PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 11, Pages 3393-3400 S 0002-9939(02)06538-3 Article electronically published on March 29, 2002

ASYMPTOTIC DIRICHLET PROBLEM FOR THE *p*-LAPLACIAN ON CARTAN-HADAMARD MANIFOLDS

ILKKA HOLOPAINEN

(Communicated by Juha M. Heinonen)

ABSTRACT. We show the existence of nonconstant bounded *p*-harmonic functions on Cartan-Hadamard manifolds of pinched negative curvature by solving the asymptotic Dirichlet problem at infinity for the *p*-Laplacian. More precisely, we prove that given a continuous function h on the sphere at infinity there exists a unique *p*-harmonic function u on M with boundary values h.

1. INTRODUCTION

In this paper we show the existence of nonconstant bounded p-harmonic functions on Cartan-Hadamard manifolds M of pinched negative curvature by solving the asymptotic Dirichlet problem at infinity for the p-Laplacian. More precisely, we prove that given a continuous function h on the sphere at infinity there exists a unique p-harmonic function u on M with boundary values h.

Let M be a Cartan-Hadamard manifold, that is, a connected, simply connected, complete Riemannian *n*-manifold, $n \geq 2$, of nonpositive sectional curvature. By the Cartan-Hadamard theorem, the exponential map $\exp_o: T_o M \to M$ is a diffeomorphism for every point $o \in M$. In particular, M is diffeomorphic to \mathbb{R}^n . It is well-known that M can be compactified by adding a *sphere at infinity*, denoted by $S(\infty)$, so that the resulting space $\overline{M} = M \cup S(\infty)$ will be homeomorphic to a closed Euclidean ball. The sphere at infinity is defined as the set of all equivalent classes of geodesic rays in M; two geodesic rays γ_1 and γ_2 are equivalent if there exists a finite constant c such that $d(\gamma_1(t), \gamma_2(t)) \leq c$ for all $t \geq 0$. There is a natural topology, called the *cone topology*, on $\overline{M} = M \cup S(\infty)$ defined as follows. For any point $o \in M$ and $v \in T_o M$, let

$$C_o(v,\alpha) = \{ x \in M \setminus \{o\} \colon \sphericalangle(v, \dot{\gamma}^x(0)) < \alpha \}$$

be the cone about v of angle $\alpha > 0$, where γ^x is the unique geodesic from $o = \gamma^x(0)$ to x and $\triangleleft(v, \dot{\gamma}^x(0))$ is the angle between vectors v and $\dot{\gamma}^x(0)$ in $T_o M$. Then geodesic balls $B(q, r), q \in M, r > 0$, and truncated cones

$$T_o(v, \alpha, s) = C_o(v, \alpha) \setminus B(o, s),$$

with $v \in T_0M$, $\alpha > 0$, s > 0, form a basis for the cone topology. Furthermore, the cone topology is independent of the choice of $o \in M$ and, equipped with this

©2002 American Mathematical Society

Received by the editors June 14, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 58J60; Secondary 53C20, 31C12.

Key words and phrases. Cartan-Hadamard manifold, p-harmonic function.

The author was supported in part by the Academy of Finland, projects 6355 and 44333.

topology, \overline{M} is homeomorphic to the closed unit ball $\overline{B}^n \subset \mathbb{R}^n$ and $S(\infty)$ to the sphere $S^{n-1} = \partial B^n$; see [7]. In particular, given $o \in M$, $S(\infty)$ may be canonically identified with the unit sphere $S^{n-1} \subset T_o M$.

It is natural to ask whether every continuous function on $S(\infty)$ has a unique harmonic extension to M. This so-called asymptotic Dirichlet problem was solved by Choi if the sectional curvature has a negative upper bound $K \leq -a^2 < 0$ and any two points of the sphere at infinity can be separated by convex neighborhoods; see [6]. Such appropriate convex sets were constructed by Anderson [3] for manifolds of pinched sectional curvature $-b^2 \leq K \leq -a^2 < 0$. The Dirichlet problem was independently solved by Sullivan [13] under the same curvature assumptions by using probabilistic arguments. In [4], Anderson and Schoen presented a simple and direct proof. Ancona [1] was able to replace the lower curvature bound by a bounded geometry assumption that each ball up to a fixed radius is bi-Lipschitz equivalent to an open set in \mathbb{R}^n . He also considered a more general class of operators. On the other hand, Ancona [2] showed that the Dirichlet problem cannot be solved, in general, if there are neither curvature lower bounds nor the bounded geometry assumption; see also [5]. In the general case of the p-Laplacian, the corresponding problem has been open so far. Pansu [11] has shown the existence of nonconstant bounded p-harmonic functions with finite p-energy on Cartan-Hadamard manifolds of pinched curvature $-b^2 \le K \le -a^2$ if p > (n-1)b/a.

2. Asymptotic Dirichlet problem

Let $G \subset M$ be an open set and $1 . Recall that a function <math>u \in W^{1,p}_{\text{loc}}(G)$ is a (weak) solution of the equation

(2.1)
$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = 0$$

in G if

$$\int_G \langle |\nabla u|^{p-2} \nabla u, \nabla \varphi \rangle = 0$$

for all $\varphi \in C_0^{\infty}(G)$. Above $W_{\text{loc}}^{1,p}(G)$ is the (local) Sobolev space of all functions $u \in L_{\text{loc}}^p(G)$ whose distributional gradient ∇u belongs to $L_{\text{loc}}^p(G)$. Continuous solutions of (2.1) are called *p*-harmonic. It is well-known that every solution of (2.1) has a continuous representative by the fundamental work of Serrin [12]. We say that a function $u \in W_{\text{loc}}^{1,p}(G)$ is a *p*-supersolution in *G* if

(2.2)
$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) \ge 0$$

weakly in G, that is,

$$\int_G \langle |\nabla u|^{p-2} \nabla u, \nabla \varphi \rangle \geq 0$$

for all nonnegative $\varphi \in C_0^{\infty}(G)$. Furthermore, we say that u is a *p*-subsolution if -u is a *p*-supersolution.

In this section we show that the direct approach to solve the Dirichlet problem taken by Anderson and Schoen in [4] also works in the nonlinear setting of p-harmonic functions.

Theorem 2.1. Let M be a Cartan-Hadamard manifold whose sectional curvature K satisfies

$$(2.3) -b^2 \le K \le -a^2$$

3394

for some constants $b \ge a > 0$. Let h be a continuous function on $S(\infty)$. Then there exists a unique function $u \in C(\overline{M})$ which is p-harmonic in M and u = h on $S(\infty)$.

The proof requires some preliminaries. Let $h \in C(S(\infty))$ be given. Fix a point $o \in M$ and write r(x) = d(x, o). We identify $S(\infty)$ with the unit sphere $S^{n-1} \subset T_o M$. Therefore, we may consider h as a continuous function on S^{n-1} . Assume that $h: S^{n-1} \to \mathbb{R}$ is Lipschitz. We extend h radially to a continuous function \tilde{h} on $M \setminus \{o\}$. More precisely, we define \tilde{h} in polar coordinates about o by

$$h(r,\vartheta) = h(\vartheta)$$

for every r > 0 and $\vartheta \in S^{n-1}$. The Lipschitz continuity of h and the curvature upper bound $K \leq -a^2$ imply that

(2.4)
$$\operatorname{osc}(\tilde{h}, B(x, 3)) := \sup_{B(x, 3)} \tilde{h} - \inf_{B(x, 3)} \tilde{h} \le cLe^{-ar(x)}$$

where L is the Lipschitz constant of h; see [4]. Next we define a smooth function h on M such that

$$\lim_{x\to\xi}h(x)=h(\xi)$$

for every $\xi \in S(\infty)$ and that first and second order derivatives of h are effectively controlled. For this purpose, we fix a maximal 1-separated set $Q = \{q_1, q_2, \dots\} \subset M$, that is,

$$(2.5) d(q_i, q_j) \ge 1$$

whenever $i \neq j$ and no more points can be added to Q without breaking the condition (2.5). We may assume that $o \notin Q$. In particular, the balls $B(q_i, 1/2)$ are mutually disjoint and $M = \bigcup_i B(q_i, 1)$. For each $x \in M$, we write $Q_x = Q \cap B(x, 3)$. The curvature lower bound then implies that

(2.6)
$$\operatorname{card} Q_x \le c_y$$

where c is independent of x; see e.g. [10]. Then we define

(2.7)
$$h(x) = \sum_{q_i \in Q} \tilde{h}(q_i)\varphi_i(x),$$

where $\{\varphi_i\}$ is a partition of unity subordinate to $\{B(q_i, 3)\}$ defined as follows. First choose a C^{∞} function $f: [0, \infty[\to [0, 1] \text{ such that } f|[0, 1] = 1, f|[2, \infty[= 0, \text{ and } f|[0, 1] = 1])$

(2.8)
$$\max\{|f'(t)|, |f''(t)|\} \le c\mathcal{X}_{[1,2]}(t)$$

for some constant c, where $\mathcal{X}_{[1,2]}$ is the characteristic function of the interval [1,2]. For $q_i \in Q$ and $x \in M$, let $\eta_i(x) = f(r_i(x))$, where $r_i(x) = d(x, q_i)$. Finally we set

(2.9)
$$\varphi_i(x) = \frac{\eta_i(x)}{\sum_j \eta_j(x)}$$

To estimate first and second order derivatives of h, we first observe that

(2.10)
$$\nabla \eta_i(x) = f'(r_i(x)) \nabla r_i(x)$$

and

$$\Delta \eta_i(x) = f'(r_i(x))\Delta r_i(x) + \langle \nabla f'(r_i(x)), \nabla r_i(x) \rangle$$

= $f'(r_i(x))\Delta r_i(x) + f''(r_i(x))$

ILKKA HOLOPAINEN

since $\langle \nabla r_i(x), \nabla r_i(x) \rangle = |\nabla r_i(x)|^2 \equiv 1$. Thus (2.8) and (2.10) imply that

 $|\nabla \eta_i(x)| \le c \mathcal{X}_{A(q_i;1,2)}(x),$

where $A(y; s, t) = \overline{B}(y, t) \setminus B(y, s)$. By the Hessian comparison theorem ([8, Theorem A]),

(2.11)
$$(n-1)a \coth(ar_i(x)) \le \Delta r_i(x) \le (n-1)b \coth(br_i(x)).$$

Combining this with (2.8) and (2.11) yields

$$|\Delta \eta_i(x)| \le c \mathcal{X}_{A(q_i;1,2)}(x).$$

Since $\sum_j \eta_j(x) \ge 1$, $0 \le \eta_i(x) \le 1$, and $\operatorname{card} Q \cap B(x,3) \le c$ for every $x \in M$, we get by a simple computation that

(2.12)
$$|\nabla \varphi_i(x)| \le c \mathcal{X}_{B(q_i,4)}(x)$$

and

(2.13)
$$|\Delta\varphi_i(x)| \le c\mathcal{X}_{B(q_i,4)}(x)$$

In the next lemma we collect those properties of h that are crucial in the sequel.

Lemma 2.2. Let $r: M \to \mathbb{R}$ be the distance function r(x) = d(x, o) and let $h: M \to \mathbb{R}$ be the function given by (2.7). Furthermore, let $v: M \setminus \{o\} \to \mathbb{R}$ be defined by

(2.14)
$$v(x) = e^{-\delta r(x)},$$

with $\delta > 0$. Then there exists a constant c_0 independent of h and δ such that

$$(2.15) |\nabla h(x)| \le c_0 L e^{-ar(x)},$$

$$(2.16) \qquad |\Delta h(x)| \le c_0 L e^{-ar(x)},$$

(2.17)
$$|\nabla \langle \nabla h, \nabla h \rangle(x)| \le (c_0 L)^2 e^{-2ar(x)},$$

(2.18)
$$|\nabla \langle \nabla h, \nabla v \rangle(x)| \le c_0 L(1+\delta) \delta e^{-(a+\delta)r(x)}$$

for $r(x) \geq 1$. Moreover,

(2.19)
$$\lim_{x \to \xi} h(x) = h(\xi)$$

for every $\xi \in S(\infty)$.

Proof. Fix $x \in M \setminus B(o, 1)$ and choose $q \in Q$ such that $x \in B(q, 1)$. Then

$$\nabla h(x) = \sum_{q_i \in Q} \tilde{h}(q_i) \nabla \varphi_i(x) = \sum_{q_i \in Q_x} \tilde{h}(q_i) \nabla \varphi_i(x)$$
$$= \sum_{q_i \in Q_x} (\tilde{h}(q_i) - \tilde{h}(q)) \nabla \varphi_i(x)$$

since $\sum_{q_i \in Q_x} \varphi_i = 1$ in a neighborhood of x and therefore

$$\sum_{q_i \in Q_x} \tilde{h}(q) \nabla \varphi_i(x) = \tilde{h}(q) \nabla \left(\sum_{q_i \in Q_x} \varphi_i\right)(x) = 0.$$

By (2.4), (2.6), and (2.12),

$$|\nabla h(x)| \le c (\operatorname{card} Q_x) \operatorname{osc}(\tilde{h}, B(x, 3)) \le c L e^{-ar(x)}$$

3396

which proves (2.15). By a similar argument using (2.13) instead of (2.12) we obtain (2.16). For the proof of the estimate (2.17), we first observe that

$$\langle \nabla h, \nabla h \rangle(x) = \left\langle \sum_{q_i \in Q_x} \left(\tilde{h}(q_i) - \tilde{h}(q) \right) \nabla \varphi_i, \sum_{q_j \in Q_x} \left(\tilde{h}(q_j) - \tilde{h}(q) \right) \nabla \varphi_j \right\rangle(x)$$

$$= \sum_{q_i, q_j \in Q_x} \left(\tilde{h}(q_i) - \tilde{h}(q) \right) \left(\tilde{h}(q_j) - \tilde{h}(q) \right) \langle \nabla \varphi_i, \nabla \varphi_j \rangle(x),$$

and so

$$\nabla \langle \nabla h, \nabla h \rangle(x) = \sum_{q_i, q_j \in Q_x} \big(\tilde{h}(q_i) - \tilde{h}(q) \big) \big(\tilde{h}(q_j) - \tilde{h}(q) \big) \nabla \langle \nabla \varphi_i, \nabla \varphi_j \rangle(x).$$

By (2.4) and (2.6) it suffices to prove that

$$|\nabla \langle \nabla \varphi_i, \nabla \varphi_j \rangle(x)| \le c$$

for all $q_i, q_j \in Q_x$ which reduces to establishing that

$$(2.20) \qquad \qquad |\nabla \langle \nabla r_i, \nabla r_j \rangle(x)| \le c$$

whenever $x \in A(q_i; 1, 2) \cap A(q_j; 1, 2)$. Let X_1, \ldots, X_n be an orthonormal frame in a neighborhood of x. Then

$$\nabla \langle \nabla r_i, \nabla r_j \rangle = \sum_k (X_k \langle \nabla r_i, \nabla r_j \rangle) X_k$$

=
$$\sum_k (\langle \nabla_{X_k} \nabla r_i, \nabla r_j \rangle + \langle \nabla r_i, \nabla_{X_k} \nabla r_j \rangle) X_k.$$

On the other hand,

$$\langle \nabla_{X_k} \nabla r_i, \nabla r_j \rangle = \nabla^2 r_i(X_k, \nabla r_j),$$

where $\nabla^2 r_i$ is the Hessian of r_i . By the Hessian comparison theorem all eigenvalues of $\nabla^2 r_i$ are nonnegative and bounded from above by $b \coth(br_i)$. Hence

$$|\langle \nabla_{X_k} \nabla r_i, \nabla r_j \rangle(x)| \le b \coth(br_i(x)) |X_k(x)| |\nabla r_j(x)| = b \coth(br_i(x)) \le c$$

if $r_i(x) \ge 1$. Similarly, $|\langle \nabla_{X_k} \nabla r_j, \nabla r_i \rangle(x)| \le c$ if $r_j(x) \ge 1$, and so (2.20) follows. This proves (2.17). The estimate (2.18) can be established similarly since

$$\begin{split} |\nabla \langle \nabla h, \nabla v \rangle(x)| &\leq \delta e^{-\delta r(x)} \sum_{q_i \in Q_x} |\tilde{h}(q_i) - \tilde{h}(q)| |\nabla \langle \nabla \varphi_i, \nabla r \rangle(x)| \\ &+ \delta^2 e^{-\delta r(x)} |\nabla r(x)| \sum_{q_i \in Q_x} |\tilde{h}(q_i) - \tilde{h}(q)| |\langle \nabla \varphi_i, \nabla r \rangle(x)|. \end{split}$$

Now $|\nabla \langle \nabla \varphi_i, \nabla r \rangle(x)| \leq c$ if $r(x) \geq 1$ by a similar argument as above, and thus (2.18) follows. Finally, (2.19) follows easily from the definition (2.7) and from the continuity of $h|S(\infty)$.

Lemma 2.3. Suppose that $h: S^{n-1} \to \mathbb{R}$ is L-Lipschitz, where S^{n-1} is the unit sphere in T_oM . Define $h: M \to \mathbb{R}$ by (2.7) and let $v = e^{-\delta r}$. Then there exist $\delta_0 \in]0, a[$ such that, for every $\delta \in]0, \delta_0]$, h + v is a p-supersolution and h - v is a p-subsolution in $M \setminus \overline{B}(o, R_{\delta})$, where $R_{\delta} = R_{\delta}(a, \delta, c_0, L)$. *Proof.* In what follows R_1, \ldots, R_5 are constants depending only on a, δ, c_0 , and L. Since h and v are smooth in $M \setminus \{o\}$, we can prove the claims by direct computation using the properties of h and v given by Lemma 2.2. Write u = h + v and note that $\nabla u = \nabla h - \delta e^{-\delta r} \nabla r \neq 0$ if $\delta < a$ and $r > R_1$ by (2.15). Hence

(2.21)
$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = |\nabla u|^{p-2}\Delta u + \frac{p-2}{2}|\nabla u|^{p-4}\langle \nabla(|\nabla u|^2), \nabla u\rangle$$

in $M \setminus \overline{B}(o, R_1)$. Next we deduce from (2.11) that

$$\Delta v = -\delta e^{-\delta r} \Delta r + \delta^2 e^{-\delta r} \le \delta e^{-\delta r} \left(\delta - (n-1)a\right) \le -c_1 \delta e^{-\delta r} < 0,$$

with $c_1 = (n-1)a/2$ whenever $\delta \leq (n-1)a/2$; cf. [4]. Given $\delta < a$ there exists R_2 such that

$$\begin{split} \delta^2 e^{-2\delta r} &\leq |\nabla h + \nabla v|^2 &= |\nabla h|^2 + 2\langle \nabla h, \nabla v \rangle + |\nabla v|^2 \\ &\leq (c_0 L)^2 e^{-2ar} + 2c_0 L\delta e^{-(a+\delta)r} + \delta^2 e^{-2\delta r} \\ &\leq 2\delta^2 e^{-2\delta r} \end{split}$$

as soon as $r \geq R_2$. Hence

$$d_p^{-1} \delta^{p-2} e^{-\delta(p-2)r} \le |\nabla h + \nabla v|^{p-2} \le d_p \delta^{p-2} e^{-\delta(p-2)r},$$

where $d_p = 2^{|p-2|/2}$. If $\delta < a \wedge c_1$, we get an estimate

$$|\nabla h + \nabla v|^{p-2} (\Delta h + \Delta v) \le d_p^{-1} \delta^{p-2} e^{-\delta(p-2)r} \left[d_p^2 c_0 L e^{-ar} - c_1 \delta e^{-\delta r} \right]$$

for the first term in the right-hand side of (2.21). To estimate the second term in (2.21) we write

$$\langle \nabla (|\nabla u|^2), \nabla u \rangle = \langle \nabla (|\nabla h|^2), \nabla u \rangle + \langle \nabla (|\nabla v|^2), \nabla u \rangle + 2 \langle \nabla \langle \nabla h, \nabla v \rangle, \nabla u \rangle$$

= $A + B + C.$

By (2.15) and (2.17),

$$A = \langle \nabla (|\nabla h|^2), \nabla h + \nabla v \rangle$$

$$\leq |\nabla \langle \nabla h, \nabla h \rangle ||\nabla h + \nabla v|$$

$$\leq (c_0 L)^2 e^{-2ar} (c_0 L e^{-ar} + \delta e^{-\delta r})$$

$$\leq \delta^4 e^{-3\delta r}$$

if $r \geq R_3$. Similarly,

$$B = \langle \nabla (|\nabla v|^2), \nabla h + \nabla v \rangle$$

$$\leq 2c_0 L \delta^3 e^{-2\delta r} e^{-ar} + 2\delta^4 e^{-3\delta r}$$

$$\leq 3\delta^4 e^{-3\delta r}$$

if $r \ge R_4$. Finally, (2.18) and (2.15) imply that

$$C = 2 \langle \nabla (\langle \nabla h, \nabla v \rangle), \nabla h + \nabla v \rangle$$

$$\leq 2 |\nabla \langle \nabla h, \nabla v \rangle ||\nabla h + \nabla v|$$

$$\leq 2c_0 L(1+\delta) \delta e^{-(a+\delta)r} (c_0 L e^{-ar} + \delta e^{-\delta r})$$

$$\leq \delta^4 e^{-3\delta r}$$

whenever $r \geq R_5$. Putting these estimates together yields

$$\operatorname{div}(|\nabla u|^{p-2}\nabla u) = |\nabla u|^{p-2}\Delta u + \frac{p-2}{2}|\nabla u|^{p-4}\langle \nabla(|\nabla u|^2), \nabla u\rangle$$

$$\leq d_p^{-1}\delta^{p-2}e^{-\delta(p-2)r}[d_p^2c_0Le^{-ar} - (c_1 - \delta C_p)\delta e^{-\delta r}],$$

where

$$C_p = 3|p-2|2^{\frac{|p-2|+|p-4|}{2}}$$

Choosing $\delta_0 < \min\{a, c_1, c_1/(2C_p)\}$, with an obvious interpretation $c_1/(2C_p) = \infty$ if p = 2, finally gives an estimate

$$\operatorname{liv}(|\nabla u|^{p-2}\nabla u) \le -c_2\delta^{p-1}e^{-\delta(p-1)r} < 0$$

if $\delta \leq \delta_0$ and $r \geq R_{\delta}$. Similarly, we obtain an estimate

$$\operatorname{div}(|\nabla h - \nabla v|^{p-2}(\nabla h - \nabla v)) \ge c_2 \delta^{p-1} e^{-\delta(p-1)r} > 0$$

if $\delta \leq \delta_0$ and $r \geq R_{\delta}$.

Lemma 2.4. Identify $S(\infty)$ with the unit sphere $S^{n-1} \subset T_o M$. Assume that $h: S^{n-1} \to \mathbb{R}$ is L-Lipschitz. Then there exists a p-harmonic function u in M satisfying

(2.22)
$$\lim_{x \to \xi} u(x) = h(\xi)$$

for every $\xi \in S(\infty)$.

Proof. Define $h: M \to \mathbb{R}$ by (2.7) and let $\delta \in]0, \delta_0]$ and R_{δ} be given by Lemma 2.3. First we note that h is bounded, and therefore we can choose a constant $\lambda \in]0, 1]$ such that

$$\lambda \operatorname{osc}(h, M) \le e^{-\delta R_{\delta}}$$

Since $\lambda h \mid S^{n-1}$ is also *L*-Lipschitz, $\lambda h + v$ is a *p*-supersolution and $\lambda h - v$ is a *p*-subsolution in $M \setminus \overline{B}(o, R_{\delta})$. For i = 1, 2, ..., let $u_i \in C(M)$ be the unique function such that u_i is *p*-harmonic in $B(o, 2^i R_{\delta})$ and $u_i \equiv \lambda h$ in $M \setminus B(o, 2^i R_{\delta})$. Now $\lambda h - v \leq u_i \leq \lambda h + v$ on $\partial (B(o, 2^i R_{\delta}) \setminus \overline{B}(o, R_{\delta}))$, and hence the same holds in $B(o, 2^i R_{\delta}) \setminus \overline{B}(o, R_{\delta})$ by the comparison principle; see [9, 3.18 and 7.6]. Hence there exists a subsequence, denoted again by (u_i) and a function $u \in C(M)$ such that $\lambda^{-1}u_i \to u$ locally uniformly in M. Furthermore, the function u is *p*-harmonic in M and satisfies (2.22) for every $\xi \in S(\infty)$.

Proof of Theorem 2.1. Fix $o \in M$ and identify $S(\infty)$ with $S^{n-1} \subset T_o M$. Let (h_i) be a sequence of Lipschitz functions on S^{n-1} such that $h_i \to h$ uniformly on S^{n-1} . By Lemma 2.4 there are *p*-harmonic functions $u_i \in C(\overline{M})$ with $u_i = h_i$ in $S(\infty)$. The sequence (u_i) converges uniformly in \overline{M} to a function $u \in C(\overline{M})$ which is *p*-harmonic in M and u = h in $S(\infty)$. To prove the uniqueness, suppose that u and w are both *p*-harmonic in M, continuous in \overline{M} , with u = w in $S(\infty)$, and u(y) > w(y) for some $y \in M$. Let $\varepsilon = (u(y) - w(y))/2$. Since u and w are continuous in \overline{M} and they coincide on the compact set $S(\infty)$, there exists R > 0 such that $|u(x) - w(x)| < \varepsilon$ for every $x \in M \setminus B(o, R)$. Let D be the y-component of $\{x \in M : u(x) > w(x) + \varepsilon\}$. It follows that D is a relatively compact domain in M and $u = w + \varepsilon$ on ∂D . Hence $u = w + \varepsilon$ in D which leads to a contradiction since $y \in D$. This proves the uniqueness and thus the whole theorem is proved.

3399

ILKKA HOLOPAINEN

References

- Ancona, A. Negatively curved manifolds, elliptic operators, and the Martin boundary. Ann. of Math. (2) 125, 3 (1987), 495–536. MR 88k:58160
- [2] ANCONA, A. Convexity at infinity and Brownian motion on manifolds with unbounded negative curvature. Rev. Mat. Iberoamericana 10, 1 (1994), 189–220. MR 95a:58132
- [3] ANDERSON, M. T. The Dirichlet problem at infinity for manifolds of negative curvature. J. Differential Geom. 18, 4 (1983), 701–721 (1984). MR 85m:58178
- [4] ANDERSON, M. T., AND SCHOEN, R. Positive harmonic functions on complete manifolds of negative curvature. Ann. of Math. (2) 121, 3 (1985), 429–461. MR 87a:58151
- [5] BORBÉLY, A. The nonsolvability of the Dirichlet problem on negatively curved manifolds. Differential Geom. Appl. 8, 3 (1998), 217–237. MR 99j:53043
- [6] CHOI, H. I. Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds. Trans. Amer. Math. Soc. 281, 2 (1984), 691–716. MR 85b:53040
- [7] EBERLEIN, P., AND O'NEILL, B. Visibility manifolds. Pacific J. Math. 46 (1973), 45–109.
 MR 49:1421
- [8] GREENE, R. E., AND WU, H. Function theory on manifolds which possess a pole. Springer, Berlin, 1979. MR 81a:53002
- HEINONEN, J., KILPELÄINEN, T., AND MARTIO, O. Nonlinear potential theory of degenerate elliptic equations. The Clarendon Press Oxford University Press, New York, 1993. Oxford Science Publications. MR 94e:31003
- [10] KANAI, M. Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds. J. Math. Soc. Japan 37, 3 (1985), 391–413. MR 87d:53082
- [11] PANSU, P. Cohomologie L^p des variétés à courbure négative, cas du degré 1. Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1989), 95–120 (1990). Conference on Partial Differential Equations and Geometry (Torino, 1988). MR 92e:58200
- [12] SERRIN, J. Local behavior of solutions of quasi-linear equations. Acta Math. 111 (1964), 247–302. MR 30:337
- [13] SULLIVAN, D. The Dirichlet problem at infinity for a negatively curved manifold. J. Differential Geom. 18, 4 (1983), 723–732 (1984). MR 85m:58177

Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland

E-mail address: ilkka.holopainen@helsinki.fi