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ON THE CHROMATIC NUMBER OF KNESER HYPERGRAPHS

JIŘÍ MATOUŠEK

(Communicated by John R. Stembridge)

Abstract. We give a simple and elementary proof of Kř́ıž’s lower bound on
the chromatic number of the Kneser r-hypergraph of a set system S.

1. Introduction

Let S be a system of subsets of a finite set X . The Kneser r-hypergraph KGr(S)
has S as the vertex set, and an r-tuple (S1, S2, . . . , Sr) of sets in S forms an edge
if Si ∩ Sj = ∅ for all i 6= j. In particular, KG(S) = KG2(S) is the Kneser graph of
S. Kneser [8] conjectured in 1955 that

χ

(
KG

((
[n]
k

)))
≥ n− 2k + 2, n ≥ 2k,

where
(

[n]
k

)
denotes the system of all k-element subsets of the set [n] = {1, 2, . . . , n},

and χ denotes the chromatic number. This was proved in 1978 by Lovász [12], as
one of the earliest and most spectacular applications of topological methods in
combinatorics. Several other proofs have been published since then, all of them
topological; among them, at least those of Bárány [2], Dol’nikov [6] (also see [5]
and [7]), and Sarkaria [14] can be regarded as substantially different from each
other and from Lovász’ original proof. Erdős’ generalization of Kneser’s conjecture
to hypergraphs, dealing with the chromatic number of KGr(

(
[n]
k

)
), was established

by Alon, Frankl, and Lovász [1].
Kř́ıž [10], [11] proved a remarkable lower bound for the chromatic number of

KGr(S) for an arbitrary set system S, which easily implies the correct bound in
the case when S =

(
[n]
k

)
considered by Alon et al. (for r = 2, the result was obtained

earlier by Dol’nikov [6]).
To state this result, we first recall that a mapping c : V → [m] is a (proper)

coloring of a hypergraph H = (V,E) if none of the edges e ∈ E is monochromatic
under c. The chromatic number χ(H) of H is the smallest m such that a proper
coloring c : V → [m] exists. We define the r-colorability defect of H = (V,E) as
the smallest number of vertices that must be removed so that the edges living
completely on the remaining points form an r-colorable hypergraph, i.e.

cdr(H) = min
{
|Y | : χ

(
(V \ Y, {e ∈ E : e ∩ Y = ∅})

)
≤ r
}
.
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Kř́ıž’s result can be stated as follows.

Theorem 1.1 (Dol’nikov for r = 2; Kř́ıž). For any finite set system (X,S) and
any r ≥ 2, we have

χ(KGr(S)) ≥ 1
r − 1

· cdr((X,S)).

The proof in [10] does not work in the generality stated there (as was pointed
out by Živaljević) but Theorem 1.1 remains valid [11]. We remark that KGr(S)
is denoted by [S, r] in [10], and cdr(S) is denoted by w(S, r) there and called the
r-width.

In this paper, we present another proof of Theorem 1.1. The basic approach
is similar to that of Kř́ıž, but our proof is somewhat simpler and, hopefully, more
accessible to non-specialists in topology.

We only assume the reader’s familiarity with a few basic topological notions (such
as simplicial complex and its geometric realization); more special topological notions
are reviewed in Section 2, in very concrete form just suitable for our purposes. We
refer to Björner [3] or Živaljević [16], [17] for wider background and for nice recent
overviews of topological methods in combinatorics.

After this paper has been submitted for publication, the author obtained a “de-
topologized” (combinatorial) proof of Kneser’s conjecture [13], by directly connect-
ing some of the ideas of the present paper to a combinatorial lemma (Tucker’s
lemma) in one of the proofs of the Borsuk–Ulam theorem. This result was further
extended by Ziegler [15], who proved a common generalization of Theorem 1.1 and
of theorems of Alon et al. [1] and of Sarkaria [14]. The proof is based on topological
ideas but uses no “continuous” structure.

2. Preliminaries

Simplicial complexes. For our purposes, a (finite) simplicial complex K is a
hereditary family of subsets of a finite set (i.e. if F ∈ K and F ′ ⊆ F then F ′ ∈ K);
the sets in K are called simplices . The dimension of a simplex is the number of its
vertices minus 1. The vertex set of K is denoted by V (K), and the polyhedron of a
geometric realization of K is denoted by ‖K‖.

Let (V,≤) be a partially ordered set. The order complex of (V,≤) is the sim-
plicial complex with vertex set V and with all chains under ≤ (i.e. subsets of V
linearly ordered by ≤) as simplices. The first barycentric subdivision of a simplicial
complex K, denoted by sd(K), is the order complex of the set of all nonempty sim-
plices of K ordered by inclusion. The polyhedra of K and of sd(K) are canonically
homeomorphic.

Let K, L be simplicial complexes. A simplicial map f : K→ L is a map V (K)→
V (L) such that the image of any simplex of K is contained in a simplex of L. A
simplicial map induces a map ‖K‖ → ‖L‖ of topological spaces.

The join K ∗ L of simplicial complexes K and L with V (K) ∩ V (L) = ∅ is the
simplicial complex with vertex set V (K) ∪ V (L) and with simplices F ∪ G for all
F ∈ K and G ∈ L. If V (K) and V (L) are not disjoint, then K∗L is the join of K with
an isomorphic copy of L whose vertex set is disjoint from V (K). If K1,K2, L1, L2

are simplicial complexes, V (K1) ∩ V (L1) = ∅, and f : K1 → K2 and g : L1 → L2

are simplicial maps, then f ∗ g : K1 ∗ L1 → K2 ∗ L2 is the simplicial map given by
(f ∗ g)(v) = f(v) for v ∈ V (K1) and (f ∗ g)(v) = g(v) for v ∈ V (L1).



ON THE CHROMATIC NUMBER OF KNESER HYPERGRAPHS 2511

Connectivity. Let X,Y be topological spaces, and k ≥ 0 an integer. All
mappings between topological spaces are implicitly assumed to be continuous. X
is k-connected if for any j = 0, 1, . . . , k, any mapping f of the j-dimensional sphere
Sj into X can be extended to a mapping of the (j + 1)-dimensional ball into X .

Zp-spaces. A Zp-space is a pair (X, ν), where ν : X → X is a homeomorphism
X → X with νp = idX ; ν is called a Zp-action on X (here Zp denotes the group
Z/pZ, i.e. integers modulo p with addition). The Zp-action ν is called free if for
each x ∈ X the points x, ν(x), ν2(x), . . . , νp−1(x) are pairwise distinct. For prime
p, it suffices to require ν(x) 6= x for all x. A simplicial Zp-complex is a simplicial
complex K with a Zp-action on ‖K‖ given by a simplicial map K→ K.

For Zp-spaces (X, ν), (Y, ω), a Zp-mapping f : (X, ν) → (Y, ω) is a mapping of
X into Y that commutes with the Zp-actions, i.e. f ◦ ν = ω ◦ f .

The Zp-index. For integers k and p, we define the simplicial complex Ek,p
whose maximal simplices are the edges of the complete (k+1)-uniform (k+1)-partite
hypergraph with classes of size p. More formally, the vertex set is [k+1]× [p] and
the simplices have the form {(j1, i1), (j2, i2), . . . , (jq, iq)}, 1 ≤ j1 < j2 < · · · <
jq ≤ k+1 and it ∈ [p], t = 1, 2, . . . , q. The mapping ω : V (Ek,p) → V (Ek,p)
given by (j, i) 7→ (j, i+1), where p+1 means 1, is a free simplicial Zp-action on
Ek,p. In particular, Ek,2 is the k-dimensional sphere represented as the unit sphere
of the L1-norm, and the Z2-action is the antipodality x 7→ −x. The important
property of Ek,p is that its polyhedron is a k-dimensional, (k−1)-connected free
Zp-space;1 any k-dimensional (k−1)-connected free simplicial Zp-complex (or Zp-
CW-complex) would do equivalently in the definition below.

For a free Zp-space (X, ν), the Zp-index is defined by

indZp(X) = min{k : there is a Zp-map (X, ν)→ (‖Ek,p‖, ω)}
(the action ν is not shown in the notation indZp but is understood from context).
This kind of index, under the name genus , was introduced by Krasnosel’skǐı [9]
(for Z2-spaces); our presentation follows [16]. Let us remark that, while various
definitions of indices and deep theories related to them have been developed in
algebraic topology, the index just introduced is mainly a convenient notational
shorthand.

The key fact about the Zp-index is indZp(‖E‖k,p) = k, i.e. there is no Zp-map
‖Ek,p‖ → ‖Ek−1,p‖. For p = 2, this is one of the versions of the well-known Borsuk–
Ulam theorem, and for larger p, it is a particular case of a theorem of Dold [4]; see
e.g. [17] for a sketch of a proof using only basic homology theory.

Clearly, if there is a Zp-map (X, ν)→ (Y, ω), then indZp(X) ≤ indZp(Y ). For a
free simplicial Zp-complex, we have indZp(‖K‖) ≤ dim(K) (this can be shown easily
using the (k−1)-connectedness of Ek,p; see, for example, [17]). For free simplicial
Zp-complexes K and L, we have

indZp(K ∗ L) ≤ indZp(K) + indZp(L) + 1,(1)

where the Zp-action on K ∗ L is the join of the Zp-actions on K and on L. This is
easily derived from the isomorphism of Ek,p ∗ E`,p with Ek+`+1,p.

1The (k − 1)-connectedness can be derived in several ways, for example by representing Ek,p
as the (k+1)-fold join [p]∗(k+1), where [p] is the p-point discrete space, and using the fact that the
join of a j-connected simplicial complex and of an `-connected simplicial complex is (j + `+ 2)-
connected (see e.g. [3]).
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3. Proof of Theorem 1.1

First, let r = p be a prime number. Let X = [n], and let S be a set system on
X with cdp((X,S)) > `.

We define a partial ordering ≤ on the set of all ordered p-tuples (A1, A2, . . . , Ap)
of subsets of X by letting (A1, . . . , Ap) ≤ (A′1, . . . , A

′
p) iff Ai ⊆ A′i for all i =

1, 2, . . . , p.
Consider the set of all ordered p-tuples (A1, A2, . . . , Ap) such that the Ai are

pairwise disjoint subsets of X whose union covers all but at most ` points of X ,
and let K = K(X, p, `) be the order complex of this set with the ordering ≤ defined
above. A simplicial free Zp-action ν is defined on K by the cyclic shift:

ν : (A1, . . . , Ap) 7→ (A2, A3, . . . , Ap, A1).

Suppose that c : S → [m] is a proper m-coloring of the Kneser p-hypergraph
KGp(S). This time we consider the set of all ordered p-tuples (C1, . . . , Cp) of
subsets of [m] with

⋃p
i=1 Ci 6= ∅ and

⋂p
i=1 Ci = ∅. Let L be the order complex

of this set with the componentwise inclusion ordering ≤ as above. The simplicial
Zp-action on L, again given by the cyclic shift of coordinates (i.e. (C1, . . . , Cp) 7→
(C2, . . . , Cp, C1)), is free—here we use that p is a prime.

Using the m-coloring c, we are going to define a simplicial Zp-map f : K → L.
For a subset A ⊆ X , let

g(A) = {c(S) : S ⊆ A, S ∈ S},

and for a vertex (A1, A2, . . . , Ap) of K, put

f((A1, A2, . . . , Ap)) = (g(A1), g(A2), . . . , g(Ap)).

If c is a proper coloring, then no p pairwise disjoint sets of S can have the same
color, and it follows that

⋂p
i=1 g(Ai) = ∅. Since we assume cdp((X,S)) > `, for any

ordered p-tuple (A1, . . . , Ap) ∈ V (K), there are i ∈ [p] and S ∈ S with S ⊆ Ai.
Therefore,

⋃p
i=1 g(Ai) 6= ∅, so f((A1, . . . , Ap)) ∈ V (L), and it is easy to see that f

is a simplicial Zp-map K→ L.
It remains to bound the indices indZp(K) and indZp(L). As for the latter, we

have indZp(L) ≤ dim(L) = m(p−1). Indeed, supposing that (C1, . . . , Cp) is the
largest element in a chain of vertices of L, each j ∈ [m] is in at most p−1 of the Ci,
and each time we pass to a smaller element of the chain, some j ∈ [m] is omitted
from at least one of the sets; thus, the chain has at most m(p−1)+1 elements.

The Zp-index of K can be bounded from below in several ways (homology com-
putation, inductive argument showing an appropriate connectivity, shelling argu-
ment); we use a simple approach inspired by Sarkaria’s papers.

First we consider the larger complex K0 = K(X, p, n−1), with all p-tuples of
pairwise disjoint subsets of X , not all of them empty, as vertices. It is well-
known that indZp(K0) = n−1 (for those familiar with deleted joins, we remark
that K0 is the first barycentric subdivision of the p-fold 2-wise deleted join of the
(n−1)-simplex—see e.g. [14]). In fact, K0 is Zp-isomorphic to sd(En−1,p): the iso-
morphism ϕ : V (sd(En−1,p)) → V (K0) is given by {(j1, i1), (j2, i2), . . . , (jq, iq)} 7→
(A1, A2, . . . , Ap), where Ai = {jt : it = i, t = 1, 2, . . . , q}.

Let K1 be the subcomplex of K0 with V (K1) = V (K0) \ V (K) and with sim-
plices inherited from K0, i.e. the simplices are the F ∈ K0 with F ⊆ V (K1). The
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vertices of K1 are p-tuples (A1, . . . , Ap) of disjoint sets with |
⋃p
i=1 Ai| ≤ n−`−1,

and indZp(K1) ≤ dim(K1) = n−`−2. We have K0 ⊆ K ∗ K1, and so by (1)

indZp(K) ≥ indZp(K0)− indZp(K1)− 1 = n− 1− (n− `− 2)− 1 = `.

Since we have constructed the Zp-map f : K → L, we have ` ≤ indZp(K) ≤
indZp(L) ≤ m(p−1). This proves Theorem 1.1 for all prime r.

The non-prime case is handled by a short combinatorial argument, which is given
in [11] and which we omit.

Remark. As we have seen, the simplicial complex K0 is the subdivision of En−1,p; in
particular, for p = 2, it is an (n−1)-sphere. The subcomplex K1 is the subdivision
of the (n−`−2)-skeleton of En−1,p. For p = 2, the simplicial complex K also has a
nice interpretation (noted by G. Ziegler): it can be regarded as the subdivision of
the `-skeleton of the cube [0, 1]n (interpreted as a cell complex, with faces being the
usual faces of the cube, i.e. cubes of various dimensions). Indeed, a vertex (A,B)
of K can be encoded by a sequence v ∈ {0, 1, ∗}X, where vx = 0 if x ∈ A, vx = 1 if
x ∈ B, and vx = ∗ otherwise. Each such v specifies a face of the n-cube.
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[9] M. A. Krasnosel’skǐı. On the estimation of the number of critical points of functionals (in
Russian). Uspehi Mat. Nauk, 7:157–164, 1952. MR 14:55f
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