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TIME DELAYED PARABOLIC SYSTEMS
WITH COUPLED NONLINEAR BOUNDARY CONDITIONS

C. V. PAO

(Communicated by David S. Tartakoff)

Abstract. The aim of this paper is to show the existence and uniqueness
of a solution for a system of time-delayed parabolic equations with coupled
nonlinear boundary conditions. The time delays are of discrete type which
may appear in the reaction function as well as in the boundary function. The
approach to the problem is by the method of upper and lower solutions for
nonquasimonotone functions.

1. Introduction

Parabolic partial differential equations with time delays have been given consider-
able attention in recent years, and various methods have been used for studying the
existence and stability of the problem (cf. [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]).
Most of the earlier works are devoted to scalar parabolic equations using semi-group
theory and functional analytic approach (cf. [2, 7, 12, 14, 15]). The work in [7]
treats a coupled system of functional parabolic equations using the theory of dy-
namic flow for quasimonotone nondecreasing functions. Recently, the method of
upper and lower solutions has been used to treat a class of time-delayed para-
bolic equations for mixed quasimonotone functions, including quasimonotone non-
decreasing reaction functions (cf. [4, 9, 10]). In all the above works the boundary
condition is linear and the time delays appear only in the reaction function. In
this paper we consider a system of time-delayed parabolic equations with coupled
nonlinear boundary conditions where the reaction function and boundary function
are not necessarily quasimonotone and the time delays may appear in the reaction
function as well as in the boundary function. Our approach to the problem is by
the method of upper and lower solutions for nonquasimonotone functions.

To describe the system we consider a bounded domain Ω in Rn with bound-
ary ∂Ω and some positive constant vectors τ ≡ (τ1, · · · , τN ), τ ′ ≡ (τ ′1, · · · , τ ′N ),
representing the time delays. For any finite T > 0, we set

DT = (0, T ], ST = (0, T ]× ∂Ω, DT = [0, T ]× Ω,

Q
(i)
0 = [−τ i, 0]× Ω, Q

(i)

T = [−τ i, T ]× Ω, QT = Q
(1)

T × · · · ×Q
(N)

T ,
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where Ω = Ω ∪ ∂Ω and τ i = max {τi, τ ′i}, i = 1, · · · , N . Denote by C(DT ) the
set of continuous functions on DT and let C(DT ) = C(DT ) × · · · × C(DT ) taken
N -times. For any u ≡ (u1, · · · , uN ) in C(DT ) we write

uτ ≡ uτ (t, x) ≡ (u1(t− τ1, x), · · · , uN (t− τN , x)),

uτ ′ ≡ uτ ′(t, x) ≡ (u1(t− τ ′1, x), · · · , uN (t− τ ′N , x)).

Then the system of time-delayed parabolic equations is given in the form

∂ui/∂t− Liui = fi(t, x,u,uτ ) in DT ,

Biui = gi(t, x,u,uτ ′) on ST ,

ui(t, x) = ηi(t, x) in Q
(i)
0 (i = 1, · · · , N),

(1.1)

where for each i, Li and Bi are the (uniform) elliptic and boundary operators given
by

Liui =
n∑

j,k=1

a
(i)
j,k (t, x)

∂2ui
∂xj∂xk

+
n∑
j=1

b
(i)
j (t, x)

∂ui
∂xj

+ ci(t, x)ui,

Biui ≡ ∂ui/∂ν + β∗i ui,

with ∂/∂ν denoting the outward normal derivative on ∂Ω. It is assumed that ∂Ω is
of class C1+α, and for each i the coefficients of Li and the first partial derivatives of
a

(i)
j,k are Hölder continuous on DT , ci ≤ 0 and β∗i ≥ 0, and ηi is Hölder continuous

in Q
(i)
o . The functions fi(t, x, ·), gi(t, x, ·) and β∗i (t, x) are Hölder continuous in

their respective domains, and fi(·,u,v) and gi(·,u,v) satisfy the local Lipschitz
condition (2.5) in Section 2. It is allowed that Li = 0 (and no boundary condition
for the corresponding ui) for some or all i. This means that problem (1.1) may
consist of a combination of ordinary and parabolic equations.

The purpose of this paper is to show the existence and uniqueness of a solution to
(1.1) by the method of upper and lower solutions. This existence result is obtained
without any quasimonotone condition on fi(·,u,uτ ) or on gi(·,u,uτ ′). We also
show that in the special case where fi and gi possess a quasimonotone nondecreasing
property then there exist two sequences which converge monotonically from above
and below, respectively, to the unique solution. These results are stated in Section
2, and proofs of these results are given in Section 3.

2. The main results

In addition to the general smoothness assumptions in the Introduction we need
a pair of coupled upper and lower solutions which are defined in the following.

Definition 2.1. Two smooth functions ũ = (ũ1, · · · , ũN) and û = (û1, · · · , ûN)
are called coupled upper and lower solutions of (1.1) if ũ ≥ û on QT and if for each
i = 1, · · · , N ,

∂ũi/∂t− Liũi ≥ fi(t, x,u,v) for (u,v) ∈ S × S1 with ui = ũi,

∂ũi∂ν ≥ gi(t, x,u,v) for (u,v) ∈ S × S2 with ui = ũi,

∂ûi/∂t− Liûi ≤ fi(t, x,u,v) for (u,v) ∈ S × S1 with ui = ûi,

∂ûi/∂ν ≤ gi(t, x,u,v) for (u,v) ∈ S × S2 with ui = ûi,

ũi(t, x) ≥ ηi(t, x) ≥ ûi(t, x) in Q
(i)
o .

(2.1)
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In the above definition inequality between vectors is in the component-wise sense,
and the smoothness of ũ, û is in the sense that these functions are continuously
differentiable to the order appearing in (1.1). The subsets S,S1 and S2 are given
by

S ≡ {u ∈ C(QT ); û ≤ u ≤ ũ on QT },
S1 ≡ {v ∈ C(QT ); ûτ ≤ vτ ≤ ũτ on DT },
S2 ≡ {v ∈ C(QT ); ûτ ′ ≤ vτ ′ ≤ ũτ ′ on DT }.

(2.2)

Notice that if the N -vector functions

f(·,u,v) ≡ (f1(·,u,v), · · · , fN (·,u,v)),
g(·,u,v) ≡ (g1(·,u,v), · · · , gN (·,u,v))(2.3)

are quasimonotone nondecreasing in S × S1 and S × S2 respectively (that is, for
each i = 1, · · · , N, fi(·,u,v) and gi(·,u,v) are nondecreasing with respect to all the
components of u and v except ui), then the inequalities for ũ in (2.1) are reduced
to

∂ũi/∂t− Liũi ≥ fi(t, x, ũ, ũτ ) in DT ,

∂ũi/∂ν ≥ gi(t, x, ũ, ũτ ′) on ST ,

ũi(t, x) ≥ ηi(t, x) in Q
(i)
o (i = 1, · · · , N),

(2.4)

and those for û are reduced to (2.4) with all the inequalities reversed. Similar
inequalities can be obtained if f(·,u,v) and g(·,u,v) are mixed quasimonotone
functions (e.g., see [9, 10]). We assume that a pair of coupled upper and lower
solutions ũ, û exist, and for each i = 1, · · · , N there exist positive constants Ki,K

′
i

such that

|fi(t, x,u,v) − fi(t, x,u′,v′)| ≤ Ki(|u− u′|+ |v − v′|)
for (u,v), (u′,v′) ∈ S × S1,

|gi(t, x,u,v) − gi(t, x,u′,v′)| ≤ K ′i(|u− u′|+ |v − v′|)
for (u,v), (u′,v′) ∈ S × S2,

(2.5)

where |w| = |w1|+· · ·+|wN | for any w = (w1, · · · , wN ) in RN . Our main existence-
uniqueness result is the following.

Theorem 2.1. Let ũ, û be a pair of coupled upper and lower solutions of (1.1), and
let condition (2.5) hold. Then there exists a unique solution u∗ ≡ (u∗1, · · · , u∗N) ∈ S
to (1.1).

If the functions f(·,u,v),g(·,u,v) are quasimonotone nondecreasing, then for
any initial iteration u(0) we can construct a sequence {u(k)} ≡ {u(k)

1 , · · · , u(k)
N }

from the linear iteration process

Liu(k)
i = Fi(t, x,u(k−1),u(k−1)

τ ) in DT ,

Biu(k)
i = Gi(t, x,u(k−1),u(k−1)

τ ′ ) on ST ,

u
(k)
i (t, x) = ηi(t, x) in Q

(i)
o (i = 1, · · · , N),

(2.6)
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where

Liui = ∂ui/∂t− Liui +Kiui, Biui = Biui +K ′iui,

fi(t, x,u,uτ ) = Kiui + fi(t, x,u,uτ ), Gi(t, x,u,uτ ′) = K ′iui + gi(t, x,u,uτ ′)

(i = 1, · · · , N)

(2.7)

and Ki and K ′i are the Lipschitz constants in (2.5). Denote the sequence by {u(k)}
if u(o) = ũ, and by {u(k)} if u(o) = û. Then we have the following monotone
convergence of these sequences.

Theorem 2.2. Let the conditions in Theorem 2.1 be satisfied. If, in addition,
f(·,u,v) and g(·,u,v) are quasimonotone nondecreasing in S × S1 and S × S2,
respectively, then the sequences {u(k)}, {u(k)} converge monotonically to the unique
solution u∗ ∈ S. Moreover,

û ≤ u(k) ≤ u(k+1) ≤ u∗ ≤ u(k+1) ≤ u(k) ≤ ũ on QT(2.8)

for every k = 1, 2, · · · .

Remark 2.1. Theorems 2.1 and 2.2 remain true if some of the boundary conditions
in (1.1) are replaced by the Dirichlet condition ui = gi(t, x). The proof for this
case is the same as that given in Section 3 except with a slightly different integral
representation from that in (3.5) (see [3, 9, 10]).

As an application of the above theorems we consider a two-compartment model
in generic repression which is given by (cf. [6, 11, 15])

∂u1/∂t+ (a1 + b1)u1 = a1u2 + f(v1(t− τ1, x)),

∂v1/∂t+ (a2 + b2)v1 = a2v2,

∂u2/∂t−D1∇2u2 + b2u2 = 0,

∂v2/∂t−D2∇2v2 + b2v2 = cou2(t− τ2, x) in DT ,

∂u2/∂ν + β1u2 = β1u1, ∂v2/∂ν + β2v2 = β2v1 on ST ,

u1(0, x) = η1(0, x), v1(t, x) = η∗1(t, x), (−τ1 ≤ t ≤ 0),

u2(t, x) = η2(t, x), (−τ2 ≤ t ≤ 0), v2(0, x) = η∗2(0, x),

(2.9)

where ai, bi, βi and co, i = 1, 2, are all positive constants. The function f(v1) is
given by f(v1) = σ(1+c1v

ρ
1)−1 with σ and c1 being the kinetic constants and ρ ≥ 1

being the order of repression (cf. [6, 11]). It is easy to see by considering (2.9)
with u = (u1, v1, u2, v2) and L1 = L2 = 0 that for any positive constants M,M∗

satisfying

M ≥ max{η1, η2, σ/b1}, M∗ ≥ {η∗1 , η∗2 , coM/b2},(2.10)

the pair ũ = (M,M∗,M,M∗) and û = (0, 0, 0, 0) are coupled upper and lower
solutions. Since the Lipschitz condition (2.5) is clearly satisfied by the functions at
the right-hand side of (2.9), Theorem 2.1 ensures that for any non-negative function
η(t, x), problem (2.9) has a unique bounded global solution u∗ ≡ (u∗1, v∗1 , u∗2, v∗2). A
similar global existence result can be obtained for the three-compartment model in
[6], including some improved upper and lower solutions which can be used to study
the asymptotic behavior of the solution.
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3. Proof of the theorems

To prove Theorem 2.1 we first consider an equivalent system of (1.1) given by

Liui = Fi(t, x,u,uτ ) in DT ,

Biui = Gi(t, x,u,uτ ′) on ST ,

ui(t, x) = ηi(t, x) in Q
(i)
o (i = 1, · · · , N),

(3.1)

where Li,Bi, Fi and Gi are given by (2.7). It is clear from (2.1) and (2.7) that

Liũi ≥ Fi(t, x,u,v) for (u,v) ∈ S × S1 with ui = ũi,

Biũi ≥ Gi(t, x,u,v) for (u,v) ∈ S × S2 with ui = ũi,
(3.2)

and a similar relation for ûi. We show that problem (3.1) has a unique solution if
Fi(·,u,v) and Gi(·,u,v) satisfy the following hypothesis.

Hypothesis (H). For each i = 1, · · · , N, Fi(t, x,u,v) and Gi(t, x,u,v) are uni-
formly bounded on DT × RN × RN and satisfy the global Lipschitz condition

|Fi(t, x,u,v)− Fi(t, x,u′,v′)| ≤ Ki(|u− u′|+ |v − v′|),

|Gi(t, x,u,v) −Gi(t, x,u′,v′)| ≤ K
′
i(|u− u′|+ |v − v′|)

for all u,u′,v,v′ in RN .

(3.3)

Let Γi(t, x; s, ξ) be the fundamental solution of Li, and let

J
(o)
i (t, x) ≡

∫
Ω

Γi(t, x; 0, ξ)ηi(0, ξ)dξ,

(Fi(u,uτ ))(t, x) ≡ Fi(t, x,u(t, x),uτ (t, x)),

(Gi(u,uτ ′))(t, x) ≡ Gi(t, x,u(t, x),uτ ′(t, x)) (i = 1, · · · , N),

(3.4)

where u(t, x) = η(t, x) when t ≤ 0 (cf. [3, 8]). Define an operator Ai : C(DT ) →
C(DT ) by

(Aiu)(t, x) = J
(o)
i (t, x) +

∫ t

o

ds

∫
Ω

Γi(t, x; s, ξ)(Fi(u,uτ ))(s, ξ)dξ

+
∫ t

o

ds

∫
∂Ω

Γi(t, x; s, ξ)ψi(s, ξ)dξ (i = 1, · · · , N),
(3.5)

where ψi(t, x) is the density of the single layer potential and it is associated with
the functions Fi(u,uτ ) and Gi(u,uτ ′) (cf. [8], pg. 495). In the case Li = 0, Ai is
defined by

(Aiu)(t, x) = ηi(0, x) +
∫ t

0

(F (u,uτ ))(s, x)ds (x ∈ Ω).(3.6)

By the integral representation for parabolic boundary value problems a solution
of (3.1), if it exists, may be expressed as

ui = Aiu on DT (i = 1, · · · , N).(3.7)

Define A : Br → C(DT ) by

Au = (A1u, · · · , ANu) (u ∈ Br),
where Br is the ball in C(DT ) with radius r > 0. Then equation (3.7) has a unique
solution in Br if A has a unique fixed point in Br. We show this in the following.
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Lemma 3.1. Under the hypothesis (H) the integral system (3.7) has a unique so-
lution u∗ = (u∗1, · · · , u∗N) in Br for some r > 0. Moreover, u∗ is the unique solution
of (3.1).

Proof. By (3.5) and the positive property of Γi,

|Aiu| ≤ |J (o)
i |+

∫ t

o

ds

∫
Ω

Γi(t, x; s, ξ)|Fi(u,uτ )|dξ

+
∫ t

o

ds

∫
∂Ω

Γi(t, x; s, ξ)|ψi(s, ξ)|dξ.

Since uτ and uτ ′ are known when t ≤ 0, Hypothesis (H) implies that Fi(u,uτ ) and
Gi(u,uτ ′) are uniformly bounded for all u,uτ and uτ ′ in C(DT ). By Lemma 9.6.1
of [8], ψi(t, x) is bounded and continuous on ST . In view of∫ t

o

ds

∫
Ω

Γi(t, x; s, ξ)dξ +
∫ t

o

ds

∫
∂Ω

Γi(t, x; s, ξ)dξ ≤ Ci

for some constant Ci, the uniform boundedness of Fi(u,uτ ) and ψi(t, x) ensures the
existence of ri > o such that |Aiu| ≤ ri for all u ∈ C(DT ). It is obvious from (3.6)
that this relation also holds if Li = 0. By the definition of A we obtain ‖Au‖ ≤ r,
where r = r1 + · · ·+ rN and ‖ · ‖ is the (maximum) norm in C(DT ).

Let ψ
(l)
i (t, x) be the density function corresponding to Fi(u(l),u(l)

τ ) and
Gi(u(l),u(l)

τ ′ ), where l = 1, 2. By Lemma 9.6.1 of [8] there exists a constant K∗i
such that

|ψ(1)
i (t, x)− ψ(2)

i (t, x)| ≤ K∗i ‖u(1) − u(2)‖.(3.8)

Using this relation and the argument in the proof of Lemma 9.6.2 in [8], we conclude
that A is a compact operator on Br into itself. The existence of a fixed point
u∗ ∈ Br follows from the Schauder fixed point theorem. Finally, by the argument
in the proof of Theorem 9.6.1 in [8] u∗ is a classical solution of (3.1).

To show the uniqueness of the solution we let τo = min{τ1, · · · , τN , τ ′1, · · · , τ ′N}
and consider problem (3.7) in the domain D1 ≡ (0, τo] × Ω (that is, with T = τo).
Since uτ and uτ ′ are known in D1, the argument in the proof of Theorem 9.6.1 in [8]
shows that the solution u∗ is unique on D1 ≡ [0, ro]× Ω. Knowing the uniqueness
of the solution in D1, a ladder argument ensures that u∗ is the unique solution
of (3.7) on Dm = (0,mτo] × Ω for every integer m = 1, 2, · · · . This proves the
lemma.

Proof of Theorem 2.1. The proof is based on Lemma 3.1 for some modified func-
tions F̂i(·,u,uτ ) and Ĝi(·,u,uτ ′) which are defined to coincide with Fi(·,u,uτ ) on
S × S1 and with Gi(·,u,uτ ′) on S × S2 and satisfy the conditions in Hypothesis
(H). For example, if we denote by [u]σ a vector in Rσ with σ components of u ∈ RN
and white u in the split form

u = ([u]ai , [u]bi , [u]ci) (i = 1, · · · , N)

for each i, where ai, bi, and ci are nonnegative integers satisfying ai + bi + ci = N
and

[u]ai > [ũ]ai , [ũ]bi ≥ [u]bi ≥ [û]bi , [u]ci < [û]ci ,
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then a possible choice of F̂i, Ĝi are the truncated functions given by

F̂i(·,u,uτ ) ≡ Fi([ũ]ai , [u]bi , [û]ci , [ũτ ]ai , [uτ ]bi , [ûτ ]ci),

Ĝi(·,u,uτ ′) ≡ Gi([ũ]ai , [u]bi , [û]ci , [ũτ ′]ai , [uτ ′ ]bi , [ûτ ′ ]ci)

(i = 1, · · · , N),

(3.9)

where ai, bi and ci may be different for different u. In other words, the modified
functions F̂i, Ĝi are obtained from Fi and Gi by replacing the component uj by ũj
whenever uj > ũj , and by ûj whenever uj < ûj . Hence the integer ai (resp., ci)
in the split form of u is the maximal number of components uj satisfying uj > ũj
(resp., uj < ûj). The above definition implies that the truncated functions F̂i and
Ĝi satisfy the conditions in Hypothesis (H). By Lemma 3.1 the modified problem
of (3.1) (that is, problem (3.1) with Fi, Gi replaced, respectively, by F̂i and Ĝi) has
a unique solution u∗. Hence to prove the theorem it suffices to show û ≤ u∗ ≤ ũ
on DT .

Given any u ∈ RN we write u = (ui, [u]N−1). By the Lipschitz condition (2.5),

Kiûi + fi(·, ûi, [u]N−1,uτ ) ≤ Kiui + fi(·, ui, [u]N−1,uτ )

≤ Kiũi + f(·, ũi, [u]N−1,uτ ) for (u,uτ ) ∈ S × S1.

This implies that the truncated function F̂i satisfies the relation

F̂i(ûi, [u]N−1,uτ ) ≤ F̂i(ui, [u]N−1,uτ ) ≤ F̂i(ũi, [u]N−1,uτ )

for all u,uτ ∈ RN .
(3.10)

A similar relation holds for Ĝi(ui, [u]N−1,uτ ′). These relations and (3.2) yield

Liũi ≥ F̂i(u,uτ ) in DT ,

Biũi ≥ Ĝi(u,uτ ′) on ST
(3.11)

for all u,uτ and uτ ′ in RN . Similarly, ûi satisfies the inequalities in (3.11) in
reversed order. Since u∗ satisfies (3.1) when Fi and Gi are replaced by F̂i and Ĝi
we see from (3.11) that the function wi ≡ ũi − u∗i satisfies the relation

Liwi = Liũi − F̂i(u∗,u∗τ ) ≥ 0 in DT ,

Biwi = Biũi − Ĝi(u∗,u∗τ ′) ≥ 0 on ST ,

wi(0, x) = ũi(0, x)− ηi(0, x) ≥ 0 in Ω (i = 1, · · · , N).

By the positivity lemma for parabolic boundary value problems we obtain wi ≥ 0
on DT , i = 1, · · · , N . This proves u∗ ≤ ũ. A similar argument gives u∗ ≥ û. This
shows that u∗ is the unique solution of the original problem (3.1). The equivalence
between (3.1) and (1.1) ensures that u∗ is the unique solution of (1.1) in S. This
completes the proof of the theorem.

Proof of Theorem 2.2. It is easily seen from the argument in [8] (see pg. 494)
for parabolic boundary value problems without time delays that the sequences
{uk}, {uk} goverened by (2.6) with u(o) = ũ and u(o) = û, respectively, possess
the monotone property in (2.8). This implies that the pointwise limits

lim
k→∞

u(k)(t, x) = u(t, x), lim
k→∞

u(k)(t, x) = u(t, x)
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exist and satisfy relation (2.8) where u∗ is replaced by u or u. Since by (3.5)–(3.6)
the sequence {u(k)} given in (2.6) can be expressed as

u
(k)
i = Aiu(k−1), k = 1, 2, · · · (i = 1, · · · , N),

the dominated convergence theorem ensures that ui = Aiu, i = 1, · · · , N , where u
stands for either u or u. A regularity argument as that in [8, 9] shows that u and u
are solutions of (3.1). Finally, a ladder argument as that in the proof of Lemma 3.1
shows that u = u and their common value is the unique solution of (1.1) in S.
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