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ASYMPTOTIC DIRICHLET PROBLEM FOR THE p-LAPLACIAN
ON CARTAN-HADAMARD MANIFOLDS

ILKKA HOLOPAINEN

(Communicated by Juha M. Heinonen)

Abstract. We show the existence of nonconstant bounded p-harmonic func-
tions on Cartan-Hadamard manifolds of pinched negative curvature by solving
the asymptotic Dirichlet problem at infinity for the p-Laplacian. More pre-
cisely, we prove that given a continuous function h on the sphere at infinity
there exists a unique p-harmonic function u on M with boundary values h.

1. Introduction

In this paper we show the existence of nonconstant bounded p-harmonic functions
on Cartan-Hadamard manifolds M of pinched negative curvature by solving the
asymptotic Dirichlet problem at infinity for the p-Laplacian. More precisely, we
prove that given a continuous function h on the sphere at infinity there exists a
unique p-harmonic function u on M with boundary values h.

Let M be a Cartan-Hadamard manifold, that is, a connected, simply connected,
complete Riemannian n-manifold, n ≥ 2, of nonpositive sectional curvature. By
the Cartan-Hadamard theorem, the exponential map expo : ToM → M is a diffeo-
morphism for every point o ∈ M . In particular, M is diffeomorphic to Rn. It is
well-known that M can be compactified by adding a sphere at infinity, denoted by
S(∞), so that the resulting space M̄ = M ∪S(∞) will be homeomorphic to a closed
Euclidean ball. The sphere at infinity is defined as the set of all equivalent classes
of geodesic rays in M ; two geodesic rays γ1 and γ2 are equivalent if there exists
a finite constant c such that d(γ1(t), γ2(t)) ≤ c for all t ≥ 0. There is a natural
topology, called the cone topology, on M̄ = M ∪ S(∞) defined as follows. For any
point o ∈M and v ∈ ToM , let

Co(v, α) = {x ∈M \ {o} : ^(v, γ̇x(0)) < α}
be the cone about v of angle α > 0, where γx is the unique geodesic from o = γx(0)
to x and ^(v, γ̇x(0)) is the angle between vectors v and γ̇x(0) in ToM . Then
geodesic balls B(q, r), q ∈M, r > 0, and truncated cones

To(v, α, s) = Co(v, α) \ B̄(o, s),

with v ∈ T0M,α > 0, s > 0, form a basis for the cone topology. Furthermore,
the cone topology is independent of the choice of o ∈ M and, equipped with this
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topology, M̄ is homeomorphic to the closed unit ball B̄n ⊂ Rn and S(∞) to the
sphere Sn−1 = ∂Bn; see [7]. In particular, given o ∈M, S(∞) may be canonically
identified with the unit sphere Sn−1 ⊂ ToM.

It is natural to ask whether every continuous function on S(∞) has a unique
harmonic extension to M. This so-called asymptotic Dirichlet problem was solved
by Choi if the sectional curvature has a negative upper bound K ≤ −a2 < 0 and any
two points of the sphere at infinity can be separated by convex neighborhoods; see
[6]. Such appropriate convex sets were constructed by Anderson [3] for manifolds
of pinched sectional curvature −b2 ≤ K ≤ −a2 < 0. The Dirichlet problem was
independently solved by Sullivan [13] under the same curvature assumptions by
using probabilistic arguments. In [4], Anderson and Schoen presented a simple and
direct proof. Ancona [1] was able to replace the lower curvature bound by a bounded
geometry assumption that each ball up to a fixed radius is bi-Lipschitz equivalent
to an open set in Rn. He also considered a more general class of operators. On
the other hand, Ancona [2] showed that the Dirichlet problem cannot be solved,
in general, if there are neither curvature lower bounds nor the bounded geometry
assumption; see also [5]. In the general case of the p-Laplacian, the corresponding
problem has been open so far. Pansu [11] has shown the existence of nonconstant
bounded p-harmonic functions with finite p-energy on Cartan-Hadamard manifolds
of pinched curvature −b2 ≤ K ≤ −a2 if p > (n− 1)b/a.

2. Asymptotic Dirichlet problem

Let G ⊂M be an open set and 1 < p <∞. Recall that a function u ∈W 1,p
loc (G)

is a (weak) solution of the equation

− div
(
|∇u|p−2∇u

)
= 0(2.1)

in G if ∫
G

〈|∇u|p−2∇u,∇ϕ〉 = 0

for all ϕ ∈ C∞0 (G). Above W 1,p
loc (G) is the (local) Sobolev space of all functions

u ∈ Lploc(G) whose distributional gradient ∇u belongs to Lploc(G). Continuous
solutions of (2.1) are called p-harmonic. It is well-known that every solution of
(2.1) has a continuous representative by the fundamental work of Serrin [12]. We
say that a function u ∈W 1,p

loc (G) is a p-supersolution in G if

− div
(
|∇u|p−2∇u

)
≥ 0(2.2)

weakly in G, that is, ∫
G

〈|∇u|p−2∇u,∇ϕ〉 ≥ 0

for all nonnegative ϕ ∈ C∞0 (G). Furthermore, we say that u is a p-subsolution if
−u is a p-supersolution.

In this section we show that the direct approach to solve the Dirichlet problem
taken by Anderson and Schoen in [4] also works in the nonlinear setting of p-
harmonic functions.

Theorem 2.1. Let M be a Cartan-Hadamard manifold whose sectional curvature
K satisfies

−b2 ≤ K ≤ −a2(2.3)
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for some constants b ≥ a > 0. Let h be a continuous function on S(∞). Then there
exists a unique function u ∈ C(M̄) which is p-harmonic in M and u = h on S(∞).

The proof requires some preliminaries. Let h ∈ C(S(∞)) be given. Fix a point
o ∈ M and write r(x) = d(x, o). We identify S(∞) with the unit sphere Sn−1 ⊂
ToM. Therefore, we may consider h as a continuous function on Sn−1. Assume that
h : Sn−1 → R is Lipschitz. We extend h radially to a continuous function h̃ on
M \ {o}. More precisely, we define h̃ in polar coordinates about o by

h̃(r, ϑ) = h(ϑ)

for every r > 0 and ϑ ∈ Sn−1. The Lipschitz continuity of h and the curvature
upper bound K ≤ −a2 imply that

osc
(
h̃, B(x, 3)

)
:= sup

B(x,3)

h̃− inf
B(x,3)

h̃ ≤ cLe−ar(x),(2.4)

where L is the Lipschitz constant of h; see [4]. Next we define a smooth function h
on M such that

lim
x→ξ

h(x) = h(ξ)

for every ξ ∈ S(∞) and that first and second order derivatives of h are effectively
controlled. For this purpose, we fix a maximal 1-separated set Q = {q1, q2, . . . } ⊂
M , that is,

d(qi, qj) ≥ 1(2.5)

whenever i 6= j and no more points can be added to Q without breaking the
condition (2.5). We may assume that o 6∈ Q. In particular, the balls B(qi, 1/2) are
mutually disjoint and M =

⋃
iB(qi, 1). For each x ∈M, we write Qx = Q∩B(x, 3).

The curvature lower bound then implies that

cardQx ≤ c,(2.6)

where c is independent of x; see e.g. [10]. Then we define

h(x) =
∑
qi∈Q

h̃(qi)ϕi(x),(2.7)

where {ϕi} is a partition of unity subordinate to {B(qi, 3)} defined as follows. First
choose a C∞ function f : [0,∞[→ [0, 1] such that f |[0, 1] = 1, f |[2,∞[= 0, and

max{|f ′(t)|, |f ′′(t)|} ≤ cX[1,2](t)(2.8)

for some constant c, where X[1,2] is the characteristic function of the interval [1, 2].
For qi ∈ Q and x ∈M , let ηi(x) = f(ri(x)), where ri(x) = d(x, qi). Finally we set

ϕi(x) =
ηi(x)∑
j ηj(x)

.(2.9)

To estimate first and second order derivatives of h, we first observe that

∇ηi(x) = f ′
(
ri(x)

)
∇ri(x)(2.10)

and

∆ηi(x) = f ′
(
ri(x)

)
∆ri(x) +

〈
∇f ′

(
ri(x)

)
,∇ri(x)

〉
= f ′

(
ri(x)

)
∆ri(x) + f ′′

(
ri(x)

)
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since 〈∇ri(x),∇ri(x)〉 = |∇ri(x)|2 ≡ 1. Thus (2.8) and (2.10) imply that

|∇ηi(x)| ≤ cXA(qi;1,2)(x),

whereA(y; s, t) = B̄(y, t)\B(y, s). By the Hessian comparison theorem ([8, Theorem
A]),

(n− 1)a coth(ari(x)) ≤ ∆ri(x) ≤ (n− 1)b coth(bri(x)).(2.11)

Combining this with (2.8) and (2.11) yields

|∆ηi(x)| ≤ cXA(qi;1,2)(x).

Since
∑

j ηj(x) ≥ 1, 0 ≤ ηi(x) ≤ 1, and cardQ ∩ B(x, 3) ≤ c for every x ∈ M, we
get by a simple computation that

|∇ϕi(x)| ≤ cXB(qi,4)(x)(2.12)

and

|∆ϕi(x)| ≤ cXB(qi,4)(x).(2.13)

In the next lemma we collect those properties of h that are crucial in the sequel.

Lemma 2.2. Let r : M → R be the distance function r(x) = d(x, o) and let
h : M → R be the function given by (2.7). Furthermore, let v : M \ {o} → R
be defined by

v(x) = e−δr(x),(2.14)

with δ > 0. Then there exists a constant c0 independent of h and δ such that

|∇h(x)| ≤ c0Le−ar(x),(2.15)

|∆h(x)| ≤ c0Le−ar(x),(2.16)

|∇〈∇h,∇h〉(x)| ≤ (c0L)2e−2ar(x),(2.17)

|∇〈∇h,∇v〉(x)| ≤ c0L(1 + δ)δe−(a+δ)r(x)(2.18)

for r(x) ≥ 1. Moreover,

lim
x→ξ

h(x) = h(ξ)(2.19)

for every ξ ∈ S(∞).

Proof. Fix x ∈M \B(o, 1) and choose q ∈ Q such that x ∈ B(q, 1). Then

∇h(x) =
∑
qi∈Q

h̃(qi)∇ϕi(x) =
∑
qi∈Qx

h̃(qi)∇ϕi(x)

=
∑
qi∈Qx

(
h̃(qi)− h̃(q)

)
∇ϕi(x)

since
∑

qi∈Qx ϕi = 1 in a neighborhood of x and therefore∑
qi∈Qx

h̃(q)∇ϕi(x) = h̃(q)∇
( ∑
qi∈Qx

ϕi

)
(x) = 0.

By (2.4), (2.6), and (2.12),

|∇h(x)| ≤ c
(
cardQx

)
osc
(
h̃, B(x, 3)

)
≤ cLe−ar(x)
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which proves (2.15). By a similar argument using (2.13) instead of (2.12) we obtain
(2.16). For the proof of the estimate (2.17), we first observe that

〈∇h,∇h〉(x) =
〈 ∑
qi∈Qx

(
h̃(qi)− h̃(q)

)
∇ϕi,

∑
qj∈Qx

(
h̃(qj)− h̃(q)

)
∇ϕj

〉
(x)

=
∑

qi,qj∈Qx

(
h̃(qi)− h̃(q)

)(
h̃(qj)− h̃(q)

)
〈∇ϕi,∇ϕj〉(x),

and so

∇〈∇h,∇h〉(x) =
∑

qi,qj∈Qx

(
h̃(qi)− h̃(q)

)(
h̃(qj)− h̃(q)

)
∇〈∇ϕi,∇ϕj〉(x).

By (2.4) and (2.6) it suffices to prove that

|∇〈∇ϕi,∇ϕj〉(x)| ≤ c

for all qi, qj ∈ Qx which reduces to establishing that

|∇〈∇ri,∇rj〉(x)| ≤ c(2.20)

whenever x ∈ A(qi; 1, 2) ∩ A(qj ; 1, 2). Let X1, . . . , Xn be an orthonormal frame in
a neighborhood of x. Then

∇〈∇ri,∇rj〉 =
∑
k

(
Xk〈∇ri,∇rj〉

)
Xk

=
∑
k

(
〈∇Xk∇ri,∇rj〉+ 〈∇ri,∇Xk∇rj〉

)
Xk.

On the other hand,

〈∇Xk∇ri,∇rj〉 = ∇2ri(Xk,∇rj),

where ∇2ri is the Hessian of ri. By the Hessian comparison theorem all eigenvalues
of ∇2ri are nonnegative and bounded from above by b coth(bri). Hence

|〈∇Xk∇ri,∇rj〉(x)| ≤ b coth(bri(x))|Xk(x)||∇rj(x)| = b coth(bri(x)) ≤ c

if ri(x) ≥ 1. Similarly, |〈∇Xk∇rj ,∇ri〉(x)| ≤ c if rj(x) ≥ 1, and so (2.20) follows.
This proves (2.17). The estimate (2.18) can be established similarly since

|∇〈∇h,∇v〉(x)| ≤ δe−δr(x)
∑
qi∈Qx

|h̃(qi)− h̃(q)||∇〈∇ϕi,∇r〉(x)|

+ δ2e−δr(x)|∇r(x)|
∑
qi∈Qx

|h̃(qi)− h̃(q)||〈∇ϕi,∇r〉(x)|.

Now |∇〈∇ϕi,∇r〉(x)| ≤ c if r(x) ≥ 1 by a similar argument as above, and thus
(2.18) follows. Finally, (2.19) follows easily from the definition (2.7) and from the
continuity of h|S(∞).

Lemma 2.3. Suppose that h : Sn−1 → R is L-Lipschitz, where Sn−1 is the unit
sphere in ToM. Define h : M → R by (2.7) and let v = e−δr. Then there exist
δ0 ∈]0, a[ such that, for every δ ∈]0, δ0], h + v is a p-supersolution and h − v is a
p-subsolution in M \ B̄(o,Rδ), where Rδ = Rδ(a, δ, c0, L).
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Proof. In what follows R1, . . . , R5 are constants depending only on a, δ, c0, and L.
Since h and v are smooth in M \{o}, we can prove the claims by direct computation
using the properties of h and v given by Lemma 2.2. Write u = h+v and note that
∇u = ∇h− δe−δr∇r 6= 0 if δ < a and r > R1 by (2.15). Hence

div
(
|∇u|p−2∇u

)
= |∇u|p−2∆u+

p− 2
2
|∇u|p−4

〈
∇
(
|∇u|2

)
,∇u

〉
(2.21)

in M \ B̄(o,R1). Next we deduce from (2.11) that

∆v = −δe−δr∆r + δ2e−δr ≤ δe−δr
(
δ − (n− 1)a

)
≤ −c1δe−δr < 0,

with c1 = (n− 1)a/2 whenever δ ≤ (n− 1)a/2; cf. [4]. Given δ < a there exists R2

such that

δ2e−2δr ≤ |∇h+∇v|2 = |∇h|2 + 2〈∇h,∇v〉+ |∇v|2

≤ (c0L)2e−2ar + 2c0Lδe−(a+δ)r + δ2e−2δr

≤ 2δ2e−2δr

as soon as r ≥ R2. Hence

d−1
p δp−2e−δ(p−2)r ≤ |∇h+∇v|p−2 ≤ dpδp−2e−δ(p−2)r,

where dp = 2|p−2|/2. If δ < a ∧ c1, we get an estimate

|∇h+∇v|p−2(∆h+ ∆v) ≤ d−1
p δp−2e−δ(p−2)r

[
d2
pc0Le

−ar − c1δe−δr
]

for the first term in the right-hand side of (2.21). To estimate the second term in
(2.21) we write〈
∇
(
|∇u|2

)
,∇u

〉
=

〈
∇
(
|∇h|2

)
,∇u

〉
+
〈
∇
(
|∇v|2

)
,∇u

〉
+ 2
〈
∇〈∇h,∇v〉,∇u

〉
= A+B + C.

By (2.15) and (2.17),

A =
〈
∇
(
|∇h|2

)
,∇h+∇v

〉
≤ |∇〈∇h,∇h〉||∇h +∇v|
≤ (c0L)2e−2ar

(
c0Le

−ar + δe−δr
)

≤ δ4e−3δr

if r ≥ R3. Similarly,

B =
〈
∇
(
|∇v|2

)
,∇h+∇v

〉
≤ 2c0Lδ3e−2δre−ar + 2δ4e−3δr

≤ 3δ4e−3δr

if r ≥ R4. Finally, (2.18) and (2.15) imply that

C = 2
〈
∇
(
〈∇h,∇v〉

)
,∇h+∇v

〉
≤ 2|∇〈∇h,∇v〉||∇h+∇v|
≤ 2c0L(1 + δ)δe−(a+δ)r

(
c0Le

−ar + δe−δr
)

≤ δ4e−3δr
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whenever r ≥ R5. Putting these estimates together yields

div
(
|∇u|p−2∇u

)
= |∇u|p−2∆u +

p− 2
2
|∇u|p−4

〈
∇
(
|∇u|2

)
,∇u

〉
≤ d−1

p δp−2e−δ(p−2)r
[
d2
pc0Le

−ar − (c1 − δCp)δe−δr
]
,

where

Cp = 3|p− 2|2
|p−2|+|p−4|

2 .

Choosing δ0 < min{a, c1, c1/(2Cp)}, with an obvious interpretation c1/(2Cp) =∞
if p = 2, finally gives an estimate

div
(
|∇u|p−2∇u

)
≤ −c2δp−1e−δ(p−1)r < 0

if δ ≤ δ0 and r ≥ Rδ. Similarly, we obtain an estimate

div
(
|∇h−∇v|p−2(∇h−∇v)

)
≥ c2δp−1e−δ(p−1)r > 0

if δ ≤ δ0 and r ≥ Rδ.

Lemma 2.4. Identify S(∞) with the unit sphere Sn−1 ⊂ ToM. Assume that h :
Sn−1 → R is L-Lipschitz. Then there exists a p-harmonic function u in M satis-
fying

lim
x→ξ

u(x) = h(ξ)(2.22)

for every ξ ∈ S(∞).

Proof. Define h : M → R by (2.7) and let δ ∈]0, δ0] and Rδ be given by Lemma 2.3.
First we note that h is bounded, and therefore we can choose a constant λ ∈]0, 1]
such that

λ osc(h,M) ≤ e−δRδ .
Since λh | Sn−1 is also L-Lipschitz, λh + v is a p-supersolution and λh − v is
a p-subsolution in M \ B̄(o,Rδ). For i = 1, 2, . . . , let ui ∈ C(M) be the unique
function such that ui is p-harmonic in B(o, 2iRδ) and ui ≡ λh in M \ B(o, 2iRδ).
Now λh− v ≤ ui ≤ λh+ v on ∂

(
B(o, 2iRδ) \ B̄(o,Rδ)

)
, and hence the same holds

in B(o, 2iRδ) \ B̄(o,Rδ) by the comparison principle; see [9, 3.18 and 7.6]. Hence
there exists a subsequence, denoted again by (ui) and a function u ∈ C(M) such
that λ−1ui → u locally uniformly in M. Furthermore, the function u is p-harmonic
in M and satisfies (2.22) for every ξ ∈ S(∞).

Proof of Theorem 2.1. Fix o ∈M and identify S(∞) with Sn−1 ⊂ ToM. Let (hi) be
a sequence of Lipschitz functions on Sn−1 such that hi → h uniformly on Sn−1. By
Lemma 2.4 there are p-harmonic functions ui ∈ C(M̄) with ui = hi in S(∞). The
sequence (ui) converges uniformly in M̄ to a function u ∈ C(M̄) which is p-harmonic
in M and u = h in S(∞). To prove the uniqueness, suppose that u and w are both
p-harmonic in M, continuous in M̄, with u = w in S(∞), and u(y) > w(y) for
some y ∈M. Let ε =

(
u(y)−w(y)

)
/2. Since u and w are continuous in M̄ and they

coincide on the compact set S(∞), there exists R > 0 such that |u(x)−w(x)| < ε for
every x ∈ M \ B(o,R). Let D be the y-component of {x ∈ M : u(x) > w(x) + ε}.
It follows that D is a relatively compact domain in M and u = w + ε on ∂D.
Hence u = w + ε in D which leads to a contradiction since y ∈ D. This proves the
uniqueness and thus the whole theorem is proved.



3400 ILKKA HOLOPAINEN

References

[1] Ancona, A. Negatively curved manifolds, elliptic operators, and the Martin boundary. Ann.
of Math. (2) 125, 3 (1987), 495–536. MR 88k:58160

[2] Ancona, A. Convexity at infinity and Brownian motion on manifolds with unbounded neg-
ative curvature. Rev. Mat. Iberoamericana 10, 1 (1994), 189–220. MR 95a:58132

[3] Anderson, M. T. The Dirichlet problem at infinity for manifolds of negative curvature. J.
Differential Geom. 18, 4 (1983), 701–721 (1984). MR 85m:58178

[4] Anderson, M. T., and Schoen, R. Positive harmonic functions on complete manifolds of
negative curvature. Ann. of Math. (2) 121, 3 (1985), 429–461. MR 87a:58151
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