ASYMPTOTIC DIRICHLET PROBLEM FOR THE p-LAPLACIAN ON CARTAN-HADAMARD MANIFOLDS

ILKKA HOLOPAINEN

(Communicated by Juha M. Heinonen)

Abstract

We show the existence of nonconstant bounded p-harmonic functions on Cartan-Hadamard manifolds of pinched negative curvature by solving the asymptotic Dirichlet problem at infinity for the p-Laplacian. More precisely, we prove that given a continuous function h on the sphere at infinity there exists a unique p-harmonic function u on M with boundary values h.

1. Introduction

In this paper we show the existence of nonconstant bounded p-harmonic functions on Cartan-Hadamard manifolds M of pinched negative curvature by solving the asymptotic Dirichlet problem at infinity for the p-Laplacian. More precisely, we prove that given a continuous function h on the sphere at infinity there exists a unique p-harmonic function u on M with boundary values h.

Let M be a Cartan-Hadamard manifold, that is, a connected, simply connected, complete Riemannian n-manifold, $n \geq 2$, of nonpositive sectional curvature. By the Cartan-Hadamard theorem, the exponential map $\exp _{o}: T_{o} M \rightarrow M$ is a diffeomorphism for every point $o \in M$. In particular, M is diffeomorphic to \mathbb{R}^{n}. It is well-known that M can be compactified by adding a sphere at infinity, denoted by $S(\infty)$, so that the resulting space $\bar{M}=M \cup S(\infty)$ will be homeomorphic to a closed Euclidean ball. The sphere at infinity is defined as the set of all equivalent classes of geodesic rays in M; two geodesic rays γ_{1} and γ_{2} are equivalent if there exists a finite constant c such that $d\left(\gamma_{1}(t), \gamma_{2}(t)\right) \leq c$ for all $t \geq 0$. There is a natural topology, called the cone topology, on $\bar{M}=M \cup S(\infty)$ defined as follows. For any point $o \in M$ and $v \in T_{o} M$, let

$$
C_{o}(v, \alpha)=\left\{x \in M \backslash\{o\}: \varangle\left(v, \dot{\gamma}^{x}(0)\right)<\alpha\right\}
$$

be the cone about v of angle $\alpha>0$, where γ^{x} is the unique geodesic from $o=\gamma^{x}(0)$ to x and $\varangle\left(v, \dot{\gamma}^{x}(0)\right)$ is the angle between vectors v and $\dot{\gamma}^{x}(0)$ in $T_{o} M$. Then geodesic balls $B(q, r), q \in M, r>0$, and truncated cones

$$
T_{o}(v, \alpha, s)=C_{o}(v, \alpha) \backslash \bar{B}(o, s),
$$

with $v \in T_{0} M, \alpha>0, s>0$, form a basis for the cone topology. Furthermore, the cone topology is independent of the choice of $o \in M$ and, equipped with this

[^0]topology, \bar{M} is homeomorphic to the closed unit ball $\bar{B}^{n} \subset \mathbb{R}^{n}$ and $S(\infty)$ to the sphere $S^{n-1}=\partial B^{n}$; see [7]. In particular, given $o \in M, S(\infty)$ may be canonically identified with the unit sphere $S^{n-1} \subset T_{o} M$.

It is natural to ask whether every continuous function on $S(\infty)$ has a unique harmonic extension to M. This so-called asymptotic Dirichlet problem was solved by Choi if the sectional curvature has a negative upper bound $K \leq-a^{2}<0$ and any two points of the sphere at infinity can be separated by convex neighborhoods; see [6]. Such appropriate convex sets were constructed by Anderson [3] for manifolds of pinched sectional curvature $-b^{2} \leq K \leq-a^{2}<0$. The Dirichlet problem was independently solved by Sullivan [13] under the same curvature assumptions by using probabilistic arguments. In 4], Anderson and Schoen presented a simple and direct proof. Ancona [1] was able to replace the lower curvature bound by a bounded geometry assumption that each ball up to a fixed radius is bi-Lipschitz equivalent to an open set in \mathbb{R}^{n}. He also considered a more general class of operators. On the other hand, Ancona [2] showed that the Dirichlet problem cannot be solved, in general, if there are neither curvature lower bounds nor the bounded geometry assumption; see also [5]. In the general case of the p-Laplacian, the corresponding problem has been open so far. Pansu [11] has shown the existence of nonconstant bounded p-harmonic functions with finite p-energy on Cartan-Hadamard manifolds of pinched curvature $-b^{2} \leq K \leq-a^{2}$ if $p>(n-1) b / a$.

2. Asymptotic Dirichlet problem

Let $G \subset M$ be an open set and $1<p<\infty$. Recall that a function $u \in W_{\text {loc }}^{1, p}(G)$ is a (weak) solution of the equation

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0 \tag{2.1}
\end{equation*}
$$

in G if

$$
\left.\left.\int_{G}\langle | \nabla u\right|^{p-2} \nabla u, \nabla \varphi\right\rangle=0
$$

for all $\varphi \in C_{0}^{\infty}(G)$. Above $W_{\text {loc }}^{1, p}(G)$ is the (local) Sobolev space of all functions $u \in L_{\mathrm{loc}}^{p}(G)$ whose distributional gradient ∇u belongs to $L_{\mathrm{loc}}^{p}(G)$. Continuous solutions of (2.1) are called p-harmonic. It is well-known that every solution of (2.1) has a continuous representative by the fundamental work of Serrin [12]. We say that a function $u \in W_{\mathrm{loc}}^{1, p}(G)$ is a p-supersolution in G if

$$
\begin{equation*}
-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \geq 0 \tag{2.2}
\end{equation*}
$$

weakly in G, that is,

$$
\left.\left.\int_{G}\langle | \nabla u\right|^{p-2} \nabla u, \nabla \varphi\right\rangle \geq 0
$$

for all nonnegative $\varphi \in C_{0}^{\infty}(G)$. Furthermore, we say that u is a p-subsolution if $-u$ is a p-supersolution.

In this section we show that the direct approach to solve the Dirichlet problem taken by Anderson and Schoen in [4] also works in the nonlinear setting of p harmonic functions.
Theorem 2.1. Let M be a Cartan-Hadamard manifold whose sectional curvature K satisfies

$$
\begin{equation*}
-b^{2} \leq K \leq-a^{2} \tag{2.3}
\end{equation*}
$$

for some constants $b \geq a>0$. Let h be a continuous function on $S(\infty)$. Then there exists a unique function $u \in C(\bar{M})$ which is p-harmonic in M and $u=h$ on $S(\infty)$.

The proof requires some preliminaries. Let $h \in C(S(\infty))$ be given. Fix a point $o \in M$ and write $r(x)=d(x, o)$. We identify $S(\infty)$ with the unit sphere $S^{n-1} \subset$ $T_{o} M$. Therefore, we may consider h as a continuous function on S^{n-1}. Assume that $h: S^{n-1} \rightarrow \mathbb{R}$ is Lipschitz. We extend h radially to a continuous function \tilde{h} on $M \backslash\{o\}$. More precisely, we define \tilde{h} in polar coordinates about o by

$$
\tilde{h}(r, \vartheta)=h(\vartheta)
$$

for every $r>0$ and $\vartheta \in S^{n-1}$. The Lipschitz continuity of h and the curvature upper bound $K \leq-a^{2}$ imply that

$$
\begin{equation*}
\operatorname{osc}(\tilde{h}, B(x, 3)):=\sup _{B(x, 3)} \tilde{h}-\inf _{B(x, 3)} \tilde{h} \leq c L e^{-a r(x)} \tag{2.4}
\end{equation*}
$$

where L is the Lipschitz constant of h; see [4]. Next we define a smooth function h on M such that

$$
\lim _{x \rightarrow \xi} h(x)=h(\xi)
$$

for every $\xi \in S(\infty)$ and that first and second order derivatives of h are effectively controlled. For this purpose, we fix a maximal 1-separated set $Q=\left\{q_{1}, q_{2}, \ldots\right\} \subset$ M, that is,

$$
\begin{equation*}
d\left(q_{i}, q_{j}\right) \geq 1 \tag{2.5}
\end{equation*}
$$

whenever $i \neq j$ and no more points can be added to Q without breaking the condition (2.5). We may assume that $o \notin Q$. In particular, the balls $B\left(q_{i}, 1 / 2\right)$ are mutually disjoint and $M=\bigcup_{i} B\left(q_{i}, 1\right)$. For each $x \in M$, we write $Q_{x}=Q \cap B(x, 3)$. The curvature lower bound then implies that

$$
\begin{equation*}
\operatorname{card} Q_{x} \leq c \tag{2.6}
\end{equation*}
$$

where c is independent of x; see e.g. 10. Then we define

$$
\begin{equation*}
h(x)=\sum_{q_{i} \in Q} \tilde{h}\left(q_{i}\right) \varphi_{i}(x) \tag{2.7}
\end{equation*}
$$

where $\left\{\varphi_{i}\right\}$ is a partition of unity subordinate to $\left\{B\left(q_{i}, 3\right)\right\}$ defined as follows. First choose a C^{∞} function $f:[0, \infty[\rightarrow[0,1]$ such that $f|[0,1]=1, f|[2, \infty[=0$, and

$$
\begin{equation*}
\max \left\{\left|f^{\prime}(t)\right|,\left|f^{\prime \prime}(t)\right|\right\} \leq c \mathcal{X}_{[1,2]}(t) \tag{2.8}
\end{equation*}
$$

for some constant c, where $\mathcal{X}_{[1,2]}$ is the characteristic function of the interval [1, 2]. For $q_{i} \in Q$ and $x \in M$, let $\eta_{i}(x)=f\left(r_{i}(x)\right)$, where $r_{i}(x)=d\left(x, q_{i}\right)$. Finally we set

$$
\begin{equation*}
\varphi_{i}(x)=\frac{\eta_{i}(x)}{\sum_{j} \eta_{j}(x)} \tag{2.9}
\end{equation*}
$$

To estimate first and second order derivatives of h, we first observe that

$$
\begin{equation*}
\nabla \eta_{i}(x)=f^{\prime}\left(r_{i}(x)\right) \nabla r_{i}(x) \tag{2.10}
\end{equation*}
$$

and

$$
\begin{aligned}
\Delta \eta_{i}(x) & =f^{\prime}\left(r_{i}(x)\right) \Delta r_{i}(x)+\left\langle\nabla f^{\prime}\left(r_{i}(x)\right), \nabla r_{i}(x)\right\rangle \\
& =f^{\prime}\left(r_{i}(x)\right) \Delta r_{i}(x)+f^{\prime \prime}\left(r_{i}(x)\right)
\end{aligned}
$$

since $\left\langle\nabla r_{i}(x), \nabla r_{i}(x)\right\rangle=\left|\nabla r_{i}(x)\right|^{2} \equiv 1$. Thus (2.8) and (2.10) imply that

$$
\left|\nabla \eta_{i}(x)\right| \leq c \mathcal{X}_{A\left(q_{i} ; 1,2\right)}(x)
$$

where $A(y ; s, t)=\bar{B}(y, t) \backslash B(y, s)$. By the Hessian comparison theorem ([8, Theorem A]),

$$
\begin{equation*}
(n-1) a \operatorname{coth}\left(a r_{i}(x)\right) \leq \Delta r_{i}(x) \leq(n-1) b \operatorname{coth}\left(b r_{i}(x)\right) \tag{2.11}
\end{equation*}
$$

Combining this with (2.8) and (2.11) yields

$$
\left|\Delta \eta_{i}(x)\right| \leq c \mathcal{X}_{A\left(q_{i} ; 1,2\right)}(x)
$$

Since $\sum_{j} \eta_{j}(x) \geq 1,0 \leq \eta_{i}(x) \leq 1$, and $\operatorname{card} Q \cap B(x, 3) \leq c$ for every $x \in M$, we get by a simple computation that

$$
\begin{equation*}
\left|\nabla \varphi_{i}(x)\right| \leq c \mathcal{X}_{B\left(q_{i}, 4\right)}(x) \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\Delta \varphi_{i}(x)\right| \leq c \mathcal{X}_{B\left(q_{i}, 4\right)}(x) \tag{2.13}
\end{equation*}
$$

In the next lemma we collect those properties of h that are crucial in the sequel.
Lemma 2.2. Let $r: M \rightarrow \mathbb{R}$ be the distance function $r(x)=d(x, o)$ and let $h: M \rightarrow \mathbb{R}$ be the function given by (2.7). Furthermore, let $v: M \backslash\{o\} \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
v(x)=e^{-\delta r(x)} \tag{2.14}
\end{equation*}
$$

with $\delta>0$. Then there exists a constant c_{0} independent of h and δ such that

$$
\begin{gather*}
|\nabla h(x)| \leq c_{0} L e^{-a r(x)}, \tag{2.15}\\
|\Delta h(x)| \leq c_{0} L e^{-a r(x)}, \tag{2.16}\\
|\nabla\langle\nabla h, \nabla h\rangle(x)| \leq\left(c_{0} L\right)^{2} e^{-2 a r(x)}, \tag{2.17}\\
|\nabla\langle\nabla h, \nabla v\rangle(x)| \leq c_{0} L(1+\delta) \delta e^{-(a+\delta) r(x)} \tag{2.18}
\end{gather*}
$$

for $r(x) \geq 1$. Moreover,

$$
\begin{equation*}
\lim _{x \rightarrow \xi} h(x)=h(\xi) \tag{2.19}
\end{equation*}
$$

for every $\xi \in S(\infty)$.
Proof. Fix $x \in M \backslash B(o, 1)$ and choose $q \in Q$ such that $x \in B(q, 1)$. Then

$$
\begin{aligned}
\nabla h(x) & =\sum_{q_{i} \in Q} \tilde{h}\left(q_{i}\right) \nabla \varphi_{i}(x)=\sum_{q_{i} \in Q_{x}} \tilde{h}\left(q_{i}\right) \nabla \varphi_{i}(x) \\
& =\sum_{q_{i} \in Q_{x}}\left(\tilde{h}\left(q_{i}\right)-\tilde{h}(q)\right) \nabla \varphi_{i}(x)
\end{aligned}
$$

since $\sum_{q_{i} \in Q_{x}} \varphi_{i}=1$ in a neighborhood of x and therefore

$$
\sum_{q_{i} \in Q_{x}} \tilde{h}(q) \nabla \varphi_{i}(x)=\tilde{h}(q) \nabla\left(\sum_{q_{i} \in Q_{x}} \varphi_{i}\right)(x)=0
$$

By (2.4), (2.6), and (2.12),

$$
|\nabla h(x)| \leq c\left(\operatorname{card} Q_{x}\right) \operatorname{osc}(\tilde{h}, B(x, 3)) \leq c L e^{-\operatorname{ar}(x)}
$$

which proves (2.15). By a similar argument using (2.13) instead of (2.12) we obtain (2.16). For the proof of the estimate (2.17), we first observe that

$$
\begin{aligned}
\langle\nabla h, \nabla h\rangle(x) & =\left\langle\sum_{q_{i} \in Q_{x}}\left(\tilde{h}\left(q_{i}\right)-\tilde{h}(q)\right) \nabla \varphi_{i}, \sum_{q_{j} \in Q_{x}}\left(\tilde{h}\left(q_{j}\right)-\tilde{h}(q)\right) \nabla \varphi_{j}\right\rangle(x) \\
& =\sum_{q_{i}, q_{j} \in Q_{x}}\left(\tilde{h}\left(q_{i}\right)-\tilde{h}(q)\right)\left(\tilde{h}\left(q_{j}\right)-\tilde{h}(q)\right)\left\langle\nabla \varphi_{i}, \nabla \varphi_{j}\right\rangle(x)
\end{aligned}
$$

and so

$$
\nabla\langle\nabla h, \nabla h\rangle(x)=\sum_{q_{i}, q_{j} \in Q_{x}}\left(\tilde{h}\left(q_{i}\right)-\tilde{h}(q)\right)\left(\tilde{h}\left(q_{j}\right)-\tilde{h}(q)\right) \nabla\left\langle\nabla \varphi_{i}, \nabla \varphi_{j}\right\rangle(x)
$$

By (2.4) and (2.6) it suffices to prove that

$$
\left|\nabla\left\langle\nabla \varphi_{i}, \nabla \varphi_{j}\right\rangle(x)\right| \leq c
$$

for all $q_{i}, q_{j} \in Q_{x}$ which reduces to establishing that

$$
\begin{equation*}
\left|\nabla\left\langle\nabla r_{i}, \nabla r_{j}\right\rangle(x)\right| \leq c \tag{2.20}
\end{equation*}
$$

whenever $x \in A\left(q_{i} ; 1,2\right) \cap A\left(q_{j} ; 1,2\right)$. Let X_{1}, \ldots, X_{n} be an orthonormal frame in a neighborhood of x. Then

$$
\begin{aligned}
\nabla\left\langle\nabla r_{i}, \nabla r_{j}\right\rangle & =\sum_{k}\left(X_{k}\left\langle\nabla r_{i}, \nabla r_{j}\right\rangle\right) X_{k} \\
& =\sum_{k}\left(\left\langle\nabla_{X_{k}} \nabla r_{i}, \nabla r_{j}\right\rangle+\left\langle\nabla r_{i}, \nabla X_{k} \nabla r_{j}\right\rangle\right) X_{k}
\end{aligned}
$$

On the other hand,

$$
\left\langle\nabla_{X_{k}} \nabla r_{i}, \nabla r_{j}\right\rangle=\nabla^{2} r_{i}\left(X_{k}, \nabla r_{j}\right)
$$

where $\nabla^{2} r_{i}$ is the Hessian of r_{i}. By the Hessian comparison theorem all eigenvalues of $\nabla^{2} r_{i}$ are nonnegative and bounded from above by $b \operatorname{coth}\left(b r_{i}\right)$. Hence

$$
\left|\left\langle\nabla_{X_{k}} \nabla r_{i}, \nabla r_{j}\right\rangle(x)\right| \leq b \operatorname{coth}\left(b r_{i}(x)\right)\left|X_{k}(x)\right|\left|\nabla r_{j}(x)\right|=b \operatorname{coth}\left(b r_{i}(x)\right) \leq c
$$

if $r_{i}(x) \geq 1$. Similarly, $\left|\left\langle\nabla_{X_{k}} \nabla r_{j}, \nabla r_{i}\right\rangle(x)\right| \leq c$ if $r_{j}(x) \geq 1$, and so (2.20) follows. This proves (2.17). The estimate (2.18) can be established similarly since

$$
\begin{aligned}
|\nabla\langle\nabla h, \nabla v\rangle(x)| & \leq \delta e^{-\delta r(x)} \sum_{q_{i} \in Q_{x}}\left|\tilde{h}\left(q_{i}\right)-\tilde{h}(q)\right|\left|\nabla\left\langle\nabla \varphi_{i}, \nabla r\right\rangle(x)\right| \\
& +\delta^{2} e^{-\delta r(x)}|\nabla r(x)| \sum_{q_{i} \in Q_{x}}\left|\tilde{h}\left(q_{i}\right)-\tilde{h}(q)\right|\left|\left\langle\nabla \varphi_{i}, \nabla r\right\rangle(x)\right| .
\end{aligned}
$$

Now $\left|\nabla\left\langle\nabla \varphi_{i}, \nabla r\right\rangle(x)\right| \leq c$ if $r(x) \geq 1$ by a similar argument as above, and thus (2.18) follows. Finally, (2.19) follows easily from the definition (2.7) and from the continuity of $h \mid S(\infty)$.

Lemma 2.3. Suppose that $h: S^{n-1} \rightarrow \mathbb{R}$ is L-Lipschitz, where S^{n-1} is the unit sphere in $T_{o} M$. Define $h: M \rightarrow \mathbb{R}$ by (2.7) and let $v=e^{-\delta r}$. Then there exist $\left.\delta_{0} \in\right] 0, a[$ such that, for every $\left.\delta \in] 0, \delta_{0}\right], h+v$ is a p-supersolution and $h-v$ is a p-subsolution in $M \backslash \bar{B}\left(o, R_{\delta}\right)$, where $R_{\delta}=R_{\delta}\left(a, \delta, c_{0}, L\right)$.

Proof. In what follows R_{1}, \ldots, R_{5} are constants depending only on a, δ, c_{0}, and L. Since h and v are smooth in $M \backslash\{o\}$, we can prove the claims by direct computation using the properties of h and v given by Lemma 2.2. Write $u=h+v$ and note that $\nabla u=\nabla h-\delta e^{-\delta r} \nabla r \neq 0$ if $\delta<a$ and $r>R_{1}$ by (2.15). Hence

$$
\begin{equation*}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=|\nabla u|^{p-2} \Delta u+\frac{p-2}{2}|\nabla u|^{p-4}\left\langle\nabla\left(|\nabla u|^{2}\right), \nabla u\right\rangle \tag{2.21}
\end{equation*}
$$

in $M \backslash \bar{B}\left(o, R_{1}\right)$. Next we deduce from (2.11) that

$$
\Delta v=-\delta e^{-\delta r} \Delta r+\delta^{2} e^{-\delta r} \leq \delta e^{-\delta r}(\delta-(n-1) a) \leq-c_{1} \delta e^{-\delta r}<0
$$

with $c_{1}=(n-1) a / 2$ whenever $\delta \leq(n-1) a / 2$; cf. [4]. Given $\delta<a$ there exists R_{2} such that

$$
\begin{aligned}
\delta^{2} e^{-2 \delta r} \leq|\nabla h+\nabla v|^{2} & =|\nabla h|^{2}+2\langle\nabla h, \nabla v\rangle+|\nabla v|^{2} \\
& \leq\left(c_{0} L\right)^{2} e^{-2 a r}+2 c_{0} L \delta e^{-(a+\delta) r}+\delta^{2} e^{-2 \delta r} \\
& \leq 2 \delta^{2} e^{-2 \delta r}
\end{aligned}
$$

as soon as $r \geq R_{2}$. Hence

$$
d_{p}^{-1} \delta^{p-2} e^{-\delta(p-2) r} \leq|\nabla h+\nabla v|^{p-2} \leq d_{p} \delta^{p-2} e^{-\delta(p-2) r},
$$

where $d_{p}=2^{|p-2| / 2}$. If $\delta<a \wedge c_{1}$, we get an estimate

$$
|\nabla h+\nabla v|^{p-2}(\Delta h+\Delta v) \leq d_{p}^{-1} \delta^{p-2} e^{-\delta(p-2) r}\left[d_{p}^{2} c_{0} L e^{-a r}-c_{1} \delta e^{-\delta r}\right]
$$

for the first term in the right-hand side of (2.21). To estimate the second term in (2.21) we write

$$
\begin{aligned}
\left\langle\nabla\left(|\nabla u|^{2}\right), \nabla u\right\rangle & =\left\langle\nabla\left(|\nabla h|^{2}\right), \nabla u\right\rangle+\left\langle\nabla\left(|\nabla v|^{2}\right), \nabla u\right\rangle+2\langle\nabla\langle\nabla h, \nabla v\rangle, \nabla u\rangle \\
& =A+B+C
\end{aligned}
$$

By (2.15) and (2.17),

$$
\begin{aligned}
A & =\left\langle\nabla\left(|\nabla h|^{2}\right), \nabla h+\nabla v\right\rangle \\
& \leq|\nabla\langle\nabla h, \nabla h\rangle||\nabla h+\nabla v| \\
& \leq\left(c_{0} L\right)^{2} e^{-2 a r}\left(c_{0} L e^{-a r}+\delta e^{-\delta r}\right) \\
& \leq \delta^{4} e^{-3 \delta r}
\end{aligned}
$$

if $r \geq R_{3}$. Similarly,

$$
\begin{aligned}
B & =\left\langle\nabla\left(|\nabla v|^{2}\right), \nabla h+\nabla v\right\rangle \\
& \leq 2 c_{0} L \delta^{3} e^{-2 \delta r} e^{-a r}+2 \delta^{4} e^{-3 \delta r} \\
& \leq 3 \delta^{4} e^{-3 \delta r}
\end{aligned}
$$

if $r \geq R_{4}$. Finally, (2.18) and (2.15) imply that

$$
\begin{aligned}
C & =2\langle\nabla(\langle\nabla h, \nabla v\rangle), \nabla h+\nabla v\rangle \\
& \leq 2|\nabla\langle\nabla h, \nabla v\rangle \| \nabla h+\nabla v| \\
& \leq 2 c_{0} L(1+\delta) \delta e^{-(a+\delta) r}\left(c_{0} L e^{-a r}+\delta e^{-\delta r}\right) \\
& \leq \delta^{4} e^{-3 \delta r}
\end{aligned}
$$

whenever $r \geq R_{5}$. Putting these estimates together yields

$$
\begin{aligned}
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) & =|\nabla u|^{p-2} \Delta u+\frac{p-2}{2}|\nabla u|^{p-4}\left\langle\nabla\left(|\nabla u|^{2}\right), \nabla u\right\rangle \\
& \leq d_{p}^{-1} \delta^{p-2} e^{-\delta(p-2) r}\left[d_{p}^{2} c_{0} L e^{-a r}-\left(c_{1}-\delta C_{p}\right) \delta e^{-\delta r}\right]
\end{aligned}
$$

where

$$
C_{p}=3|p-2| 2^{\frac{|p-2|+|p-4|}{2}}
$$

Choosing $\delta_{0}<\min \left\{a, c_{1}, c_{1} /\left(2 C_{p}\right)\right\}$, with an obvious interpretation $c_{1} /\left(2 C_{p}\right)=\infty$ if $p=2$, finally gives an estimate

$$
\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) \leq-c_{2} \delta^{p-1} e^{-\delta(p-1) r}<0
$$

if $\delta \leq \delta_{0}$ and $r \geq R_{\delta}$. Similarly, we obtain an estimate

$$
\operatorname{div}\left(|\nabla h-\nabla v|^{p-2}(\nabla h-\nabla v)\right) \geq c_{2} \delta^{p-1} e^{-\delta(p-1) r}>0
$$

if $\delta \leq \delta_{0}$ and $r \geq R_{\delta}$.
Lemma 2.4. Identify $S(\infty)$ with the unit sphere $S^{n-1} \subset T_{o} M$. Assume that h : $S^{n-1} \rightarrow \mathbb{R}$ is L-Lipschitz. Then there exists a p-harmonic function u in M satisfying

$$
\begin{equation*}
\lim _{x \rightarrow \xi} u(x)=h(\xi) \tag{2.22}
\end{equation*}
$$

for every $\xi \in S(\infty)$.
Proof. Define $h: M \rightarrow \mathbb{R}$ by (2.7) and let $\delta \in] 0, \delta_{0}$] and R_{δ} be given by Lemma 2.3 First we note that h is bounded, and therefore we can choose a constant $\lambda \in] 0,1$] such that

$$
\lambda \operatorname{osc}(h, M) \leq e^{-\delta R_{\delta}}
$$

Since $\lambda h \mid S^{n-1}$ is also L-Lipschitz, $\lambda h+v$ is a p-supersolution and $\lambda h-v$ is a p-subsolution in $M \backslash \bar{B}\left(o, R_{\delta}\right)$. For $i=1,2, \ldots$, let $u_{i} \in C(M)$ be the unique function such that u_{i} is p-harmonic in $B\left(o, 2^{i} R_{\delta}\right)$ and $u_{i} \equiv \lambda h$ in $M \backslash B\left(o, 2^{i} R_{\delta}\right)$. Now $\lambda h-v \leq u_{i} \leq \lambda h+v$ on $\partial\left(B\left(o, 2^{i} R_{\delta}\right) \backslash \bar{B}\left(o, R_{\delta}\right)\right)$, and hence the same holds in $B\left(o, 2^{i} R_{\delta}\right) \backslash \bar{B}\left(o, R_{\delta}\right)$ by the comparison principle; see [9, 3.18 and 7.6]. Hence there exists a subsequence, denoted again by $\left(u_{i}\right)$ and a function $u \in C(M)$ such that $\lambda^{-1} u_{i} \rightarrow u$ locally uniformly in M. Furthermore, the function u is p-harmonic in M and satisfies (2.22) for every $\xi \in S(\infty)$.

Proof of Theorem [2.1. Fix $o \in M$ and identify $S(\infty)$ with $S^{n-1} \subset T_{o} M$. Let $\left(h_{i}\right)$ be a sequence of Lipschitz functions on S^{n-1} such that $h_{i} \rightarrow h$ uniformly on S^{n-1}. By Lemma 2.4 there are p-harmonic functions $u_{i} \in C(\bar{M})$ with $u_{i}=h_{i}$ in $S(\infty)$. The sequence $\left(u_{i}\right)$ converges uniformly in \bar{M} to a function $u \in C(\bar{M})$ which is p-harmonic in M and $u=h$ in $S(\infty)$. To prove the uniqueness, suppose that u and w are both p-harmonic in M, continuous in \bar{M}, with $u=w$ in $S(\infty)$, and $u(y) \geq w(y)$ for some $y \in M$. Let $\varepsilon=(u(y)-w(y)) / 2$. Since u and w are continuous in \bar{M} and they coincide on the compact set $S(\infty)$, there exists $R>0$ such that $|u(x)-w(x)|<\varepsilon$ for every $x \in M \backslash B(o, R)$. Let D be the y-component of $\{x \in M: u(x)>w(x)+\varepsilon\}$. It follows that D is a relatively compact domain in M and $u=w+\varepsilon$ on ∂D. Hence $u=w+\varepsilon$ in D which leads to a contradiction since $y \in D$. This proves the uniqueness and thus the whole theorem is proved.

References

[1] Ancona, A. Negatively curved manifolds, elliptic operators, and the Martin boundary. Ann. of Math. (2) 125, 3 (1987), 495-536. MR 88k:58160
[2] Ancona, A. Convexity at infinity and Brownian motion on manifolds with unbounded negative curvature. Rev. Mat. Iberoamericana 10, 1 (1994), 189-220. MR 95a:58132
[3] Anderson, M. T. The Dirichlet problem at infinity for manifolds of negative curvature. J. Differential Geom. 18, 4 (1983), 701-721 (1984). MR 85m:58178
[4] Anderson, M. T., and Schoen, R. Positive harmonic functions on complete manifolds of negative curvature. Ann. of Math. (2) 121, 3 (1985), 429-461. MR 87a:58151
[5] Borbély, A. The nonsolvability of the Dirichlet problem on negatively curved manifolds. Differential Geom. Appl. 8, 3 (1998), 217-237. MR 99j:53043
[6] Choi, H. I. Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds. Trans. Amer. Math. Soc. 281, 2 (1984), 691-716. MR 85b:53040
[7] Eberlein, P., and O'Neill, B. Visibility manifolds. Pacific J. Math. 46 (1973), 45-109. MR 49:1421
[8] Greene, R. E., and Wu, H. Function theory on manifolds which possess a pole. Springer, Berlin, 1979. MR 81a:53002
[9] Heinonen, J., Kilpeläinen, T., and Martio, O. Nonlinear potential theory of degenerate elliptic equations. The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications. MR 94e:31003
[10] Kanai, M. Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds. J. Math. Soc. Japan 37, 3 (1985), 391-413. MR 87d:53082
[11] Pansu, P. Cohomologie L^{p} des variétés à courbure négative, cas du degré 1. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 95-120 (1990). Conference on Partial Differential Equations and Geometry (Torino, 1988). MR 92e:58200
[12] Serrin, J. Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964), 247-302. MR 30:337
[13] Sullivan, D. The Dirichlet problem at infinity for a negatively curved manifold. J. Differential Geom. 18, 4 (1983), 723-732 (1984). MR 85m:58177

Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland

E-mail address: ilkka.holopainen@helsinki.fi

[^0]: Received by the editors June 14, 2001.
 2000 Mathematics Subject Classification. Primary 58J60; Secondary 53C20, 31C12.
 Key words and phrases. Cartan-Hadamard manifold, p-harmonic function.
 The author was supported in part by the Academy of Finland, projects 6355 and 44333.

