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ANTI-SYMPLECTIC INVOLUTIONS WITH LAGRANGIAN
FIXED LOCI AND THEIR QUOTIENTS
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(Communicated by Ronald A. Fintushel)

Abstract. We study the lagrangian embedding as a fixed point set of anti-
symplectic involution τ on a symplectic 4-manifold X. Suppose the fixed loci
of τ are the disjoint union of smooth Riemann surfaces Xτ = ∪̇Σi; then
each component becomes a lagrangian submanifold. Furthermore, if one of
the components is a Riemann surface of genus g ≥ 2, then its quotient has
vanishing Seiberg-Witten invariants. We will discuss some examples which
allow an anti-symplectic involution with lagrangian fixed loci.

1. Introduction

To find a lagrangian embedding in a compact symplectic manifold is a quite
subtle problem. In particular, in a 4-dimensional symplectic manifold, the existence
of a compact Riemann surface of higher genus as a lagrangian submanifold is highly
nontrivial. In fact, it should have a positive second betti number, b+2 , which is
greater than two. In this paper, we will discuss a lagrangian embedding as a
fixed loci of anti-symplectic involution. Even though every lagrangian submanifold
cannot be realized in this way, there is no known way to construct a lagrangian
embedding so far. It is easily proved that every embedded lagrangian surface has
minimal genus among its homology class via the Seiberg-Witten theory. Since every
lagrangian surface can be realized as a symplectic submanifold for a new symplectic
form by small deformation [G], from the fact that every symplectic surface has such
a genus minimizing property [M, MST, OS], it has a minimal genus. In general, this
can be proved by a simple argument via the so-called adjunction inequality which
says that 2g(Σ)− 2 ≥ Σ2 where g is the genus of the embedded surface Σ and Σ2

indicates the self-intersection number. It is checked that any lagrangian embedding
equalizes the inequality since the normal bundle of lagrangian embedding (i : Σg ↪→
X) is naturally isomorphic to the cotangent bundle of the surface; it implies that
the self-intersection number of Σ is minus the Euler characteristic of Σ, i.e. Σ2 =
Σg ·Σg = 2g − 2.

Moreover suppose there exists an embedded Riemann surface Σg of g ≥ 2 in
X whose self-intersection number is 2g − 2. Then one can show that X must be
of Seiberg-Witten simple type, i.e. every basic class induces an almost-complex
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structure [OS, FS1]. On the other hand, if X contains a Riemann surface of genus
g whose intersection number is strictly greater than 2g−2, then X has all vanishing
Seiberg-Witten invariants. This observation can be easily proved by the blow-up
formula due to R. Fintushel and R. Stern [FS1, FS2]. Therefore we can show that
if the fixed loci of anti-symplectic involution τ on X contain a lagrangian surface
of higher genus ≥ 2 as a component, then its quotient has vanishing SW invariant.
However, it does not necessarily imply that the quotient does not have symplectic
structure unless g ≥ 2. There is an algebraic quartic (degree 4) hypersurface in
CP 3, i.e. K3 surface, which has a lagrangian torus as fixed loci of the canonical
anti-holomorphic (anti-symplectic) involution whose quotient has a natural sym-
plectic structure. In the next section, we review the topological restriction of the
existence of lagrangian embedding and anti-symplectic involution, we construct the
examples of lagrangian submanifolds in the smooth hypersurfaces in CP 3 as fixed
loci of the canonical anti-symplectic involution, and we discuss a way of construct-
ing lagrangian embedding for the special case. For the purpose of this exposition,
we shall omit the definition and details related to the Seiberg-Witten invariant.
One can refer to [M, T, W, FS1, FS2] for all the facts and theorems from the
Seiberg-Witten theory and its application to the smooth, in particular symplectic,
4-manifolds.

2. Anti-symplectic involution with lagrangian fixed loci

Let (X,ω) be a closed, symplectic 4-manifold. A diffeomorphism τ on (X,ω)
is anti-symplectic if and only if τ∗ω = −ω. The involution means that τ has
diffeomorphism of order 2, i.e. τ2 = identity on X . Notice that τ ∈ Diff +(X) is an
orientation preserving diffeomorphism, where the orientation of X is the canonical
one induced by the symplectic form. In [C], the first author shows that for a
symplectic 4-manifold X with c1(X)2 > 0 and b+2 (X) > 3 and for a τ that is a
free anti-symplectic involution on X , then the Seiberg-Witten invariants on the
quotient X/τ vanishes identically. Let i : Σ ↪→ (X,ω) be a lagrangian embedding if
i is an embedding and i∗(ω)|Σ ≡ 0. By the lagrangian neighborhood theorem [MS]
due to Weinstein, where the normal bundle NΣ/X is isomorphic to the cotangent
bundle of Σ, we have that the self-intersection number is equal to 2g − 2. Suppose
a symplectic 4-manifold X has lagrangian surface of genus greater than or equal to
two; then since both ω and Σ have positive square and ω ·Σ = 0 (here we abuse the
notation for PD(Σ) ∈ H2(X) as Σ), X has the positive second betti number greater
than 2, i.e. b+2 (X) ≥ 2. Otherwise one can draw a contradiction by considering the
positive cone structure of the intersection pairing of 〈H2(X ;R), ·〉. Hence one can
show that Enriques surfaces or rational ruled surfaces, for example, do not allow
an embedded lagrangian surface of genus ≥ 2.

We are going to study such a lagrangian embedding as fixed loci of an anti-
symplectic involution. It is easy to show that the two-dimensional fixed point
sets, Xτ , of anti-symplectic involution τ , ω|Xτ = τ∗ω|Xτ = −ω|Xτ = 0, become
lagrangian submanifolds. In the next section, we will provide the examples of such
involution on the complex hypersurface in CP 3 as a natural complex conjugation.
Before getting into the discussion of the examples, we want to make a statement on
what can be proved about the anti-symplectic quotient. The following theorem was
mentioned by Mikhalkin on Kirby’s problem 4.104 and we cannot find the proof of
it, so we will fill out the line of the argument.
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Proposition 2.1. Let (X,ω) be a closed, smooth symplectic 4-manifold and let τ be
an anti-symplectic involution on (X,ω) with fixed loci Xτ = ∪̇Σ as a disjoint union
of lagrangian surfaces. If one of the components of Xτ is a Riemann surface of
genus g ≥ 2 and b+2 (X/τ) ≥ 2, then X/τ has vanishing Seiberg-Witten invariants.

Proof. Let π : X → X/τ be the projection map and let Σg be the component
of Xτ of genus g. Let Σ̄g be the image of Σ, π(Σ). Since Σg · Σg = 2g − 2,
Σ̄g has a self-intersection number 4g − 4 which is strictly greater than 2g − 2 for
g ≥ 2. Since it violates the adjunction inequality, X/τ has vanishing Seiberg-Witten
invariants.

3. Examples

In this section, we will investigate a way of constructing anti-symplectic involu-
tions on some symplectic 4-manifolds.

1) Hypersurfaces in CP 3. We will show a way to find the equations of a smooth
algebraic hypersurface of degree d in CP 3 which contains a lagrangian embedding
of higher genus. Since every smooth hypersurface Xd of degree d is symplectically
isomorphic to each other, by Moser’s deformation theorem, every smooth hyper-
surface allows such a lagrangian embedding. To show a lagrangian embedding of
higher genus g ≥ 2 on hypersurface Xd of degree d in CP 3, d must be greater than
or equal to 4. Since if d < 4, then b+2 (Xd) = 1.

Consider Xd(F ) = {(x : y : z : w) ∈ CP 3|F (x, y, z, w) = 0} where F is a
homogeneous polynomial of degree d. Suppose the defining equation F has real
coefficients, i.e. F ∈ R[x, y, z, w]; then there is a natural anti-holomorphic involu-
tion. This also becomes an anti-symplectic involution for the Kähler form which is
induced by the restriction of the Fubini-Study metric on CP 3 such as

τ : Xd(F ) −→Xd(F ),

(x : y : z : w) −→(x : y : z : w).

The fixed locus of this involution, Xd(F )τ , is the set of the real solutions of the
equation

Xτ = X ∩ RP 3,

where RP 3 = {(x : y : z : w)| ∃ ρ ∈ C, ρ · (x, y, z, w) ∈ R4}. We will consider
the cases separately depending on the parity of degree d ≥ 4.
• d = even case.
Let us choose a sequence of n real numbers such that a1 < a2 < · · · < ag and

|ai − ai+1| > 2r. Let f0 = R2 − x2 − y2 and fi = (x − ai)2 + y2 − r2 where
R > max(|a1|, |ag|) + r. Then the equation for the Riemann surface of genus g is

Σg = {(x, y, z)|z2g+2 = f0 · f1 · · · fg} ⊂ R3.

Since the region O = {(x, y)|f0 · f1 · · · fg ≥ 0} is a disc with g holes in the plane
R2, it follows that the projection p : Σ−→O is a branched 2:1 covering with g + 1
circles as branch the locus. Projectivize this equation in CP 3,

F = Z2g+2 − F0 · F1 · · · ·Fg,
where F0 = R2W 2 −X2 − Y 2, Fi = (X − aiW )2 + Y 2 − r2W 2 for 1 ≤ i ≤ g.

Let Xd(F ) ⊂ CP 3 be the complex hypersurface of degree d = 2g + 2. Since
X(F )∩{W = 0} = {(x, y, z)|z2g+2 + (x2 + y2)g+1 = 0}, X(F ) has no real solutions
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on the hyperplane {W = 0}, it follows that X(F )∩RP 3 = Σg. Unfortunately, since
this complex hypersurface is not smooth, we have to deform the given equation
a little bit. Let Fε = F + εXd. It is easily checked that X(Fε) is a smooth
complex hypersurface for small positive ε. The real solution for the X(Fε) is Σε =
{(x, y, z)|z2g+2 = f0 ·f1 · · · fg−εx2g+2}. Since the region Oε = {(x, y)|f0 ·f1 · · · fg ≥
εx2g+2} is diffeomorphic to O for small ε, the Σε is diffeomorphic to Σg.
• d = odd case.
Unlike the even degree case, the real smooth algebraic hypersurface of odd degree

in RP 3, which is a fixed locus of canonical complex conjugation of its complexifi-
cation, does not lie in a compact subset of the real affine piece (∼= R3). Actually, it
intersects nontrivially with any hyperplane in RP 3.

Let F0, · · · , Fg be the quadratic equations defined as above and let a < −R be
a real number. Let F = Z2g+2 ·W − (X − aW ) ·F0 · · ·Fg. Then we can show that
the set of real solutions of F , i.e., Xτ (F ) = Xd(F ) ∩ RP 3, is RP 2∪̇Σg. On the
affine piece,

Xτ (F ) ∩ {W 6= 0} = {(x, y, z)|z2g+2 = (x − a) · f0 · · · fg}
∼= R2 ∪ Σg,

which is a 2 : 1 covering of a g punctured disc and half plane with g+ 1 circles and
one line as the branch locus. The points at infinity of Xτ (F ) are a real projective
line, i.e.

Xτ (F ) ∩ {W = 0} = {(X : Y : Z : 0)|X · (X2 + Y 2)g+1 = 0}
= {X = 0,W = 0} ∼= S1.

At the points at infinity of Xτ (F ), a circle is attached to the R2, hence Xτ (F ) ∼=
RP 2 ∪̇Σg. As we have seen in the first case, the complex hypersurface X(F ) is not
smooth, so we can deform this equation to Fε = F + εX2g+3 for small ε. Then one
can easily show that Xτ (Fε) ∼= Xτ (F ) and X(Fε) is smooth.

It can be checked that the quotient by this involution has positive second betti
number greater than 2, b+2 (Xd/τ) = 1

2 (b+2 (Xd) − 1) ≥ 2, if the degree d is greater
than 5. So far, we have constructed the lagrangian surface of genus g = [d−2

2 ] for
the hypersurface of degree d in CP 3. This gives rise to the question of whether
every algebraic surface with nonzero geometric genus contains a lagrangian surface
of genus ≥ 2.

Remark 3.1. Following this line of reasoning, we can find a complex hypersurface
of degree d whose real part is a disjoint union of lagrangian surfaces (∪̇Σgi or
RP 2 ∪̇Σgi respectively depending on the parity of d) by taking various configura-
tions of quadratic equations.

Maybe the next case is the most typical way of constructing an anti-symplectic
involution on the product of two Riemann surfaces with same genus.

2) X = (Σg×Σg, ω⊕ω). Let f : Σg → Σg be an anti-symplectic diffeomorphism of
Σg, i.e. f∗ω = −ω. Then we can define an anti-symplectic involution τf associated
with f such that

τf : Σg × Σg −→ Σg × Σg,
(x, y) −→(f−1(y), f(x)).
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Clearly, τ2
f = id and τ∗f (ω ⊕ ω) = −(ω ⊕ ω). We can easily show that a fixed point

set of τf is the graph of the f , i.e.

(Σg × Σg)τf = {(x, y)|y = f(x)} ∼= Σg.

By the Hirzebruch signature theorem, we can get b+2 (X/τf) = 1
2 (b+2 (X)−1) = g2 ≥

2 if the genus g ≥ 2.
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