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POSITIVE EIGENVALUES OF SECOND ORDER BOUNDARY
VALUE PROBLEMS AND A THEOREM OF M. G. KREIN

STEVE CLARK AND DON HINTON

(Communicated by Carmen Chicone)

Abstract. Conditions are given which guarantee that the least real eigenvalue
is positive for certain boundary value problems for the vector-matrix equation
−y′′ + p(x)y = γw(x)y. This leads to conditions which guarantee the stable
boundedness, according to Krein, for solutions of y′′+λp(x)y = 0 with certain
real values of λ. As a consequence, a result first stated by Krein is proven.

1. Introduction

We determine conditions under which the lowest real eigenvalue is positive for
certain second order boundary value problems. Both scalar and matrix linear dif-
ferential equations are considered. For the scalar case, problems consist of

−y′′ + p(x)y = γw(x)y, 0 6 x 6 T,(1.1)

where p, w are real-valued and Lebesgue integrable on [0, T ], where w(x) > 0 a.e.,
and where boundary conditions are either of Dirichlet type,

y(0) = y(T ) = 0,(1.2)

or of antiperiodic type,

y(0) + y(T ) = y′(0) + y′(T ) = 0.(1.3)

As is known, these problems are self-adjoint and have a sequence of eigenvalues
increasing to infinity. We let Λ0 denote the lowest eigenvalue for the boundary
value problem given by (1.1) and (1.2), and let µ0 denote the lowest eigenvalue for
the problem given by (1.1) and (1.3). Note that Λ0 > µ0 as can be seen from the
Rayleigh quotient expressions for Λ0 and µ0.

Showing that µ0 > 0 is important in establishing the stability of solutions for
differential equations with periodic coefficients. We make such an application in sec-
tion 3. More generally, the problem of showing that the first eigenvalue is positive
for the boundary value problem given by (1.1) and (1.2) is equivalent to showing
that equation (1.1) is disconjugate on [0, T ] for both the scalar and vector-matrix
cases, i.e., no nontrivial solution has two zeros in [0, T ]. The problem of disconju-
gacy is equivalent to the existence of a solution on [0, T ] of the associated Riccati
equation. Important applications of disconjugacy may be found in many areas,
for example, control theory. The problem of disconjugacy, in turn, is related to
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the broader question of oscillation. For the scalar case this involves determining
when solutions of (1.1) have infinitely many zeros on the interval. General results
on disconjugacy may be found in the books by Coppel [10], Hartman [14], and
Reid [20, 21]. Similar results exist for the discrete analog of (1.1) and may be
found in the book by Ahlbrandt and Peterson [2].

The motivation for this work was a missing proof of a result of Krein [15] on sta-
bility of solutions of equations with periodic coefficients. The equations considered
are those given by

y′′ + λp(x)y = 0,
∫ T

0

p(x) dx = 0,(1.4)

where the real function p is periodic of period T , Lebesgue integrable on [0, T ], and
nonzero on a subset of [0, T ] with positive measure. It is stated in [15, p. 96] that
(1.4) is stably bounded, i.e., all solutions of (1.4) are bounded on (−∞,∞) with
the same being true for all periodic perturbations of p of sufficiently small norm in
L1[0, T ], if

|λ|T
8

∫ T

0

|p(x)| dt < 1,(1.5)

where Lp[a, b] represents the space of Lebesgue p-integrable functions on [a, b].
Krein omitted the |λ| in (1.5), but it was clearly intended. Krein states that this

result was proved previously in [16], and will be proved again in section 8 of [15].
Curiously, the proof appears in neither place. Professors Andreas Hinz and Hubert
Kalf have kindly checked the Russian sources and found it missing there also. The
proof most likely existed in an earlier version of the manuscript and was left out of
the printed version. We give a proof of this result in section 3.

In section 2, homogeneous and nonhomogeneous Opial-like inequalities for two
functions are given which are analogous to those for one function that may be found
in Agarwal and Pang [1], Brown, Hinton and Fink [8], and Mitrinović, Pecarič and
Fink [17]. In addition to these inequalities, an index is defined, for functions which
are integrable on [0, T ], that characterizes an aspect of their oscillatory nature. In
section 3, we establish conditions for positivity of the eigenvalues assuming either
(1.2) or (1.3) for the scalar case of (1.1) and apply these results to the stable
boundedness of (1.4). Cancellations of the positive and negative parts of p(x) play
a significant role in the results obtained here. These cancellations are affected
through the use of the inequalities given in section 2. In section 4, we extend to the
vector-matrix case for (1.1) those results given in section 3. These extensions are
given for a real potential matrix, p, which need not be symmetric. We then apply
these results to give conditions under which stable boundedness holds for (1.4) in
the vector-matrix setting.

2. Preliminaries

We now collect some needed results, and begin by quoting two lemmas from [9].

Lemma 2.1. If f is a real function Lebesgue integrable on [a, b], then there exist
x1, x2 in [a, b] such that

inf
µ∈(−∞,∞)

(
max
a6x6b

∣∣∣∣∫ x

a

f(s) ds+ µ

∣∣∣∣) =
1
2

∣∣∣∣∫ x2

x1

f(s) ds
∣∣∣∣ .(2.1)
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As the proof of Lemma 2.1 shows, the optimal choice for µ is −(M+m)/2 where
M = maxa6x6b

∫ x
a f(s) ds, and m = mina6x6b

∫ x
a f(s) ds. For this choice of µ, the

integral in (2.1) equals (M −m)/2.

Lemma 2.2. If f1, f2 are absolutely continuous real functions on [a, b] with fi(a) =
fi(b) = 0, and f ′i ∈ L2[a, b], i = 1, 2, then∫ b

a

(
|f ′1(x)f2(x)| + |f1(x)f ′2(x)|

)
dx 6

(
b− a

2

)[∫ b

a

f ′1(x)2 dx

∫ b

a

f ′2(x)2 dx

]1/2

.

Furthermore, equality holds only when f1 and f2 are linear on
[
a, a+b

2

]
, and

[
a+b

2 , b
]
.

Lemma 2.3. If f1, f2 are absolutely continuous real functions on [a, b] with fi(a)+
fi(b) = 0, and f ′i ∈ L2[a, b], i = 1, 2, then∫ b

a

|f ′1(x)f2(x) + f1(x)f ′2(x)| dx 6
(
b− a

4

)∫ b

a

[
f ′1(x)2 + f ′2(x)2

]
dx.

Proof. The case in which f1 = f2 has been proven in [8]. Using this special case,
we have∫ b

a

∣∣(f1(x)± f2(x)) (f ′1(x) ± f ′2(x))
∣∣ dx 6 (b− a

4

)∫ b

a

[f ′1(x) ± f ′2(x)]2 dx.(2.2)

Then, by the identity,

2 (f1f
′
2 + f ′1f2) = (f1 + f2) (f ′1 + f ′2)− (f1 − f2) (f ′1 − f ′2) ,

the triangle inequality, and (2.2), we see that

2
∫ b

a

|f1f
′
2 + f1f

′
2| dx6

∫ b

a

|(f1 + f2) (f ′1 + f ′2)| dx+
∫ b

a

|(f1 − f2) (f ′1 − f ′2)| dx

6 b− a
4

{∫ b

a

(f ′1 + f ′2)2
dx+

∫ b

a

(f ′1 − f ′2)2
dx

}

=
b− a

2

∫ b

a

(f ′1)2 + (f ′2)2
dx,

from which the result follows.

Lemma 2.4. If f1, f2 are as in Lemma 2.3, then∫ b

a

(
|f ′1(x)f2(x)| + |f1(x)f ′2(x)|

)
dx

6 2(b− a)
π

[∫ b

a

f ′1(x)2 dx

∫ b

a

f ′2(x)2 dx

]1/2

.

(2.3)

Moreover, f1(x) = sin(π(x−a)/(b−a)), f2(x) = cos(π(x−a)/(b−a)) are extremals.

Proof. A computation shows that

f1(x) = sin(π(x− a)/(b− a)), f2(x) = cos(π(x− a)/(b− a))

produces equality in (2.3). Now, it is known that∫ b

a

(y)2 dx ≤ (b − a)2

π2

∫ b

a

(y′)2 dx(2.4)
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holds on the class of absolutely continuous functions y satisfying y(a) + y(b) = 0.
Then to obtain the inequality in (2.3), apply the Cauchy-Schwarz inequality and
(2.4) to the left side of (2.3).

Remark 2.5. The author’s original statement of Lemma 2.4 included the constant√
2(b− a) rather than 2(b− a)/π. Richard Brown [7] of the University of Alabama

kindly pointed out the current statement and simple proof now given for this lemma.

For our last lemma, we introduce a construction. Let p be a real-valued, Lebesgue
integrable function on [0, T ], and let

M = max
0≤x≤T

∫ x

0

p(s) ds , m = min
0≤x≤T

∫ x

0

p(s) ds.(2.5)

We note that M = m precisely when p(x) = 0 for almost every x ∈ [0, T ].

Definition 2.6. Let l denote Lebesgue measure. Let M and m be as defined in
(2.5). Given a positive integer k, we say subsets Ii ⊂ [0, T ], i = 1, . . . , r, form a
partial k-decomposition of [0, T ] for p if l(Ii ∩ Ij) = 0 for i 6= j, and (M −m)/k ≤
|
∫
Ii
p(s) ds| for i = 1, . . . , r. For such a decomposition,

r(M −m)
k

≤
r∑
i=1

∣∣∣ ∫
Ii

p(s) ds
∣∣∣ ≤ ∫ T

0

|p(s)| ds.

The largest such r, over all such decompositions of [0, T ], will be denoted by I(k)
and said to be the k index of p. We set I(k) =∞ when M = m.

First, we note that I(k) ≥ k. Trivially true when M = m, we assume that
p(x) 6= 0 on a subset of [0, T ] with positive measure. There exist x1, x2 ∈ [0, T ]
where m =

∫ x1

0 p(s) ds, M =
∫ x2

0 p(s) ds. It is sufficient to take x1 < x2. Hence,
there is a sequence s0 = x1 < s1 < · · · < sk = x2 such that

∫ si
si−1

p(s) ds =
(M −m)/k for i = 1, . . . , k; thus, we take Ii = [si−1, si].

If
∫ T

0 p(s) ds = 0, then we may show that I(k) ≥ 2k by an argument similar to
that just given. To begin, we again assume that M 6= m and let q(x) =

∫ t
0 p(s) ds.

Since q(T ) = q(0), we may extend q(x) periodically with period T . Let x1, x2 be as
before, and let m = q(x3), where x3 = x1 + T . As we decomposed [x1, x2], so too
we may decompose [x2, x3]. The subintervals thus obtained in [x2, x3] which are
not contained in [0, T ] correspond to integrals over subintervals in [0, x1] with this
exception: If T is not an endpoint, say sj−1 < T < sj , then the interval [sj−1, sj]
is replaced by the set [sj−1, T ]∪ [0, sj − T ]. As a consequence of these remarks, we
have the following result.

Lemma 2.7. Suppose p ∈ L1[0, T ]. Let M and m be as in (2.5) and let I(k) be
the k index of p. Then

M −m ≤ k

I(k)

∫ T

0

|p(s)| ds.

Moreover, if
∫ T

0
p(s) ds = 0, then I(k) ≥ 2k.
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3. Scalar eigenvalue problems

In this section we give criteria for positivity of the lowest eigenvalues, Λ0 and µ0,
for the scalar boundary value problems given by (1.1) together with either (1.2) or
(1.3) respectively. The result stated by Krein (cf. (1.5)) follows as a consequence
of Corollary 3.2.

Theorem 3.1. Let p ∈ L1[0, T ], and let M and m be as in (2.5). Then,
(i) Λ0 > 0 if

(M −m)T
4

≤ 1 ;(3.1)

(ii) µ0 > 0 if
∫ T

0
p(s) ds = 0 and (3.1) holds.

Proof. Multiplying (1.1) by y and integrating by parts yields

−y′(x)y(x)
∣∣∣T
0

+
∫ T

0

(y′)2
dx+ q(x)y2(x)

∣∣∣T
0
− 2

∫ T

0

qyy′ dx = γ

∫ T

0

wy2 dx,

where q(x) =
∫ x

0 p(s) ds+ ω, and ω ∈ R is an arbitrary constant. Given that y is a

solution of (1.1), satisfying either (1.2) or (1.3), then −y′(x)y(x)
∣∣T
0

= q(x)y2(x)
∣∣T
0

=
0. Hence, ∫ T

0

(y′)2
dx = γ

∫ T

0

wy2 dx+ 2
∫ T

0

qyy′ dx(3.2)

6 γ
∫ T

0

wy2 dx+ 2 max
06x6T

|q(x)|
∫ T

0

|yy′| dx.

Now by Opial’s inequality (see Agarwal and Pang [1] or Mitrinović, Pecarič and
Fink [17] for (1.2) and Brown, Fink and Hinton [8] for (1.3)),∫ T

0

|yy′| dx 6 T

4

∫ T

0

(y′)2
dx.(3.3)

Hence, we have∫ T

0

(y′)2
dx 6 γ

∫ T

0

wy2 dx+
(M −m)T

4

∫ T

0

(y′)2
dx(3.4)

where we have applied Lemma 2.1 to q by choosing ω = −(M +m)/2.
If M = m, then Λ0 and µ0 are positive by (3.2). If M > m, then the inequality

in (3.4) is strict for a nontrivial solution y of (1.1). Equality in (3.4) implies
equality in (3.3). Equality in (3.3) implies that y is a piecewise linear function with
one interior node (cf. [1, 8, 17]). However, y is a solution of (1.1) so that y′ is
absolutely continuous. As a result, y is not piecewise linear; thus (3.3), and hence
(3.4), is strict. The proof is completed upon dividing (3.4) by

∫ T
0 (y′)2

dx.

By Lemma 2.7 we have the following immediate consequence of Theorem 3.1.

Corollary 3.2. Let p ∈ L1[0, T ]. Then,
(i) Λ0 > 0 if

Tk

4I(k)

∫ T

0

|p(s)| ds 6 1 ;(3.5)

(ii) µ0 > 0 if
∫ T

0
p(s) ds = 0 and (3.5) holds.
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Example 3.3. Suppose p(x) = α sin(jx) on [0, 2π], with j a positive integer, and
let k = 2 in Lemma 2.7. A computation then shows that I(2) = 4j. Since∫ 2π

0 |p(s)| ds = 4|α| and
∫ 2π

0 p(s) ds = 0, then Corollary 3.2 shows that both Λ0

and µ0 are positive if |α| 6 j/π.

We now show that Corollary 3.2 yields the result of Krein. First we review
some properties of periodic equations (cf. Eastham [12]). For real p(x) ∈ L1[0, T ],
periodic of period T , let ν0 6 ν1 6 . . . be the eigenvalues of (1.1) with periodic
boundary conditions y(0) = y(T ), y′(0) = y′(T ), and let µ0 6 µ1 6 . . . be the
eigenvalues of (1.1) with antiperiodic boundary conditions (1.3). The stability
intervals are then given by [ν0, µ0], [µ1, ν1], [ν2, µ2], etc. If γ is in the interior of a
stability interval of (1.1), the equation has only bounded solutions on R.

Now when p(x) 6= 0 on a subset of [0, T ] with positive measure, the condition∫ T
0
p(s) ds 6 0 implies ν0 < 0 (cf. [12, p. 42]). If µ0 > 0, then the equation

−y′′+ p(x)y = 0 has only bounded solutions on R. Hence part (ii) of Corollary 3.2
shows that −y′′+λp(x)y = 0 has only bounded solutions on R if

∫ T
0
p(s) ds = 0 and

(1.5) holds, because I(k) > 2k. If the inequality (1.5) is strict, then we have stable
boundedness since the inequality will remain strict under sufficiently small periodic
perturbations in the L1[0, T ] norm. And while the example above shows that
improvements over (1.5) are possible with the test given in (3.5) when I(k) > 2k,
we note that (3.1) is both the stronger and potentially simpler test to apply.

Lastly, we note that in the periodic case of (1.4), a self-adjoint operator H can be
defined on functions on [0,∞) by imposing a boundary condition at 0. A problem
that has received a good deal of work, also for non-periodic p(x) and in higher
dimensions, is to determine e(λ) which is defined as the infimum of the spectrum
of H . The above mentioned result of Eastham shows that e(λ) < 0 in the periodic
case, but gives no information how e(λ) varies as the coupling constant λ tends to
0. In the paper by Gesztesy, Graf and Simon [13], it is proved that under general
conditions e(λ) satisfies bounds of the form −aλ2 6 e(λ) 6 −bλ2 for |λ| sufficiently
small where a, b > 0. The problem of finding bounds on eigenvalues has received
enormous attention. To mention a small sampling of the one-dimensional results we
cite Ashbaugh and Benguria [3], Bandle [4], Bennewitz and Veling [5], and Brown,
Hinton, and Schwabik [6]. For numerical results, we cite Davies [11], Plum [18],
and Pryce [19].

4. Matrix eigenvalue problems

The matrix analog of (1.1) is

−y′′ + P (x)y = γW (x)y, 0 6 x 6 T,(4.1)

where y(x) is an n-dimensional vector, where P (x) and W (x) are n×n real matrix-
valued functions that are Lebesgue integrable on [0, T ], and where W (x) is positive
definite almost everywhere. Let P (x)t denote the transpose of P (x).

We consider eigenvalue problems for (4.1) with boundary conditions of either
Dirichlet-type as in (1.2), or antiperiodic-type as in (1.3). P (x) is not assumed to
be symmetric so that the eigenvalue problems may not be self-adjoint. However,
γ is assumed to be a real eigenvalue (so that without loss of generality, we take
y(x) ∈ Rn×1). Conditions are established which guarantee that γ > 0. We begin
by first introducing several n× n real matrices.
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Let Q(x) and R(x) be real n× n matrix-valued functions given by

Q(x) =
∫ x

0

P (s) ds+ Ω ,(4.2)

where Ω is an n× n constant matrix, and where

R(x) = Q(x) +Q(x)t =
∫ x

0

(
P (s) + P (s)t

)
ds+ Γ, Γ = Ω + Ωt.(4.3)

Let B and B̃ be n× n real matrices whose entries are defined by

Bij = inf
Γij∈R

max
0≤x≤T

|Rij(x)| , B̃ij =
1
2

∫ T

0

∣∣Pij(s) + Pji(s)
∣∣ ds .(4.4)

Let M and m be n× n real matrices whose entries are defined by

Mij = max
0≤x≤T

∫ x

0

(
Pij(s) + Pji(s)

)
ds , mij = min

0≤x≤T

∫ x

0

(
Pij(s) + Pji(s)

)
ds .

By Lemma 2.1, note that B = 1
2 (M −m). Hence by Lemma 2.7,

Bij =
Mij −mij

2
≤ k

2I(k)ij

∫ T

0

∣∣Pij(s) + Pji(s)
∣∣ ds ≤ k

I(k)ij
B̃ij ,(4.5)

We now present a generalization of Theorem 3.1 to the vector-matrix setting.

Theorem 4.1. Let β represent the largest eigenvalue of the matrix B defined in
(4.4). Then, for the eigenvalue problem given by (4.1) and (1.2), the lowest real
eigenvalue Λ0 is positive when Tβ 6 4.

Proof. Multiply both sides of (4.1) by yt and integrate by parts to obtain∫ T

0

(y′)t y′ dx = γ

∫ T

0

ytWy dx+ yty′
∣∣∣T
0
−
∫ T

0

ytQ′y dx

= γ

∫ T

0

ytWy dx + yty′
∣∣∣T
0
− ytQy

∣∣∣T
0

+
∫ T

0

(
(y′)tQy + ytQy′

)
dx.

By (1.2), yty′
∣∣∣T
0

= ytQy
∣∣∣T
0

= 0, and with R(x) is defined in (4.3), we obtain∫ T

0

(y′)t y′ dx = γ

∫ T

0

ytWy dx+
∫ T

0

(y′)tRy dx .(4.6)

Using the symmetry of R(x), (4.6) can be written as∫ T

0

(y′)t y′ dx = γ

∫ T

0

ytWy dx+
m∑
i=1

∫ T

0

y′iyiRii dx

+
∑
i>j

∫ T

0

(
y′iyj + yiy

′
j

)
Rij dx.

With B defined in (4.4) we obtain

(4.7)
∫ T

0

(y′)t y′ dx 6 γ
∫ T

0

ytWy dx+
n∑
i=1

Bii
∫ T

0

|y′iyi| dx

+
∑
i>j

Bij
∫ T

0

∣∣y′iyj + yiy
′
j

∣∣ dx.
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By Lemma 2.2 we obtain

(4.8)
∫ T

0

(y′)t y′ dx 6 γ
∫ T

0

ytWy dx+
n∑
j=1

Bjj
T

4

∫ T

0

(
y′j
)2
dx

+ 2
∑
i>j

T

4
Bij

[∫ T

0

(y′i)
2
dx

∫ T

0

(
y′j
)2
dx

]1/2

;

hence by the symmetry of B we obtain∫ T

0

(y′)t y′ dx 6 γ
∫ T

0

ytWy dx+
T

4
ξtBξ,(4.9)

where

ξi =

[∫ T

0

(y′i)
2
dx

]1/2

, i = 1, . . . , n.(4.10)

The symmetry of B also implies that

β = max
{
vtBv

∣∣ ‖v‖2 = 1
}
.(4.11)

Hence we note, for ξ in (4.10), that (4.9) yields

ξtξ 6 γ
∫ T

0

ytWy dx+
T

4
β ξtξ(4.12)

from which the conclusion of the theorem follows as a consequence. Strict inequality
in (4.12) follows by reasoning analogous with the scalar case.

As a consequence of Lemma 2.7, the inequality in (4.5) yields the following:

Bij ≤ σ(k)B̃ij , where σ(k) = max
1≤i,j≤n

k

I(k)ij
.(4.13)

Moreover, if
∫ T

0
P (s) ds = 0, then I(k)ij ≥ 2k and hence σ(k) ≤ 1/2. By the

symmetry of B̃ defined in (4.4), and the characterization given by (4.11) of its
largest eigenvalue β̃ we obtain by (4.9) a result analogous to part (i) of Corollary
3.2.

Corollary 4.2. Let β̃ represent the maximum for the set of eigenvalues of the
matrix B̃ defined in (4.4). Then, for the eigenvalue problem given by (4.1) and
(1.2), the lowest real eigenvalue Λ0 is positive when σ(k)β̃T 6 4.

Before considering our eigenvalue problem using antiperiodic boundary condi-
tions, we first recall that the row-sum norm for the matrix B is given by

‖B‖∞ = max
16i6n

n∑
j=1

Bij = sup
{
‖Bv‖∞

∣∣ ‖v‖∞ = 1
}
,

where ‖v‖∞ = max16i6n {|vi|}. We next define the matrices D and D̃ by

Dij =

{
(1/4)Bii, if i = j,

(1/π)Bij , if i 6= j,
D̃ij =

{
(1/4)B̃ii, if i = j,

(1/π)B̃ij , if i 6= j,
(4.14)

where B and B̃ are defined in (4.4).
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Theorem 4.3. Let δ represent the largest eigenvalue of the matrix D defined in
(4.14). Then, for the eigenvalue problem given by (4.1) and (1.3), the lowest real
eigenvalue µ0 is positive if

∫ T
0 P (x) dx = 0 and either

T ‖B‖∞ < 4,(4.15)

or

Tδ < 1.(4.16)

Proof. Now yty′
∣∣∣T
0

= ytQy
∣∣∣T
0

= 0, when (1.3) is satisfied, and
∫ T

0
P (x) dx = 0.

Hence, multiplying (4.1) by yt(x) and integrating by parts yields (4.7). At this
point, we may use either Lemma 2.3 or Lemma 2.4.

By Lemma 2.3, (4.7) yields

(4.17)
∫ T

0

(y′)t y′ dx 6 γ
∫ T

0

ytWy dx+
n∑
j=1

Bjj
T

4

∫ T

0

(
y′j
)2
dx

+
∑
i>j

Bij
T

4

∫ T

0

(
(y′i)

2 + (y′j)
)2
dx.

By the symmetry of B, (4.17) can be written as∫ T

0

(y′)t y′ dx 6 γ
∫ T

0

ytWy dx+
∑
i=j

Bij
T

4

∫ T

0

(y′i)
2
dx

+
∑
i>j

Bij
T

4

∫ T

0

(y′i)
2
dx+

∑
i<j

Bij
T

4

∫ T

0

(y′i)
2
dx;

hence as ∫ T

0

(y′)t y′ dx 6 γ
∫ T

0

ytWy dx +
n∑
i=1

n∑
j=1

Bij
T

4

∫ T

0

(y′i)
2
dx

6 γ
∫ T

0

ytWy dx + ‖B‖∞
T

4

∫ T

0

(y′)t y′ dx,

from which (4.15) follows.
By Lemmas 2.2 and 2.4, the inequality in (4.7) yields

(4.18)
∫ T

0

(y′)t y′ dx 6 γ
∫ T

0

ytWy dx+
n∑
j=1

Bjj
T

4

∫ T

0

(
y′j
)2
dx

+ 2
∑
i>j

T

π
Bij

[∫ T

0

(y′i)
2
dx

∫ T

0

(
y′j
)2
dx

]1/2

.

Now replacing T/4 with T and Bij with Dij in (4.8)–(4.12), we see that (4.18)
yields

ξtξ 6 γ
∫ T

0

ytWy dx+ TξtDξ,
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with ξ defined in (4.10). As we obtained (4.12), now we obtain

ξtξ 6 γ
∫ T

0

ytWy dx+ Tδξtξ

from which (4.16) follows.

By reasoning analogous to that which gave us Corollary 4.2, we now obtain

Corollary 4.4. Let δ̃ represent the maximum for the set of eigenvalues of the ma-
trix D̃ defined in (4.14). Then, for the eigenvalue problem given by (4.1) and (1.3),
the lowest real eigenvalue µ0 is positive when

∫ T
0
P (x) dx = 0 and

σ(k)δ̃T < 1,(4.19)

where σ(k) is defined in (4.13).

We now turn to the issue of stable boundedness for the solutions of the system

y′′ + λP (x)y = 0(4.20)

where P (T + x) = P (x) = P (x)t ∈ Rn×n. In [15, section 5], Krein proves the
following result for such systems.

Theorem 4.5 (Krein). Suppose that
∫ T

0
P (x) dx = 0 and that P (x)η 6≡ 0 for any

constant vector η 6= 0. Then, there is at least one negative and one positive eigen-
value for the problem given by (4.20) and (1.3). Moreover, if λ1 is the smallest pos-
itive eigenvalue and if λ−1 is the largest negative eigenvalue, then for λ ∈ (λ−1, λ1),
λ 6= 0, all solutions of (4.20) are stably bounded.

In light of Krein’s result, we obtain the following:

Theorem 4.6. If any one of the inequalities (4.15), (4.16) or (4.19) holds, then
[−1, 1] ⊂ (λ−1, λ1) where λ−1 is the largest negative eigenvalue and λ1 is the small-
est positive eigenvalue for the problem given by (4.20) and (1.3) when

∫ T
0
P (x) dx =

0, and P (x)η 6≡ 0 for any constant vector η 6= 0.

Proof. In (4.1), replace P (x) by λP (x) and set γ = 0. Then, if λ is an eigenvalue
of (4.20) and (1.3), µ0 6 0. As a result, the inequalities (4.15), (4.16), and (4.19)
fail with δ replaced by |λ|δ and δ̃ replaced by |λ|δ̃ . Given the hypotheses of this
theorem, this implies that |λ| > 1.
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