PROCEEDINGS OF THE

AMERICAN MATHEMATICAL SOCIETY
Volume 130, Number 11, Pages 3393-3400

S 0002-9939(02)06538-3

Article electronically published on March 29, 2002

ASYMPTOTIC DIRICHLET PROBLEM FOR THE p-LAPLACIAN
ON CARTAN-HADAMARD MANIFOLDS
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ABSTRACT. We show the existence of nonconstant bounded p-harmonic func-
tions on Cartan-Hadamard manifolds of pinched negative curvature by solving
the asymptotic Dirichlet problem at infinity for the p-Laplacian. More pre-
cisely, we prove that given a continuous function h on the sphere at infinity
there exists a unique p-harmonic function © on M with boundary values h.

1. INTRODUCTION

In this paper we show the existence of nonconstant bounded p-harmonic functions
on Cartan-Hadamard manifolds M of pinched negative curvature by solving the
asymptotic Dirichlet problem at infinity for the p-Laplacian. More precisely, we
prove that given a continuous function h on the sphere at infinity there exists a
unique p-harmonic function u on M with boundary values h.

Let M be a Cartan-Hadamard manifold, that is, a connected, simply connected,
complete Riemannian n-manifold, n > 2, of nonpositive sectional curvature. By
the Cartan-Hadamard theorem, the exponential map exp,: T,M — M is a diffeo-
morphism for every point o € M. In particular, M is diffeomorphic to R™. It is
well-known that M can be compactified by adding a sphere at infinity, denoted by
S(o0), so that the resulting space M = M US(00) will be homeomorphic to a closed
Euclidean ball. The sphere at infinity is defined as the set of all equivalent classes
of geodesic rays in M; two geodesic rays 7; and -y, are equivalent if there exists
a finite constant ¢ such that d(y1(t),72(t)) < ¢ for all ¢ > 0. There is a natural
topology, called the cone topology, on M = M U S(co) defined as follows. For any
point o € M and v € T, M, let

Co(v,a) = {x € M\ {o}: <(v,77(0)) < a}
be the cone about v of angle o > 0, where * is the unique geodesic from o = v*(0)

to x and <(v,4*(0)) is the angle between vectors v and 4%(0) in T,M. Then
geodesic balls B(q,r), ¢ € M,r > 0, and truncated cones

T,(v,a,s) = Co(v,a) \ B(o,s),

with v € ToM,a > 0,s > 0, form a basis for the cone topology. Furthermore,
the cone topology is independent of the choice of 0 € M and, equipped with this
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topology, M is homeomorphic to the closed unit ball B C R"™ and S(cc) to the
sphere S"~1 = OB"; see [7]. In particular, given o € M, S(c0) may be canonically
identified with the unit sphere S"~! c T, M.

It is natural to ask whether every continuous function on S(co) has a unique
harmonic extension to M. This so-called asymptotic Dirichlet problem was solved
by Choi if the sectional curvature has a negative upper bound K < —a? < 0 and any
two points of the sphere at infinity can be separated by convex neighborhoods; see
[6]. Such appropriate convex sets were constructed by Anderson [3] for manifolds
of pinched sectional curvature —b?> < K < —a? < 0. The Dirichlet problem was
independently solved by Sullivan [13] under the same curvature assumptions by
using probabilistic arguments. In [4], Anderson and Schoen presented a simple and
direct proof. Ancona [I] was able to replace the lower curvature bound by a bounded
geometry assumption that each ball up to a fixed radius is bi-Lipschitz equivalent
to an open set in R™. He also considered a more general class of operators. On
the other hand, Ancona [2] showed that the Dirichlet problem cannot be solved,
in general, if there are neither curvature lower bounds nor the bounded geometry
assumption; see also [5]. In the general case of the p-Laplacian, the corresponding
problem has been open so far. Pansu [I1] has shown the existence of nonconstant
bounded p-harmonic functions with finite p-energy on Cartan-Hadamard manifolds
of pinched curvature —b* < K < —a? if p > (n — 1)b/a.

2. ASYMPTOTIC DIRICHLET PROBLEM
Let G C M be an open set and 1 < p < oo. Recall that a function u € VVI})CP(G)
is a (weak) solution of the equation
(2.1) —div(|Vu[P7*Vu) =0
in G if
/G ([VulP~2Vu, Vi) = 0

for all ¢ € C§°(G). Above WI})’Cp(G) is the (local) Sobolev space of all functions
u € LY (G) whose distributional gradient Vu belongs to L} (G). Continuous
solutions of (ZTl) are called p-harmonic. It is well-known that every solution of
(&) has a continuous representative by the fundamental work of Serrin [12]. We

say that a function u € Wli)’Cp(G) is a p-supersolution in G if
(2.2) —div(|VulP?Vu) >0
weakly in G, that is,

/<|Vu|p*2Vu,Vgo) >0
G

for all nonnegative ¢ € C5°(G). Furthermore, we say that u is a p-subsolution if
—u is a p-supersolution.

In this section we show that the direct approach to solve the Dirichlet problem
taken by Anderson and Schoen in 4] also works in the nonlinear setting of p-
harmonic functions.

Theorem 2.1. Let M be a Cartan-Hadamard manifold whose sectional curvature
K satisfies

(2.3) <K < —a®
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for some constants b > a > 0. Let h be a continuous function on S(cc). Then there
exists a unique function u € C(M) which is p-harmonic in M and uw = h on S(c0).

The proof requires some preliminaries. Let h € C(S(00)) be given. Fix a point
0o € M and write 7(x) = d(x,0). We identify S(co) with the unit sphere S"~1 C
T, M. Therefore, we may consider h as a continuous function on S”~!. Assume that
h: §"~1 — R is Lipschitz. We extend h radially to a continuous function i on
M \ {0}. More precisely, we define A in polar coordinates about o by

h(r,0) = h(?)
for every r > 0 and ¥ € S"~1. The Lipschitz continuity of h and the curvature
upper bound K < —a? imply that

(24) OSC(?I,B({E’?))) = sup }~L— inf }~l S cLe_‘”(”)’
B(z,3) B(z,3)

where L is the Lipschitz constant of h; see [4]. Next we define a smooth function h
on M such that

lim h(x) = h(§)

r—E&

for every £ € S(oo) and that first and second order derivatives of h are effectively

controlled. For this purpose, we fix a maximal 1-separated set @ = {¢1,q2,...} C
M, that is,
(2.5) (g, q5) = 1

whenever ¢ # j and no more points can be added to @ without breaking the
condition (ZH). We may assume that o € Q. In particular, the balls B(g;,1/2) are
mutually disjoint and M = |J, B(g;, 1). For each x € M, we write Q, = QNB(z, 3).
The curvature lower bound then implies that

(2.6) card Q. < ¢,

where c is independent of x; see e.g. [10]. Then we define

(2.7) h(z) = ha:)pi(@),
HER

where {¢;} is a partition of unity subordinate to {B(q;, 3)} defined as follows. First
choose a C™ function f: [0, 00[— [0, 1] such that f][0,1] =1, f|[2,00[=0, and

(2.8) max{|f'(®)[, |f" ()]} < eXj1,2(t)
for some constant ¢, where &}; o is the characteristic function of the interval [1,2].
For ¢; € Q and © € M, let n;(z) = f(ri(x)), where r;(x) = d(z, ¢;). Finally we set
i ()
(2.9) pilw) = <)
Zj n; ()
To estimate first and second order derivatives of h, we first observe that
(2.10) Vni(z) = f'(ri(z)) Vri(z)
and
Ani(z) = f'(m(m))Am(m) + <Vf'(m(m)),Vm(m)>
= f(ri(x))Ari(z) + " (ri(2))
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since (Vr;(z), Vri(z)) = |Vri(2)|*> = 1. Thus (Z8) and (ZI0) imply that
[Vni(2)] < eXa(gin,2) (@),

where A(y; s,t) = B(y, t)\B(y, s). By the Hessian comparison theorem (|8, Theorem
Al),

(2.11) (n — Dacoth(ar;(z)) < Ar;(xz) < (n — 1)bcoth(br;(x)).
Combining this with (28) and @I yields
[Ani(2)] < eXagi,2)()-

Since }>;nj(z) > 1, 0 < mi(z) < 1, and card@ N B(z,3) < c for every x € M, we
get by a simple computation that

(2.12) IVepi ()| < eXp(q, 0)(x)
and
(2.13) |Api(@)] < cXp(g,.a) ().

In the next lemma we collect those properties of h that are crucial in the sequel.

Lemma 2.2. Let r: M — R be the distance function r(xz) = d(z,0) and let
h: M — R be the function given by @7). Furthermore, let v: M \ {0} — R
be defined by

(2.14) v(z) = @),
with 0 > 0. Then there exists a constant co independent of h and § such that
(2.15) |Vh(z)| < coLe™ @),

(2.16) |AR(z)| < coLe™ @),

(2.17) [V(Vh, Vh)(z)| < (coL)?e 2",

(2.18) IV(Vh, Vo) (z)] < coL(1 + 8§)e (@)

for r(x) > 1. Moreover,

(2.19) lim, () = h(€)

for every £ € S(0).
Proof. Fix x € M \ B(o,1) and choose g € @ such that € B(g,1). Then

Vh(z) = Y ha)Vei(x)= > hlg)Ve;(@)
QiEQ Q7EQQ‘
= > (Mai) - h(q)) Vepi(x)
Q‘IEQJ‘

since ) e, $i =1 in a neighborhood of z and therefore

> ha)Veile) =@V ( Y @) @) =o0.

2 €EQx % €EQx
By @4), .0), and 2.12),
|Vh(z)| < ¢(card Q,) osc(h, B(,3)) < cLe™ (@)
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which proves (ZI5). By a similar argument using (Z13)) instead of (ZI2]) we obtain
(216). For the proof of the estimate (ZIT), we first observe that

(VR.VR@) = (D (bla) = h@)Vei, > (ha;) = hla)) Ve, )(2)

G EQy q]'EQg,-
= > (hla) = (@) (M) — h(q)) (Vepi, Vips) (),
qi,9; €Qx
and so
V(Vh, Vh)(x) = > (ha) = h(g)) (h(g;) — (@) V(Vei, Vig;) ().
4,95 €EQxz

By (2:4) and (2.0)) it suffices to prove that

V{1, V) (@)] < ¢
for all ¢;,q; € @, which reduces to establishing that
(2.20) IV(Vr,Vrj)(z)] <ec

whenever x € A(g;;1,2) N A(g;;1,2). Let X;,..., X, be an orthonormal frame in
a neighborhood of x. Then

V(Vr, Vry) = Y (Xk(Vri, Vry)) X,
k

Z((kavm, V’I‘j> + <V7“i, VXkV’I“j>)Xk
k

On the other hand,
<ka V?“i, VT]‘> = VQTi(Xk, V?“j),

where V?2r; is the Hessian of 7;. By the Hessian comparison theorem all eigenvalues
of V2r; are nonnegative and bounded from above by bcoth(br;). Hence

(Vx, Vri, Vr;)(z)| < bcoth(br;(z))| Xk (z)||Vr;(x)| = beoth(br;(z)) < ¢

if r;(x) > 1. Similarly, |(Vx, Vr;, Vr)(z)| < cif rj(xz) > 1, and so @20) follows.
This proves I1). The estimate 2I8) can be established similarly since

[V(Vh,Vo)(z)| < 6e"@ > |h(q;) — h(q)||V(Vei, Vr)(z)|
Gi€Qx
+ 2 TOWr@)] Y 1hla) - h@)|[(Ver Vi (@)].
¢ €EQqe

Now |V(Vy;, Vry(z)| < cif r(x) > 1 by a similar argument as above, and thus
(2I8) follows. Finally, 2I9) follows easily from the definition (Z71) and from the
continuity of h|S(o0). O

Lemma 2.3. Suppose that h: S*~1 — R is L-Lipschitz, where S™ ! is the unit
sphere in T,M. Define h: M — R by @) and let v = e~ °". Then there exist
do €]0,a[ such that, for every § €]0,00], h + v is a p-supersolution and h — v is a
p-subsolution in M \ B(o, Rs), where Rs = Rs(a,d,co, L).



3398 ILKKA HOLOPAINEN

Proof. In what follows Ry, ..., Rs are constants depending only on a, d, ¢o, and L.
Since h and v are smooth in M\ {0}, we can prove the claims by direct computation
using the properties of h and v given by Lemma[Z21 Write u = h+ v and note that
Vu=Vh—6e 9"Vr #0if § < a and r > Ry by (ZI5). Hence

-2
(2.21) div(|VuP~?Vu) = [Vu[P?Au + pT|Vu|p’4<V(|Vu|2),Vu>
in M \ B(o, R1). Next we deduce from (211 that

Av = —0e Ay 4% < 3e” T (6~ (n—1)a) < —erde” ™ <0,

with ¢; = (n — 1)a/2 whenever § < (n —1)a/2; cf. []. Given § < a there exists Ry
such that

622" <|Vh+Vu|? = |Vh]?+2(Vh, Vo) + |Vo|?
< (coL)?e™" + 2coLoe™ T 4+ 220"
< 25267267’

as soon as r > Rs. Hence
d;15p—26—5(p—2)r < |Vh + Vo|P=2 < d,or=2e~00-2)r,
where d,, = 2P=21/2 1f § < a A ¢1, we get an estimate
|Vh + VolP72(AR + Av) < d;lép_Qe_‘s(p_Q)r [df,coLe_c”" — 0156_6’“}

for the first term in the right-hand side of (221]). To estimate the second term in

2210) we write
(V(IVul?),Vu) = (V(|Vh[]*),Vu) + (V(IVv|*),Vu) + 2(V(Vh, Vo), Vu)
= A+B+C.

By (ZI5) and (ZI7),
A

(V(IVR[?), Vh + Vo)

IV (Vh, VA)||Vh + V|
(C()L)2€72ar (C()Leiar + 66757")
546—357"

ININCIA

if r > Rgs. Similarly,
B = (V(|Vv]*),Vh+ Vo)

2COL6367257"67117’ + 25467357"
3646—3(57‘

if 7 > Ry. Finally, (ZI8) and (2I5) imply that
C 2<V(<Vh, Vv)),Vh + Vv>
2|V(Vh,Vv)||Vh + V|

2c0L(1 + §)de~ (T (coLe " + 66_5’")
5467357"

<
<

IN AN IA
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whenever r > Rj. Putting these estimates together yields

div(|Vu|p_2Vu) = |vu|p—2Au+]%2|Vu|p_4<V(|Vu|2),Vu>

< d;lép_Qe_é(p_Q)T [dﬁcoLe_‘" — (1 — 6Cp)6e_‘57"],

where

Cp _ 3|p _ 2|2 \9—2\;—\5-—4\
Choosing 69 < min{a, c1,c¢1/(2Cp)}, with an obvious interpretation ¢; /(2C,) = oo
if p = 2, finally gives an estimate

div(|VulP2Vau) < —cpd?~le 2P~ Dr <
if 0 < dp and r > Rj. Similarly, we obtain an estimate
div(|VA = VolP=2(Vh = V) > ca6” e 2P0 > 0
if § <dg and r > Rs. -

Lemma 2.4. Identify S(oo) with the unit sphere S"~* C T,M. Assume that h:
S"=1 — R is L-Lipschitz. Then there exists a p-harmonic function u in M satis-

Jfying
(2.22) lim u(z) = h(§)

r—E
for every £ € S(o0).

Proof. Define h: M — R by [21) and let § €]0, §g] and Rs be given by Lemma 23]
First we note that h is bounded, and therefore we can choose a constant A €]0, 1]
such that

Xosc(h, M) < e 9Fs,

Since A\h | S™7! is also L-Lipschitz, Ah + v is a p-supersolution and A\ — v is
a p-subsolution in M \ B(o, Rs). For i = 1,2,..., let u; € C(M) be the unique
function such that u; is p-harmonic in B(o0,2'Rs) and u; = Ah in M \ B(o,2'Rs).
Now Ah — v < u; £ Ah+v on 8(B(0,2'Rs) \ B(o, Rs)), and hence the same holds
in B(0,2'Rs) \ B(o, Rs) by the comparison principle; see [9, 3.18 and 7.6]. Hence
there exists a subsequence, denoted again by (u;) and a function u € C(M) such
that A~'u; — u locally uniformly in M. Furthermore, the function u is p-harmonic
in M and satisfies (222)) for every & € S(c0). O

Proof of Theorem [2l Fix o € M and identify S(oco) with S"~! C T, M. Let (h;) be
a sequence of Lipschitz functions on S”~! such that h; — h uniformly on S"~!. By
Lemma [Z4] there are p-harmonic functions u; € C'(M) with u; = h; in S(c0). The
sequence (u;) converges uniformly in M to a function u € C(M) which is p-harmonic
in M and u = h in S(00). To prove the uniqueness, suppose that u and w are both
p-harmonic in M, continuous in M, with u = w in S(c0), and u(y) > w(y) for
some y € M. Let e = (u(y) —w(y))/2. Since u and w are continuous in M and they
coincide on the compact set S(c0), there exists R > 0 such that |u(z)—w(z)| < € for
every ¢ € M \ B(o, R). Let D be the y-component of {x € M: u(x) > w(x) + €}.
It follows that D is a relatively compact domain in M and v = w + € on 9D.
Hence u = w + ¢ in D which leads to a contradiction since y € D. This proves the
uniqueness and thus the whole theorem is proved. O
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