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ON THE DISTRIBUTION SINGULAR VALUES
OF TOEPLITZ MATRICES

MILUTIN R. DOSTANIĆ

(Communicated by David R. Larson)

Abstract. We prove a second order formula concerning distribution of singu-
lar values of Toeplitz matrices in some cases when conditions of the H. Widom
Theorem are not satisfied.

1. Introduction and notation

In 1920 G. Szegö proved a basic result concerning the distribution of the eigen-
values

{
λ

(n)
k

}n
k=1

of the Toeplitz matrix

Tn(f) =
(
f̂i−j

)n−1

i,j=0

(
f̂k =

1
2π

∫ π

−π
f(θ)e−ikθ dθ

)
associated with a bounded real valued function f on the interval [−π, π]: For any
continuous function F one has

lim
n→∞

∑n
k=1 F

(
λ

(n)
k

)
n

=
1

2π

∫ π

−π
F (f(θ)) dθ.(1)

An analogous result holds for the singular values s(n)
1 ≥ s

(n)
2 ≥ . . . ≥ s

(n)
n of not

necessarily selfadjoint Toeplitz matrices Tn (f). The analogue of (1) is

lim
n→∞

∑n
k=1 F

(
s

(n)
k

)
n

=
1

2π

∫ π

−π
F (|f(θ)|) dθ.(2)

Let

K =

{
f ∈ L∞(−π, π) :

∞∑
k=−∞

|k||f̂k|2 <∞
}
,

M = ‖f‖∞, m = dist (0, convR(f))

where R(f) denotes the essential range of f and “conv” denotes the convex hull.
For f ∈ K we let

||f ||K =

(∑
k∈Z
|k|
∣∣∣f̂k∣∣∣2)

1
2

.
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Then it is easy to see that each singular value of Tn(f) belongs to the interval
[m,M ] (see Lemma 1.2 in [7]).

Let t(n)
k =

(
s

(n)
k

)2

. H. Widom [7] proved a more exact formula than (1) and (2).
Namely he proved

Theorem 1. If f ∈ K and G ∈ C3[m2,M2], then

lim
n→∞

(
n∑
k=1

G
(
t
(n)
k

)
− n

2π

∫ π

−π
G
(
|f(θ)|2

)
dθ

)
= tr

(
G
(
T (f)T (f)

)
+G

(
T (f)T (f)

)
− 2T

(
G(|f |2)

))
.

(3)

We denote by T (f) the infinite Toeplitz matrix
(
f̂i−j

)∞
i,j=0

and by H(f) =(
f̂i+j+1

)∞
i,j=0

the infinite Hankel matrix associated with the symbol f .

If f ∈ K, it is obvious that H(f) is a Hilbert-Schmidt operator. Moreover,
|H(f)|2 ≤ ‖f‖K, where | · |2 denotes the Hilbert-Schmidt norm of the operator
H(f) acting on l2 of the nonnegative integers. For the little bit of the theory of
trace class (i.e., nuclear) and the Hilbert-Schmidt operators that will be needed we
refer the reader to [3].

It is easy to see that T (f) = (T (f))∗ and hence the operators T (f)T (f) and
T (f)T (f) are selfadjoint. Therefore, operators G

(
T (f)T (f)

)
and G

(
T (f)T (f)

)
are defined by the spectral theorem. If f ≥ 0, the operator T (f) is obviously
nonnegative.

In the case of eigenvalues, formulae similar to (3) are established in [1] and [4] but
under much more restrictive assumptions on G (which is assumed to be analytic)
and on the symbol f .

The function G in Theorem 1 is given in terms of the function F in relation (2)
by G(λ ) = F

(√
λ
)

. For G to belong to C3 it is not enough that F belongs to C3

but we also must have F ′(0) = F ′′(0) = F ′′′(0) = 0 (in the case when m = 0).
It is conjectured in [7] that the condition F ∈ C3[0,M ], F ′(0) = 0 (in the case

m = 0) is sufficient for the statement of Theorem 1.
Essentially, in the case m = 0 it is necessary to prove Theorem 1 when F (λ ) =

λ β and β small enough. In this paper, we shall prove formula (3) in the case m = 0
and when the conditions of Theorem 1 are not satisfied.

2. Result

Theorem 2. Let f ∈ K and m = 0. If F (λ) = λα (α ≥ 2), or F ∈ C6[0,M ],
F ′(0) = 0, then the operator

S = F

(√
T (f)T (f)

)
+ F

(√
T (f)T (f)

)
− 2T (F (|f |))

is of the trace class and

lim
n→∞

(
n∑
k=1

F
(
s

(n)
k

)
− n

2π

∫ π

−π
F (|f(θ)|) dθ

)
= tr S.(4)

Remark 1. Theorem 2 is stated for the case m = 0. If m > 0, (4) holds according
to Theorem 1. (Of course, in that case the condition F ′(0) = 0 is superficial.)
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In the proof of Theorem 2 we will use the following Lemma of Lizorkin [5]:

Lemma 1. Let α ≥ 1, σ > 0. Then

(iλ)α = A exp
(
−iπα λ

2 · σ

)∫ ∞
−∞

e−i(λ−σ)ξ d%(ξ) (|λ | ≤ σ)

where % is a nondecreasing function of bounded variation and A = exp(−iπα ),
%(ξ) =

∑
k< ξσ

π

ak, where ak are positive numbers related to Fourier coefficients cn of

the function (iλ)α ei λ
π α
2σ by

ck = Aake
−i kπ.

Here the function (iλ)α ei λ
π α
2σ is assumed to be periodically extended from

(−σ, σ) to the entire real line. Our convention is zγ = eγ ln z, ln z = ln |z|+ i arg z,
0 ≤ arg z < 2π.

Lemma 2. If 1 < α < 2 and M > 0, then there exists a nondecreasing function
%0 of bounded variation, such that for each λ ∈ [0,M2]

λ α =
∫ ∞
−∞

e−i 2πα−iM
2tei λ td%0(t)

holds and
∞∫
−∞

t2 d%0(t) <∞.

Proof. We apply Lemma 1, with σ = M2. Since λ ≥ 0, we have (i λ )α = ei
π
2 α ·λ α

and thus

λ α e−i
π
2 α = e−πα ei λ

π α
2M2

∫ ∞
−∞

ei (λ−M
2)ξ d%(ξ),

i.e.,

λ α = e−
3πi α

2

∫ ∞
−∞

e−iM
2ξei λ(ξ− π α

2M2 ) d%(ξ).

Substituting ξ − πα
2M2 = t, %0(t)

def
= %

(
t+ πα

2M2

)
in the last formula we get

λ α =
∫ ∞
−∞

e−2πi α e−iM
2tei λ t d%0(t).

The last formula holds for λ ∈ [0,M2] and α ≥ 1. Since % is a function of bounded
variation, so is %0.

We will show now that for 1 < α < 2,∫ ∞
−∞

t2 d%0(t) <∞.(5)

Since %0 is a function of bounded variation, applying the Cauchy inequality to (5)
we get ∫ ∞

−∞
|t| d%0(t) <∞.

Since %0(t) = %
(
t+ πα

2M2

)
, in order to prove (5) it is enough to show that∫ ∞

−∞
t2 d%(t) <∞.
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From the way the function % is defined it follows that it suffices to prove∑
n∈Z

n2an <∞

where an is the sequence of positive numbers from Lemma 1 (with σ = M2), i.e.,
the convergence of the series ∑

n∈Z
(−1)nn2cn(6)

where cn are the Fourier coefficients of the function (iλ)α ei λ
π α
2M2 on the interval

[−M2,M2]. Since∫ M2

−M2
(iλ )α exp

(
i λπα

2M2

)
· exp

(
− i λnπ

M2

)
dλ

=
(
M2

π

)α+1

·
∫ π

−π
(i x)α e

i α x
2 e−i nx dx,

in order to prove the convergence of the series (6) it is enough to prove that for
1 < α < 2 the series ∑

n∈Z
(−1)nn2

∫ π

−π
(i x)α e

i α x
2 e−i nx dx

converges.
Since α > 1, integrating by parts twice and having in mind the definition of

the function z 7−→ zγ , we conclude that the convergence of the above series will be
established once we prove that the series∑

n∈Z
(−1)nAn

converges for 1 < α < 2. Here An
def
=
∫ π
−π(i x)α−2e

i α x
2 e−i nx dx. Consider now

the behavior of An as n→∞. If n > 0, one gets

An =
(
n− α

2

)1−α
[
−e i π α2 ·

∫ π(n− α
2 )

0

tα−2e−i t dt− e 3πiα
2

·
∫ π(n− α

2 )

0

tα−2ei t dt

]
.

Since for 1 < α < 2
∫∞

0
tα−2e±it dt = Γ(α − 1)e±i

π
2 (α−1) we obtain

An =
(
n− α

2

)1−α
[
iΓ(α − 1)(e2πiα − 1) + e

i π α
2 ·

∫ ∞
π(n− α

2 )
tα−2e−i t dt

+e
3πiα

2 ·
∫ ∞
π(n− α

2 )
tα−2ei t dt

]
.
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Integrating by parts, we get∫ ∞
π(n− α

2 )
tα−2e−i t dt = (−1)n+1i

(
π
(
n− α

2

))α−2

· ei π α2 +O
(
nα−3

)
,∫ ∞

π(n− α
2 )
tα−2ei t dt = (−1)ni

(
π
(
n− α

2

))α−2

· e−i π α2 +O
(
nα−3

)
, n→∞,

and thus,

An =
(
n− α

2

)1−α [
iΓ(α − 1)

(
e2πi α − 1

)
+O

(
nα−3

)]
.

Therefore, the series
∞∑
n=1

(−1)nAn converge. In a similar way one shows that the

series
−1∑

n=−∞
(−1)nAn

also converge.

Remark 2. From Lemma 2 (by integrating over λ) we obtain the representation

λα+1 =
∫ +∞

−∞
e−2πiα−iM2t · e

iλt − 1
it

(α+ 1) dρ 0 (t) ,(7)

for 1 < α < 2, λ ∈
[
0,M2

]
.

Let dν = α+1
it dρ 0 . If 1 < α < 2, then the function ρ 0 does not have a jump at

the t = 0, hence ∫ +∞

−∞
|t|k d |ν| <∞ for k = 0, 1, 2, 3

(|ν| is a variation of measure ν) . From (7), putting β = α+ 1, we get

λβ =
∫ +∞

−∞
e−2πiα−iM2teiλtdν (t)−A, 2 < β < 3, λ ∈

[
0,M2

]
,(8)

and

A =
∫ +∞

−∞
e−2πiα−iM2t dν (t) .

We write Pn for the projection operator, defined by

Pn(x0, x1. . . . ) = (x0, x1, x2, . . . , xn−1, 0, 0, . . . )

from l2 to the subspace of l2 on which Tn(f) may be thought of as acting. We
identify Tn(f) with PnT (f)Pn in the obvious way. We define an operator Qn on l2

by

Qn(x0, x1, . . . ) = (xn−1, xn−2, . . . , x1, x0, 0, 0, . . . ).

For f ∈ L∞(−π, π) we define f̃(θ) = f(−θ).
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Lemma 3. 1) For any f, g ∈ L∞(−π, π) we have

T (f · g)− T (f) · T (g) = H(f)H(g̃),
Tn(f · g)− Tn(f) · Tn(g) = PnH(f)H(g̃)Pn +QnH(f̃)H(g)Qn.

2) If f ∈ K, then we have f̃ ∈ K, |f |2 ∈ K, ei tf ∈ K (∀t ∈ R) and∥∥|f2|
∥∥
K
≤ const ‖f‖K,∥∥ei tf∥∥

K
≤ const · |t| · ‖f‖K .

Proof. 1) Routine computation. (Or see [2], Propositions 2.7 and 3.6.)
2) Can be proved in a same way as Proposition 1 in [6].

Lemma 4. If f ∈ K, 1 < α < 2, then the operator
(
T
(
|f |2

))α − T (|f |2α ) is
nuclear.

Proof. Integrating the identity
d

ds

(
T
(
ei s|f |

2
)
e−i sT(|f |2)

)
=
[
T
(
ei s|f |

2 · i|f |2
)
− T

(
ei s|f |

2
)
T
(
i |f |2

)]
e−i sT(|f |2)

on the interval [0, t] and multiplying the result by ei tT(|f |2) on the right, we get

T
(
ei t|f |

2
)
− ei tT(|f |2) =

∫ t

0

H
(
ei s|f |

2
)
·H
(
i
∣∣∣f̃ ∣∣∣2) ei(t−s)T(|f |2) ds.(9)

Since f ∈ K, we have ei s|f |
2 ∈ K, i |f |2 ∈ K. Applying Lemma 3, formula (9)

yields ∣∣∣T (ei t|f |2)− ei tT(|f |2)
∣∣∣
1
≤
∫ |t|

0

∣∣∣H (ei s|f |2) ·H (i|f̃ |2)∣∣∣
1
ds

for all t ∈ R, since the operator ei(t−s)T(|f |2) is unitary. Here |·|1 denotes the nuclear

norm of an operator. Since the operators H
(
ei s|f |

2
)

and H

(
i
∣∣∣f̃ ∣∣∣2) are Hilbert-

Schmidt, their product is nuclear, and thus, according to Lemma 3 (statement 2))
we get ∣∣∣H (ei s|f |2) ·H (i|f̃ |2)∣∣∣

1
≤ c0 · |s| · ‖f‖2K

(c0 is independent of s), and thus∣∣∣T (ei t|f |2)− ei tT(|f |2)
∣∣∣
1
≤ c0‖f‖2K

∫ |t|
0

s ds =
c0
2
t2‖f‖2K .(10)

According to Lemma 2(
T
(
|f |2

))α
=

∫
R
e−2πiα−iM2teitT(|f |2) d%0(t),

|f |2α =
∫
R
e−2πiα−iM2teit|f |

2
d%0(t),

and thus,

T
(
|f |2α

)
=
∫
e−2πiα−iM2tT

(
eit|f |

2
)
d%0(t).
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Therefore,((
T
(
|f |2

))α − T (|f |2α )) =
∫
R
e−2πiα−iM2t

(
eitT(|f |2) − T

(
eit|f |

2
))

d%0(t).

Inequality (10) shows that the integral on the right side in the formula above,
converges in nuclear norm and thus

((
T
(
|f |2

))α − T (|f |2α )) is a nuclear operator.
Moreover,

∣∣∣((T (|f |2))α − T (|f |2α ))∣∣∣
1
≤ c0

2
‖f‖2K

∫
R
t2 d%0(t) < +∞ (by Lemma 2).

Lemma 5. If 1 < α < 2 and f ∈ K, then

lim
n→∞

tr
((
Tn(|f |2)

)α − Tn(|f |2α )
)

= 2 tr
((
T (|f |2)

)α − T (|f |2α )
)
.

Proof. In a same way as we proved (9) we get

Tn

(
ei t|f |

2
)
− ei tTn(|f |2)

=
∫ t

0

[
Tn

(
ei s|f |

2
i |f |2

)
− Tn

(
ei s|f |

2
)
Tn
(
i |f |2

)]
ei(t−s)Tn(|f |2) ds

and thus by Lemma 3

Tn

(
ei t|f |

2
)
− ei tTn(|f |2) =

∫ t

0

[
PnH

(
ei s|f |

2
)
H
(
i |f̃ |2

)
Pn

+QnH
(
ei s|f̃ |

2
)
H
(
i |f |2

)
Qn

]
ei(t−s)Tn(|f |2) ds.

(11)

From Lemma 2 we obtain((
Tn
(
|f |2

))α − Tn (|f |2α ))
=
∫
R
e−2πiα−iM2t

(
eitTn(|f |2) − Tn

(
eit|f |

2
))

d%0(t) (1 < α < 2).
(12)

It follows from (11) that∣∣∣Tn (ei t|f |2)− ei tTn(|f |2)
∣∣∣
1
≤ const |t|2, ∀t ∈ R.

(const does not depend on t and n) and thus, since
∫
R |t|

2 d%0(t) <∞, by the same
arguments as in the proof of (14) in [7] and by the Lebesgue theorem on dominant
convergence, (11) and (12) give

lim
n→∞

tr
((
Tn(|f |2)

)α − Tn(|f |2α )
)

= 2 tr
((
T (|f |2)

)α − T (|f |2α )
)
.

Lemma 6. If f ∈ K, 1 < α < 2, then the operator
(
T (f)T (f)

)α
+
(
T (f)T (f)

)α−
2T
(
|f |2α

)
is nuclear and

lim
n→∞

tr
[(
Tn(f)Tn(f)

)α − Tn(|f |2α )
]

= tr
[(
T (f)T (f)

)α
+
(
T (f)T (f)

)α − 2T (|f |2α )
]
.
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Proof. By Lemma 2 we have(
T (f)T (f)

)α − Tn (|f |2)α
=
∫ ∞
−∞

e−2πi α−iM2t ·
(
ei tT (f)T (f) − ei tT (|f |2)

)
d%0(t).

(13)

Since
∣∣∣ei tT (f)T (f) − ei tT (|f |2)

∣∣∣
1
≤ const · |t| (t ∈ R), and

∫
R |t| d%0(t) < +∞, the

integral in (13) converges (in nuclear norm) and thus the operator
(
T (f)T (f)

)α −
T
(
|f |2

)α
is nuclear. In a similar way we prove that the operator

(
T (f)T (f)

)α −
Tn
(
|f |2

)α is nuclear. Thus
(
T (f)T (f)

)α
+
(
T (f)T (f)

)α − 2T
(
|f |2

)α is also nu-
clear. Therefore, according to Lemma 4 the operator

(
T (f)T (f)

)α
+
(
T (f)T (f)

)α−
2T
(
|f |2α

)
is nuclear. Since

∣∣∣ei tTn(f)T (f) − ei tTn(|f |2)
∣∣∣
1
≤ d0 · |t| (t ∈ R, d0 is inde-

pendent of n and t) and
∫∞
−∞ |t| d%0(t) < +∞, it follows from(

Tn(f)Tn(f)
)α − Tn (|f |2)α

=
∫ ∞
−∞

e−2π iα−iM2t
(
ei tTn(f)T (f) − ei tTn(|f |2)

)
d%0(t)

that

lim
n→∞

tr
((
Tn(f)Tn(f)

)α − Tn (|f |2)α)
=

∫ ∞
−∞

e−2π iα−iM2t lim
n→∞

tr
(
ei tTn(f)T (f) − ei tTn(|f |2)

)
d%0(t).

From relation (14) in [7] and from Lemma 2, the last equality becomes

lim
n→∞

tr
((
T (f)T (f)

)α − Tn (|f |2)α)(14)

= tr
((
T (f)T (f)

)α
+
(
T (f)T (f)

)α − 2T
(
|f |2

)α)
.

From (14) and Lemma 5, adding, we obtain

lim
n→∞

tr
[(
Tn(f)Tn(f)

)α − Tn (|f |2α )]
= tr

[(
T (f)T (f)

)α
+
(
T (f)T (f)

)α − 2T
(
|f |2α

)]
.

Remark 3. By using representation (8) by the same method as the one used for
proving Lemmas 4, 5, 6 one can show that:

Lemma 7. If f ∈ K and 2 < β < 3, then the operator T
(
|f |2

)β
− T

(
|f |2β

)
is

the trace class and the following holds :

lim
n−→∞

tr
[
Tn

(
|f |2

)β
− Tn

(
|f |2β

)]
= 2 tr

[
T
(
|f |2

)β
− T

(
|f |2β

)]
.

Also, The operator
(
T (f)T (f)

)β
+
(
T (f)T (f)

)β − 2T
(
|f |2β

)
is the trace class and

the following holds :

lim
n→∞

tr
[(
Tn(f)Tn(f)

)β − Tn (|f |2β)]
= tr

[(
T (f)T (f)

)β
+
(
T (f)T (f)

)β − 2T
(
|f |2β

)]
.
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3. Proof of Theorem 2

Note that Theorem 2 holds for the functions λ 7−→ λ2, λ 7−→ λ4 and λ 7−→ λ α

(α ≥ 6) as a consequence of Theorem 1. In other words,

lim
n→∞

(
n∑
k=1

(
s

(n)
k

)α
− n

2π

∫ π

−π
|f(θ)|α dθ

)
= tr

[(
T (f)T (f)

)α
2 +

(
T (f)T (f)

)α
2 − 2T (|f |α )

]
,

(15)

for α = 2, 4 and α ≥ 6.
From Lemma 6 and Lemma 7 we obtain that (15) also holds if 2 < α < 4 and

4 < α < 6. Therefore, formula (4) holds if F (λ) = λα and α ≥ 2.
Now let F ∈ C6

[
0,M2

]
and F ′ (0) = 0. Then, for the function F0(λ) =

6∑
k=2

F (k)(0)
k! λk we have

lim
n→∞

(
n∑
k=1

F0

(
s

(n)
k

)
− n

2π

∫ π

−π
F0 (|f(θ)|) dθ

)

= tr
[
F0

(√
T (f)T (f)

)
+ F0

(√
T (f)T (f)

)
− 2T (F0 (|f |))

]
.

(16)

Let R(λ ) = F (λ)− F0(λ ). The function λ 7−→ R(
√
λ ) satisfies the conditions of

Theorem 1 and hence

lim
n→∞

(
n∑
k=1

R
(
s

(n)
k

)
− n

2π

∫ π

−π
R (|f(θ)|) dθ

)

= tr
[
R

(√
T (f)T (f)

)
+R

(√
T (f)T (f)

)
− 2T (R (|f |))

]
.

(17)

Adding (16) and (17) one gets (4). (The operators on the right-hand side of (16)
and (17) are nuclear and so is their sum, i.e., the operator S is nuclear.)

Remark 4. The question of whether the condition F ′(0) = 0 in Theorem 2 is nec-
essary remains open. To answer it affirmatively it is enough to find the example of
a function f ∈ K such that m = dist(0, convR(f)) = 0 and

lim
n→∞

(
n∑
k=1

s
(n)
k − n

2π

∫ π

−π
|f(θ)| dθ

− tr
[√

T (f)T (f) +
√
T (f)T (f)− 2T (|f |)

])
6= 0.
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