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DIRECT SUMS OF LOCAL TORSION-FREE ABELIAN GROUPS

DAVID M. ARNOLD

(Communicated by Stephen D. Smith)

Abstract. The category of local torsion-free abelian groups of finite rank is
known to have the cancellation and n-th root properties but not the Krull-
Schmidt property. It is shown that 10 is the least rank of a local torsion-
free abelian group with two non-equivalent direct sum decompositions into
indecomposable summands. This answers a question posed by M.C.R. Butler
in the 1960’s.

1. Introduction

Let TF denote the category of local torsion-free abelian groups of finite rank,
where an abelian group G is local if there is a fixed prime p with qG = G for each
prime q 6= p. Each M in TF has the cancellation property (if M ⊕N is isomorphic
to M ⊕K in TF , then N is isomorphic to K), and the n-th root property (if the
direct sum Mn of n copies of M is isomorphic to Nn for some N in TF , then M
is isomorphic to N) [Lady 75]. An M in TF is a Krull-Schmidt group if any two
direct sum decompositions of M into indecomposable summands are equivalent, i.e.
unique up to isomorphism and order of summands.

M.C.R. Butler, in an unpublished note dating from the 1960’s, constructed an
example of a local torsion-free abelian group of rank 16 that is not a Krull-Schmidt
group (see [Arnold 82]) and asked for the smallest such rank. An example of a
rank-10 local torsion-free abelian group that is not a Krull-Schmidt group is given
in [Arnold 01].

This paper is devoted to showing that 10 is the minimum such rank, i.e. if
M ∈ TF with rank M ≤ 9, then M is a Krull-Schmidt group. Many arguments in
this paper carry over directly to torsion-free modules of finite rank over valuation do-
mains, keeping in mind that the existence and minimal rank of a non-Krull-Schmidt
module depends on the structure of the valuation domain; see [Goldsmith May 99]
and references.

The quasi-isomorphism category TFQ of TF is an additive category with objects
those of TF but with morphism sets Q ⊗ Hom(M,N) for M, N ∈ TF and Q the
rational numbers. The category TFQ is a Krull-Schmidt category in that each object
in TFQ can be written uniquely, up to isomorphism in TFQ and order, as a finite
direct sum of indecomposable objects in TFQ; see [Walker 64]. This is because
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an indecomposable object M in TFQ has a local endomorphism ring QEndM in
TFQ. Indecomposable objects in TFQ are called strongly indecomposable groups,
isomorphism in TFQ is called quasi-isomorphism, and summands of groups in TFQ
are called quasi-summands.

Each M ∈ TF is a torsion-free Z(p)-module, where Z(p) is the localization of the
integers at the prime p. The rank of M as a group is equal to the rank of M as
a Z(p)-module, and HomZ(M,N) = HomZ(p)(M,N) for each M,N ∈ TF. Hence,
rank M = 1 if and only if M is isomorphic to either Z(p) or Q. Define p-rank M to
be the Z/pZ-dimension of M/pM , a finite dimensional Z/pZ-vector space. Notice
that p-rank M ≤ rank M , M is divisible if and only if p-rank M = 0, and M is
isomorphic to a free Z(p)-module if and only if p-rank M = rank M. Moreover, if N
is a Z(p)-submodule of M , then the p-rank of the pure submodule of M generated
by N is less than or equal to the p-rank of N and if M is quasi-isomorphic to N
⊕ K, then p-rank M = p-rank N + p-rank K [Arnold 72]. If M is reduced (no
proper divisible subgroups), then M is isomorphic to a pure subgroup of M∗, the
completion of M in the p-adic topology. Moreover, M∗ is a free Z∗-module with
rank equal to the p-rank of M , where Z∗ is the p-adic completion of Z(p). Each
endomorphism of M lifts to a unique Z∗-endomorphism of M∗, whence End M is
a pure subring of EndZ∗M∗.

2. Uniqueness of direct sums

A group M ∈ TF has the one-sided UDS property if whenever M ⊕ N is iso-
morphic to K1⊕ ... ⊕ Kn ∈ TF with M quasi-isomorphic to each Kj , then M is
isomorphic to some Kj. The group M has the UDS property if whenever N1⊕ ...
⊕ Nm is isomorphic to K1⊕ ... ⊕ Kn ∈ TF with M quasi-isomorphic to each Ni
and Kj, then m = n and there is a relabelling of indices with each Ni isomorphic
to Ki.

Given a strongly indecomposable M in TF , there is a faithful GM ∈ TF quasi-
isomorphic to M such that End GM/NEnd GM is a maximal order in the division
algebra QEnd M/JQEnd M , where JQEnd M is the Jacobson radical of the finite
dimensional Q-algebra QEnd M , NEnd GM = End GM ∩ JQEnd M is a nilpotent
ideal of End M , and GM is faithful if IGM 6= GM for each maximal right ideal I
of End GM [Arnold 01]. A maximal right ideal J of End GM/pEnd GM has the
unique maximal condition if whenever I is a non-zero right ideal and J is a unique
maximal right ideal of End GM/pEnd GM containing I, then I = J .

The first lemma is the local version of [Arnold 01, Theorem 1.5].

Lemma 1. The following statements are equivalent for a strongly indecomposable
N in TF, where GN is as defined above:

(i) N has the UDS property.
(ii) Each group in TF quasi-isomorphic to N has the one-sided UDS property.
(iii) Either End GN is a local ring or else End GN has exactly two maximal right

ideals M1 and M2 such that M1 is a principal right ideal of End GN , GN/M1GN ∼=
Z/pZ, and M1/pEnd GN has the unique maximal condition in End GN/pEnd GN .

Following are non-trivial examples of groups in TF with the UDS property.

Example 1. If N ∈ TF is strongly indecomposable with p-rank N ≤ 2, then N
has the (one-sided) UDS property.



DIRECT SUMS OF LOCAL ABELIAN GROUPS 1613

Proof. It suffices to confirm the conditions of Lemma 1(iii). If p-rank N ≤ 1, then
p-rank GN ≤ 1, since GN is quasi-isomorphic to N . Thus, either p-rank GN = 0
and GN ∼= Q or else p-rank GN = 1, G∗N ∼= Z∗, and End GN is isomorphic to a pure
subring of Z∗ ∼= EndZ∗Z∗. In either case, End GN is a local ring, as desired.

Now assume that p-rank N = p-rank GN = 2 and End GN is not a local ring.
Let M1, . . . ,Mn be distinct maximal right ideals of End GN with n ≥ 2. Then
GN/(M1 ∩ ... ∩Mn)GN ∼= GN/M1GN ⊕ ...⊕ GN/MnGN and pEnd GN ⊆ JEnd
GN ⊆ M1 ∩ ... ∩ Mn. Since p-rank GN = 2 and GN is faithful, it follows that
n = 2, pEnd GN = M1 ∩M2 = JEnd GN , each GN/MiGN ∼= Z/pZ, and each
Mi/pEnd GN has the unique maximal condition. Finally, each Mi is principal as
an application of Nakayama’s Lemma, because pEnd GN = JEnd GN and End
GN/pEnd GN is finite.

The next lemma is used for an induction step in the proof of the main theorem.

Lemma 2. Assume that M = N ⊕N ′ = K1⊕ ...⊕Kn ∈ TF . There are subgroups
K
′

i of Ki with N ⊕N ′ = N⊕ K
′

1 ⊕ ...⊕K
′

n if either
(a) [Warfield 72] End N is a local ring or
(b) [Arnold Lady 75] N and N ′ have no quasi-summands in common.
In this case, N ′ is isomorphic to K

′

1 ⊕ ...⊕K
′

n.

An indecomposable M ∈ TF is purely indecomposable if p-rank M = 1. In this
case, End M is a local ring, being a pure subring of Z∗ ∼= EndZ∗Z∗. Dually, M is
co-purely indecomposable if M is indecomposable with rank M = p-rank M + 1.
There is a contravariant duality F on TFQ sending a purely indecomposable group
M to a co-purely indecomposable group F (M) [Arnold 72] (see [Lady 77] for an
alternate definition of the duality). Hence, QEnd F (M) is isomorphic to QEnd M ,
a subring of the p-adic rationals Q∗.

Following are some elementary properties of purely indecomposable and co-
purely indecomposable groups that are consequences of the definitions and the
duality F .

Proposition 1 ([Arnold 72]). Let M ∈ TF.
(a) If M is purely indecomposable, then:

(i) End M is a pure subring of Z∗;
(ii) each pure subgroup of M is strongly indecomposable;
(iii) if K ∈ TF is a homomorphic image of M with rank K < rank M , then

K is divisible; and
(iv) two purely indecomposable groups M and N in TF are isomorphic if and

only if rank M = rank N and Hom(M,N) 6= 0; equivalently M and N
are quasi-isomorphic.

(b) If M is co-purely indecomposable, then:
(i) End M is isomorphic to a subring of Q∗, hence an integral domain;
(ii) each torsion-free homomorphic image of M is strongly indecomposable;
(iii) if K is a pure subgroup of M with rank K < rank M , then M is a free

Z(p)-module; and
(iv) two co-purely indecomposable groups M and N are quasi-isomorphic if

and only if rank M = rank N and Hom(M,N) 6= 0.
(c) If M is indecomposable with rank ≥ 2 and N is co-purely indecomposable with

rank M < rank N , then Hom(M,N) = 0.
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(d) If M is purely indecomposable with rank ≥ 3 and N is co-purely indecompos-
able with rank M = rank N , then Hom(M,N) = 0.

Remark 1. There is a co-purely indecomposable M ∈ TF with p-rank 3 and rank
4 that does not have either UDS property. In this case End M has 3 maximal right
ideals and M is the summand of a non-Krull-Schmidt group of rank 12 [Arnold 01,
Remark]. In view of the following lemma, this group cannot be a summand of a
non-Krull-Schmidt group of rank 8 = 2(rank M). On the other hand, if M ∈ TF
and End M has at least 4 maximal right ideals, then M is a summand of a non-Krull
Schmidt group of rank equal to 2(rank M).

The next lemma is used in the proof of the main theorem. In view of Proposition
1(b)(i), the hypotheses are satisfied if N is co-purely indecomposable.

Lemma 3. Assume that N ∈ TF with End N an integral domain and M = N ⊕
N ′ = K1 ⊕ K2 ∈ TF with each Ki indecomposable. If p-rank N ≤ 3, then N is
isomorphic to some Ki.

Proof. The proof is a variation on a proof given in [Arnold 01]. Let π be a projection
of M onto N with kernel N ′, and πi a projection of M onto Ki for each i with
1M = π1 + π2. Then 1N = β1 + β2, where βi ∈ End N is the restriction of ππi to
N and βi(N) is contained in a subgroup π(Ki) of N . Since End N is an integral
domain, QEnd N is a field and each βi is a unit in QEnd N .

For each 1 ≤ i ≤ 2, let Ii = βi End N , a right ideal of End N . Then End
N = I1 + I2, since 1N = β1 + β2. Each (End N)/Ii is bounded by a power of p
since βi is a unit in QEnd N . Moreover, IiN is contained in Ai = π(Ki) so that
[N : Ai] is finite. It now suffices to prove that N ∼= Ai for some i, in which case
N ∼= Ki.

If some [N : Ai] = 1, then N = Ai and the proof is complete. The next step is
to assume that each [N : Ai] 6= 1 and reduce to the case that each [N : Ai] = p.
Suppose, by way of induction, that [N : Ai] 6= p. Choose x ∈ N\Ai such that
px ∈ Ai. Then Ai ⊂ Ai + Zx. If N and Ai + Zx are not isomorphic, then replace
Ai by A′i = Ai + Zx. If N ∼= Ai + Zx, say f ∈ End N with f(N) = Ai + Zx, then
replace Ai by A′i = f−1(Ai). In either case, [N : A′i] is a proper divisor of [N : Ai].

The substitution of A′i for Ai doesn’t change the hypothesis that End N = I1+I2
for right ideals Ii of bounded index with IiN contained in Ai. In particular, I ′i =
f−1Ii is an ideal of End N (since IiN is a subgroup of f(N)), I ′iN is contained
in A′i, and I ′i + Σ{Ij : j 6= i} = End N (since fEnd N = ΣfIi is contained in
I1 + Σ{fIj : j 6= i}). If N ∼= A′i, then, by the construction of A′i, N ∼= Ai. By
induction, and the fact that [N : A′i] is a proper divisor of [N : Ai], the Ai’s can be
chosen with each [N : Ai] = p.

At this stage, End N = I1 + I2 for right ideals Ii of finite index in End N
with IiN contained in a subgroup Ai of N and [N : Ai] = p for each i. Replace
Ii by Ii + pEnd N, if necessary, to guarantee that pEnd N is contained in Ii for
each i. But p-rank N ≤ 3, pEnd N ⊆ JEnd N , End N is an integral domain,
and N/(M1 ∩ ... ∩ Mn)N ∼= N/M1N ⊕ ...⊕ N/MnN for maximal ideals Mi of
End N . Hence, End N has at most 3 maximal right ideals M1,M2, and M3 and
pEnd N = M i1

1 M
i2
2 M

i3
3 with i1 + i2 + i3 ≤ 3. Furthermore, pN ⊆ (I1 ∩ I2)N,

and N/(I1 ∩ I2)N ∼= N/I1N ⊕ N/I2N. After relabelling subscripts, if necessary,
I1 = M1, N/I1N = Z/pZ, and I1N = A1. Finally, I1 is principal by Nakayama’s
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Lemma, since pEnd N ⊆ JEnd N and I1/pEnd N is principal. This shows that
A1 is isomorphic to N , as desired.

The point of the next lemma, as used in the proof of the main theorem, is that
Lemma 2(a) applies to a group quasi-isomorphic to a direct sum of two purely
indecomposable groups of the same rank.

Lemma 4. If N ∈ TF is indecomposable and quasi-isomorphic to A⊕B for purely
indecomposable groups A and B in TF with rank A = rank B, then Hom(A,B) =
0 = Hom(B,A) and End N is a local ring.

Proof. Choose purely indecomposable pure subgroups A and B of N and some
least positive integer i with piN ⊂ A ⊕ B ⊂ N. Since p-rank N = 2, N/piN ∼=
Z/piZ ⊕ Z/pjZ for some 1 ≤ j ≤ i. Because A and B are purely indecomposable
pure subgroups of N , N/(A⊕B) ∼= Z/pjZ, say N = A⊕B+Z(a, b)(1/pj) for some
a ∈ A\pA and b ∈ B\pB.

If Hom(A,B) 6= 0 or Hom(B,A) 6= 0, then A and B are isomorphic by Proposi-
tion 1(iv). Moreover, C = N/A is purely indecomposable and quasi-isomorphic to
B. Hence, C ∼= A ∼= B and Hom(C,N)C = N. By Baer’s Lemma [Arnold 82], A
is a summand of N , a contradiction to the assumption that N is indecomposable.

Now assume that Hom(A,B) = 0 = Hom(B,A). Then A and B are fully
invariant subgroups of N = A⊕B+Z(a, b)(1/pj). Thus, End N is the pullback of
a homomorphism A → Z/pjZ with kernel pjA and a homomorphism B → Z/pjZ
with kernel pjB. It follows that End N/pjEnd N ∼= Z/pjZ, whence End N is a
local ring.

3. The main theorem

Theorem 1. If M ∈ TF and rankM ≤ 9, then M is a Krull-Schmidt group.

Proof. Let N be an indecomposable summand of M of minimal rank and M = N
⊕ N1⊕ ... ⊕ Nm = K1⊕ ... ⊕ Kn with each Ni and Kj indecomposable. Then
rank N ≤ 4, rank N ≤ rank Nj , and rank N ≤ rank Ki for each i and j, since rank
M ≤ 9 and N is an indecomposable summand of M of minimal rank.

If p-rank N ≤ 1, then End N is a local ring, as noted above. In this case, by
Lemma 2(a), N1⊕ ... ⊕ Nm is isomorphic to K

′

1⊕ ... ⊕ K
′

n for subgroups K
′

i of
Ki. It follows, by an induction on the rank of M , that M is a Krull-Schmidt group.
In particular, if p-rank N = rank N , then N is free and cyclic, hence of p-rank 1.

If N and N1⊕ ... ⊕ Nm have no quasi-summands in common, then, by Lemma
2(b), the proof is completed by an induction on the rank of M.

In view of the preceding remarks, it is now sufficient to assume that M is reduced,
2 ≤ p-rank N < rank N ≤ 4 for each indecomposable summand N of minimal rank,
and if M = N ⊕ N ′, then N and N ′ = N1 ⊕ ...⊕ Nm have a quasi-summand in
common. Under these assumptions, M has no rank-1 quasi-summands. This is
because the only rank-1 groups in TF are Z(p) and Q and, since M is reduced,
any rank-1 quasi-summand must actually be a summand isomorphic to Z(p). The
strategy of the remainder of the proof is to show that N must be isomorphic to
some Ki, in which case the cancellation property for N ∈ TF and an induction on
the rank of M shows that M is a Krull-Schmidt group.

First assume that rank N = 4, p-rank N = 3. Then N , being indecomposable, is
co-purely indecomposable, hence strongly indecomposable by Proposition 1. Thus,
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N1⊕ ... ⊕ Nm is quasi-isomorphic to N ⊕ L for some L of rank ≤ 1. To see this,
recall that N and N1⊕ ... ⊕ Nm have a quasi-summand in common, N is strongly
indecomposable, rank N ≥ rank Ni, and rank N+

∑
irank Ni = 4+

∑
irank Ni ≤ 9.

Since M has no rank-1 quasi-summands, L = 0, m = 1, and n = 2. But TFQ
is a Krull-Schmidt category so that M = N ⊕ N1 = K1 ⊕ K2 has rank 8 with
N quasi-isomorphic to N1, K1, and K2. By Lemma 3, N is isomorphic to either
K1 or K2, as desired.

Next, consider the case that rank N = 4 and p-rank N = 2. If N is strongly
indecomposable, then, as above, M = N ⊕ N1 = K1 ⊕ K2 has rank 8 and N is
quasi-isomorphic to N1, K1, and K2. By Example 1, N has the UDS property
so that N is isomorphic to either K1 or K2, as desired. If N is not strongly
indecomposable, then N is quasi-isomorphic to A ⊕ B, where A and B are purely
indecomposable groups with p-rank 1 and rank 2. This is because M has no rank-1
quasi-summands. Now apply Lemmas 2 and 4 and induction on the rank of M to
see that M is a Krull-Schmidt group.

The only remaining case is that p-rank N = 2, rank N = 3. In this case N is
co-purely indecomposable, hence strongly indecomposable by Proposition 1. Since
N and N1 have a quasi-summand in common, N1 is quasi-isomorphic to N ⊕A for
some pure subgroup A of N1 with 1 ≤ p-rank A < rank A ≤ 3. This is because M
has no rank-1 quasi-summands and rank M ≤ 9.

If A has p-rank 1, then Hom(A,N) = 0 by Proposition 1(c) and (d), since A
is purely indecomposable with 2 ≤ rank A ≤ 3 = rank N , and N is co-purely
indecomposable. In this case, Hom(A,M) = Hom(A,A). It follows that A is a
pure fully invariant subgroup, hence equal to a subgroup of some Ki, say K1. Thus,
N ⊕ (N1/A) is isomorphic to (K1/A)⊕K2 ⊕ K3 and induction on the rank of M
completes the proof.

Finally, assume that A has p-rank 2. Then rank A = 3 = rank N and A and
N are both co-purely indecomposable. If Hom(A,N) = 0, then, as above, M is
a Krull-Schmidt group. Finally, if Hom(A,N) 6= 0, then A is quasi-isomorphic to
N , since A and N are both co-purely indecomposable modules with the same rank
Hence, M = N ⊕N1 = K1 ⊕K2 ⊕ ...⊕Kn has rank 9 with n ≤ 3. If n = 3, then
N is quasi-isomorphic to K1,K2 and K3 by the minimality of the rank of N . In
this case, Example 1 yields N isomorphic to some Ki. If n = 2, then, by Lemma
3, N is isomorphic to some Ki, as desired.

Example 2 ([Arnold 01]). There is a rank-10 group in TF that is not a Krull-
Schmidt group.

Proof. The argument is briefly outlined. There is M ∈ TF of p-rank 4 and rank
5 such that M ∼= End M , a subring of an algebraic number field with exactly four
maximal ideals M1,M2,M3,and M4, and pM = pEnd M = M1 ∩M2 ∩M3 ∩M4.
Furthermore, there are subgroups A1 and A2 of M not isomorphic to M with
(M1 ∩M2)M ⊂ A1 and (M3 ∩M4)M ⊂ A2. It follows that there is B ∈ TF with
M ⊕B = A1 ⊕A2, a rank 10 group in TF that is not a Krull-Schmidt group.
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