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ON THE CLASS NUMBER
OF CERTAIN IMAGINARY QUADRATIC FIELDS

J. H. E. COHN

(Communicated by David E. Rohrlich)

Abstract. Theorem. Let n > 2 denote an integer, D the square-free part
of 2n − 1 and h the class number of the field Q[

√
−D]. Then except for the

case n = 6, n− 2 divides h.

Theorem. Let n > 2 denote an integer, D the square-free part of 2n− 1 and h the
class number of the field Q[

√
−D]. Then except for the case n = 6, n− 2 divides h.

This generalises Theorem 5.3 of [2], which derives the same conclusion under the
restrictions that n− 2 be squarefree and coprime to 6, and provides a new proof of
the result in [1] that for each g there are infinitely many imaginary quadratic fields
whose class number is divisible by g.

Proof. Here the Diophantine Equation 2n−1 = Da2 has at least one solution, with
a odd and D ≡ 7 (mod 8); in particular D ≥ 7 and so the only units in the field are
±1. Thus in the field we obtain (1

2 (1 + a
√
−D))(1

2 (1− a
√
−D)) = 2n−2 where the

ideal [1
2 (1+a

√
−D)] and its conjugate are coprime; thus [1

2 (1+a
√
−D)] = πn−2 for

an ideal π having norm 2. Let λ = (h, n−2) with h = λµ, n−2 = λν and (µ, ν) = 1.
Since the ideal πh is principal, it follows that [1

2 (1+a
√
−D)]µ = πλµν = (πh)ν = [δ]ν

for some algebraic integer δ in the field, and so (1
2 (1 + a

√
−D))µ = ±δν . In view of

(µ, ν) = 1, it then follows that 1
2 (1+a

√
−D) = ±γν for some other algebraic integer

in the field, γ. It merely remains to show that ν = 1, for then n− 2 = λ|λµ = h.
We show first that ν has no odd prime factor p, for otherwise we should find,

absorbing the ± sign into the right-hand side, that for some odd rational integers
α and β, 1

2 (1 + a
√
−D) = (1

2 (α + β
√
−D))p, and then equating real parts gives

2p−1 = α

1
2 (p−1)∑
r=0

(
p

2r

)
αp−2r−1(−Dβ2)r.

This would imply α = ±1 and then ±2p−1 =
∑ 1

2 (p−1)
r=0

(
p
2r

)
(−Dβ2)r, with the lower

sign rejected modulo p. Thus 2p−1 = 1
2 ((1 +

√
1− x)p + (1 −

√
1− x)p) = fp(x),
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Table 1.

n h/(n− 2) n h/(n− 2) n h/(n− 2)
3 1 15 4 27 156
4 1 16 8 28 384
5 1 17 19 29 480
6 1/4 18 4 30 280
7 1 19 15 31 685
8 2 20 8 32 1408
9 2 21 6 33 1776
10 2 22 44 34 1982
11 2 23 74 35 1728
12 2 24 24 36 1792
13 5 25 164 37 6108
14 6 26 202

say, where x = 1 + Dβ2 ≡ 0 (mod 8), and we show that this is impossible for any
odd integer p, by showing that for each odd k ≥ 3

fk(x) ≡ 2k−1 − kx · 2k−3 (modx · 2k−2).(1)

Since (1+
√

1− x)2+(1−
√

1− x)2 = 4−2x and (1+
√

1− x)2(1−
√

1− x)2 = x2,
we obtain the recurrence relation fk+4(x) = (4 − 2x)fk+2(x) − x2fk(x) with the
values f3(x) = 4− 3x and f5(x) = 16− 20x+ 5x2. Thus (1) holds for these values
since 8|x, and we proceed to prove it by induction for larger k. If it holds for odd
values t and t+ 2, then

ft+4(x) = (4 − 2x)ft+2(x)− x2ft(x)

= (4 − 2x)(2t+1 − (t+ 2)x · 2t−1 +Ax · 2t)
− x2(2t−1 − tx · 2t−3 +Bx · 2t−2)

= 2t+3 − (t+ 4)x · 2t+1 + Cx · 2t+2,

say, where C = A+ x
4 (t+ 2)− 1

2Ax−
1
8x+ 1

32 tx
2 − 1

16Bx
2 is an integer.

Thus ν has no odd prime factor. Finally suppose that 2|ν. Then we obtain that
±2(1 + a

√
−D) = (α+ β

√
−D)2, since now the unit ±1 can no longer be absorbed

into the power. Then ±2 = α2−Dβ2, ±a = αβ. But since D ≡ 7 (mod 8) we must
reject the lower sign in the former, and then find

2n = 1 +Da2 = 1 +Dα2β2 = α4 − 2α2 + 1 = (α2 − 1)2

and so (α + 1)(α − 1) = 2
1
2n whence for some integers i > j, α + 1 = 2i, α − 1 =

2j, 2 = 2i − 2j, yielding only i = 2, j = 1, α = 3, leading to n = 6 and D = 7 as
required.

The author wishes to express his appreciation to the referee for providing the
references, and for suggesting an improvement in the exposition.

A table showing the first few values of h/(n− 2) is given in Table 1.
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