PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 5, Pages 1275–1277 S 0002-9939(01)06255-4 Article electronically published on October 5, 2001

ON THE CLASS NUMBER OF CERTAIN IMAGINARY QUADRATIC FIELDS

J. H. E. COHN

(Communicated by David E. Rohrlich)

ABSTRACT. Theorem. Let n > 2 denote an integer, D the square-free part of $2^n - 1$ and h the class number of the field $Q[\sqrt{-D}]$. Then except for the case n = 6, n - 2 divides h.

Theorem. Let n > 2 denote an integer, D the square-free part of $2^n - 1$ and h the class number of the field $Q[\sqrt{-D}]$. Then except for the case n = 6, n - 2 divides h.

This generalises Theorem 5.3 of [2], which derives the same conclusion under the restrictions that n-2 be squarefree and coprime to 6, and provides a new proof of the result in [1] that for each g there are infinitely many imaginary quadratic fields whose class number is divisible by g.

Proof. Here the Diophantine Equation $2^n - 1 = Da^2$ has at least one solution, with a odd and $D \equiv 7 \pmod{8}$; in particular $D \ge 7$ and so the only units in the field are ± 1 . Thus in the field we obtain $(\frac{1}{2}(1 + a\sqrt{-D}))(\frac{1}{2}(1 - a\sqrt{-D})) = 2^{n-2}$ where the ideal $[\frac{1}{2}(1 + a\sqrt{-D})]$ and its conjugate are coprime; thus $[\frac{1}{2}(1 + a\sqrt{-D})] = \pi^{n-2}$ for an ideal π having norm 2. Let $\lambda = (h, n-2)$ with $h = \lambda\mu$, $n-2 = \lambda\nu$ and $(\mu, \nu) = 1$. Since the ideal π^h is principal, it follows that $[\frac{1}{2}(1 + a\sqrt{-D})]^{\mu} = \pi^{\lambda\mu\nu} = (\pi^h)^{\nu} = [\delta]^{\nu}$ for some algebraic integer δ in the field, and so $(\frac{1}{2}(1 + a\sqrt{-D}))^{\mu} = \pm \delta^{\nu}$. In view of $(\mu, \nu) = 1$, it then follows that $\frac{1}{2}(1 + a\sqrt{-D}) = \pm \gamma^{\nu}$ for some other algebraic integer in the field, γ . It merely remains to show that $\nu = 1$, for then $n - 2 = \lambda |\lambda\mu = h$.

We show first that ν has no odd prime factor p, for otherwise we should find, absorbing the \pm sign into the right-hand side, that for some odd rational integers α and β , $\frac{1}{2}(1 + a\sqrt{-D}) = (\frac{1}{2}(\alpha + \beta\sqrt{-D}))^p$, and then equating real parts gives

$$2^{p-1} = \alpha \sum_{r=0}^{\frac{1}{2}(p-1)} \binom{p}{2r} \alpha^{p-2r-1} (-D\beta^2)^r.$$

This would imply $\alpha = \pm 1$ and then $\pm 2^{p-1} = \sum_{r=0}^{\frac{1}{2}(p-1)} {p \choose 2r} (-D\beta^2)^r$, with the lower sign rejected modulo p. Thus $2^{p-1} = \frac{1}{2}((1+\sqrt{1-x})^p + (1-\sqrt{1-x})^p) = f_p(x)$,

©2001 American Mathematical Society

Received by the editors October 31, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11R29; Secondary 11D61, 11B37, 11B39.

J. H. E. COHN

TABLE	1.

n	h/(n-2)	n	h/(n-2)	n	h/(n-2)
3	1	15	4	27	156
4	1	16	8	28	384
5	1	17	19	29	480
6	1/4	18	4	30	280
7	1	19	15	31	685
8	2	20	8	32	1408
9	2	21	6	33	1776
10	2	22	44	34	1982
11	2	23	74	35	1728
12	2	24	24	36	1792
13	5	25	164	37	6108
14	6	26	202		

say, where $x = 1 + D\beta^2 \equiv 0 \pmod{8}$, and we show that this is impossible for any odd integer p, by showing that for each odd $k \geq 3$

(1)
$$f_k(x) \equiv 2^{k-1} - kx \cdot 2^{k-3} \pmod{x \cdot 2^{k-2}}.$$

Since $(1+\sqrt{1-x})^2 + (1-\sqrt{1-x})^2 = 4-2x$ and $(1+\sqrt{1-x})^2(1-\sqrt{1-x})^2 = x^2$, we obtain the recurrence relation $f_{k+4}(x) = (4-2x)f_{k+2}(x) - x^2f_k(x)$ with the values $f_3(x) = 4 - 3x$ and $f_5(x) = 16 - 20x + 5x^2$. Thus (1) holds for these values since 8|x, and we proceed to prove it by induction for larger k. If it holds for odd values t and t+2, then

$$f_{t+4}(x) = (4 - 2x)f_{t+2}(x) - x^2 f_t(x)$$

= $(4 - 2x)(2^{t+1} - (t+2)x \cdot 2^{t-1} + Ax \cdot 2^t)$
 $- x^2(2^{t-1} - tx \cdot 2^{t-3} + Bx \cdot 2^{t-2})$
= $2^{t+3} - (t+4)x \cdot 2^{t+1} + Cx \cdot 2^{t+2},$

say, where $C = A + \frac{x}{4}(t+2) - \frac{1}{2}Ax - \frac{1}{8}x + \frac{1}{32}tx^2 - \frac{1}{16}Bx^2$ is an integer. Thus ν has no odd prime factor. Finally suppose that $2|\nu$. Then we obtain that $\pm 2(1 + a\sqrt{-D}) = (\alpha + \beta\sqrt{-D})^2$, since now the unit ± 1 can no longer be absorbed into the power. Then $\pm 2 = \alpha^2 - D\beta^2$, $\pm a = \alpha\beta$. But since $D \equiv 7 \pmod{8}$ we must reject the lower sign in the former, and then find

$$2^{n} = 1 + Da^{2} = 1 + D\alpha^{2}\beta^{2} = \alpha^{4} - 2\alpha^{2} + 1 = (\alpha^{2} - 1)^{2}$$

and so $(\alpha + 1)(\alpha - 1) = 2^{\frac{1}{2}n}$ whence for some integers i > j, $\alpha + 1 = 2^i, \alpha - 1 = 2^j, 2 = 2^i - 2^j$, yielding only $i = 2, j = 1, \alpha = 3$, leading to n = 6 and D = 7 as required.

The author wishes to express his appreciation to the referee for providing the references, and for suggesting an improvement in the exposition.

A table showing the first few values of h/(n-2) is given in Table 1.

References

- N. C. Ankeny and S. Chowla, On the divisibility of the class numbers of quadratic fields, Pacific J. Math. 5 (1955), 321–324. MR 19:18f
- B. H. Gross and D. E. Rohrlich, Some results on the Mordell-Weil group of the Jacobian of the Fermat curve, Inventiones Math. 44 (1978), 201–224. MR 58:10911

Department of Mathematics, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom

E-mail address: J.Cohn@rhul.ac.uk