2.2), (2.6) and (2.15) immediately.

By (2.18) and (2.19), S2(q) can be also expressed either in terms of G or g.
The Theorems and Corollaries above provide explicit evaluations of the Ramanu-

jan-Selberg continued fraction in terms of the Ramanujan-Weber class invariants
or singular moduli. For values of Gn and gn, see the paper of Berndt, Chan and
the author [6], and the author’s papers [22], [23], for values of αn, see the paper of
Berndt, Chan and the author [5]. Ramanujan calculated numerious class invariants
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and singulor moduli [14]. The Borweins [8] and Ramanathan [13] also calculated
some singular moduli.

Example 1. We have (cf. [3, p. 282])

α58 = (13
√

58− 99)2(99− 70
√

2)2.

Then by (2.10), we find that

S1

(
e−π
√

58
)

= 2−1/2(13
√

58− 99)1/4(99− 70
√

2)1/4.

Example 2. In his first notebook, Ramanujan [14, p. 310] claimed that

α10 = (
√

10− 3)2(3− 2
√

2)2 =
3
√

2−
√

5− 2
3
√

2 +
√

5 + 2
.

For a proof, see [3, p. 282]. Then

α10

1− α10
=

3
√

10− 1
2

− 3
√

2,

and, by (2.20),

S2

(
e−π
√

10
)

=
1√
2

(
3
√

10− 1
2

− 3
√

2

)1/8

.

The author extends his thanks to Bruce Berndt who read the original manuscript
and contributed some helpful suggestions, and to the referee for valuable suggestions
and some corrections.
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