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LOMONOSOV’S INVARIANT SUBSPACE THEOREM
FOR MULTIVALUED LINEAR OPERATORS

PETER SAVELIEV

(Communicated by Joseph A. Ball)

Abstract. The famous Lomonosov’s invariant subspace theorem states that
if a continuous linear operator T on an infinite-dimensional normed space
E “commutes” with a compact operator K 6= 0, i.e., TK = KT, then T
has a non-trivial closed invariant subspace. We generalize this theorem for
multivalued linear operators. We also provide an application to single-valued
linear operators.

1. Introduction

The Invariant Subspace Problem asks whether every linear operator h : Y →
Y on an infinite dimensional topological vector space Y has a nontrivial closed
invariant subspace, i.e., a linear subspace M of Y such that M 6= {0}, M 6= Y
and h(M) ⊂ M (for a survey and references see [6, 1]). In general the answer is
negative and the issue is to investigate the class of operators satisfying this property.
It is known that every compact operator k belongs to this class and so does every
operator h commuting with k:

hk = kh.

The famous Lomonosov’s invariant subspace theorem [5] states the following.

Theorem 1.1. Suppose Y is an infinite dimensional normed space, and h and k
are continuous linear operators, where k is compact, nonzero and commutes with
h. Then h has a nontrivial closed invariant subspace.

In this paper we generalize this result for multivalued linear operators. The
theory of multivalued linear operators (linear relations) is well developed; see Cross
[2]. A multivalued map h : X → Y between vector spaces is called a linear relation
if

h(ax) = ah(x), h(x+ y) = h(x) + h(y),

for all x, y ∈ X and all a 6= 0. We say that h, k : Y → Y commute if

hk ⊂ kh.
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For a linear relation h : Y → Y, a subspace M of Y is called h-weakly-invariant if
for all x ∈M

h(x) ∩M 6= ∅.
The idea of the proof of our main theorem below (Corollary 6.5) can be traced back
to the original Lomonosov’s proof.

Theorem 1.2. Suppose Y is an infinite dimensional normed topological vector
space, and h and k are continuous linear relations with nonempty finite dimen-
sional values, where k is compact and commutes with h and k−1(0) 6= Y. Then
there is a nontrivial closed h-weakly-invariant subspace.

We consider only the right commutativity; the problem for the left commutativ-
ity, kh ⊂ hk, remains open.

Invariant subspace theorems for linear relations provide tools for studying the
Invariant Subspace Problem for single valued linear operators. We consider those
in the last section.

All topological spaces are assumed to be Hausdorff, all maps are multivalued
with nonempty values unless indicated otherwise, and by normed (locally convex)
spaces we understand infinite dimensional normed (locally convex) topological vec-
tor spaces over C or R.

2. Preliminaries

Let X be a topological space. The partition of unity is a collection of continuous
functions γ = {dα : α ∈ A} satisfying∑

α∈A
dα(x) = 1, x ∈ X.

The partition γ is called locally finite if the cover γ′ = {d−1
α ((0, 1]) : α ∈ A} of X

is locally finite, and γ is called subordinate to an open cover ω of X if γ′ refines ω.
Let F : X → Y be a multifunction (a set-valued map F : X → 2Y ), where

X,Y are topological spaces. We call F lower-semicontinuous (l.s.c.) if F−1(B) =
{x ∈ X : F (x) ∩B 6= ∅} is open for any open B. We call F upper-semicontinuous
(u.s.c.) if F−1(B) is closed for any closed B. Equivalently, for any x ∈ X and a
neighborhood V of F (x), there is a neighborhood U of x such that

y ∈ U =⇒ F (y) ⊂ V.
If F is both u.s.c. and l.s.c. we call it continuous (in [2] “continuous” means l.s.c.).
When X and Y are uniform spaces [3, Chapter 8] we say that F is uniformly upper-
semicontinuous (u.u.s.c.) if for any entourage V in Y there is an entourage U in
X, such that for all x, y ∈ X,

x ∈ y + U =⇒ F (x) ⊂ F (y) + V.

We say that x ∈ X is a fixed point of F : X → X if x ∈ F (x). We say that a
single-valued function g : X → Y is a selection of F : X → Y if g(x) ∈ F (x) for all
x ∈ X .

A topological space is called acyclic if its reduced Čech homology groups over
the rationals are trivial. In particular, convex subsets of locally convex spaces
are acyclic. A multivalued map F : X → Y is called admissible (in the sense of
Gorniewicz [4]) if it is closed valued u.s.c. and there exist a topological space Z
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and two single-valued continuous maps p : Z → X, q : Z → Y such that for any
x ∈ X, (i) p−1(x) is acyclic, and (ii) q(p−1(x)) ⊂ F (x).

Proposition 2.1 ([4, Theorem IV.40.5, p. 200]). The composition of two admis-
sible maps is admissible.

In the proof of his theorem Lomonosov used the Schauder fixed point theorem.
Here we need its analogue for multivalued maps. We use a result that follows
from the Lefschetz fixed point theory for admissible maps given in [4] (for further
developments see [7]), although an appropriate version of the Kakutani fixed point
theorem for compositions of convex valued maps would suffice.

Theorem 2.2 ([4, Theorem IV.41.12, p. 207]). If X is an acycic ANR, then X

has the fixed point property within the class of compact (i.e., with f(X) compact)
admissible maps, in particular, for u.s.c. maps with compact acyclic values.

3. Approximation by convex combinations

In this section we consider the approximations of multivalued maps by convex
combinations in the spirit of Simonič [8, 9].

Let X be a topological space, Y a vector space and H a collection of multivalued
maps h : X → Y. Given a partition of unity γ = {dα : α ∈ A} in X, for any
collection {hα : α ∈ A} ⊂ H, we can define a new map h : X → Y by

h(x) =
∑
α∈A

dα(x)hα(x).(3.1)

The set of all such h we denote by Convγ(H).
Let ∆n denote the standard n-simplex. For any collection h0, ..., hn and any

(t0, ..., tn) ∈ ∆n, we define a new map h : X → Y by

h(x) =
n∑
i=0

tihi(x).

The set of all such h we denote by Conv(H).

Remark 3.1. H ⊂ Conv(H) ⊂ Convγ(H).

The following theorem generalizes Lemma 3.1 of Simonič [8].

Theorem 3.2 (Approximation). Let X be a paracompact uniform space and Y a
locally convex space. Suppose s : X → Y is a u.u.s.c. map with convex values and
H is a collection of u.s.c. maps h : X → Y. Suppose V is a convex neighborhood of
0 in Y and for any x ∈ X there is hx ∈ H such that

hx(x) ⊂ s(x) + V.

Then there exist a locally finite partition of unity γ on X and a map f ∈ Convγ(H)
such that for all x ∈ X,

f(x) ⊂ s(x) + 3V.

Proof. From the upper semicontinuity it follows that for each x ∈ X there is a Wx

such that for any y ∈ Wx,

hx(y) ⊂ hx(x) + V and s(x) ⊂ s(y) + V.
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Now applying these inclusions and the assumption of the theorem, we obtain the
following: for any y ∈Wx,

hx(y) ⊂ hx(x) + V ⊂ s(x) + 2V ⊂ s(y) + 3V.

Consider the open cover of X given by ω = {Wx : x ∈ X}. From Michael’s
Lemma [3, Theorem 5.1.9, p. 301] it follows that there exists a locally finite partition
of unity γ = {dα : α ∈ A} subordinate to ω. Then we have a locally finite open
cover of X

ω′ = {Uα = d−1
α ((0, 1]) : α ∈ A}

that refines ω, i.e., for each α ∈ A there is x(α) ∈ X such that Uα ⊂Wx(α).
Fix y ∈ X. Suppose α ∈ A and dα(y) > 0. Then y ∈ Uα ⊂Wx(α). Hence

hx(α)(y) ⊂ s(y) + 3V.

As s(y) and V are convex, so is the set s(y) + 3V . Therefore a convex combination
of hx(α)(y), α ∈ A, is a well defined subset of s(y) + 3V . Then the map f : X → Y
given by

f(y) =
∑
α∈A

dα(y)hα(y)

is well defined and belongs to Convγ(H).

Simonič calls dα Lomonosov functions, as the idea of this construction goes
back to Lomonosov’s proof in [5]. Observe also that the above theorem implies
the following well-known fact: any u.s.c. map with convex images from a compact
metric space to a locally convex space can be approximated by continuous single-
valued maps.

4. Fixed points of convex combinations

In this section we obtain a preliminary fixed point result.

Proposition 4.1. Let X be a topological space, Y a vector space, H a collection
of maps h : X → Y, r : Y → X a map, γ a locally finite partition of unity on X,
f ∈ Convγ(H), and suppose fr : Y → Y has a fixed point y0. Then there exists
g ∈ Conv(H) such that y0 is a fixed point of gr.

Proof. We know that y0 ∈ fr(y0). Let Z = Graph(r) ⊂ Y ×X, p : Z → Y, q : Z →
X be the projections. Then there is z0 ∈ Z such that y0 = p(z0) ∈ fq(z0). Assume
that γ = {dα : α ∈ A} and suppose

f(x) =
∑
α∈A

dα(x)hα(x),

where hα ∈ H. Let x0 = q(z0). Suppose {α ∈ A : dα(x0) > 0} = {α0, ..., αn}, n ≥ 0.
For i = 0, ..., n, let

ti = dαi(x0), hi = hαi .

Then y0 ∈ fq(z0) = f(x0) =
∑n

i=0 tihi(x0). We have an element of Conv(H) :

g(x) =
n∑
i=0

tihi(x), x ∈ X.
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Consider

gq(z0) =
n∑
i=0

tihi(q(z0))

=
n∑
i=0

dαi(x0)hi(q(z0))

=
∑
α∈A

dαi(q(z0))hi(q(z0))

= fq(z0)

3 p(z0) = y0.

Thus y0 is a fixed point of gr.

If Y is a topological vector space, we denote by Fc(X,Y ) the set of all u.s.c.
maps F : X → Y with compact convex values. Then all elements of Fc(X,Y ) are
admissible provided Y is locally convex.

Lemma 4.2. Convγ(Fc(X,Y )) ⊂ Fc(X,Y ).

Theorem 4.3 (Fixed points). Let Y be a locally convex space, A ⊂ Y closed con-
vex, U a closed neighborhood of A, and X a paracompact uniform space. Let
r ∈ Fc(U,X), r(U) compact, H ⊂ Fc(X,Y ), and

H(x) ∩A 6= ∅, for all x ∈ X.
Then for any neighborhood W of A, Conv(H)r has a fixed point in W.

Proof. Assume that there is a convex neighborhood V of 0 such that U = A+3V ⊂
W and for each x ∈ X, there is hx ∈ H such that hx(x) ∩ (A + 1/2V ) 6= ∅. Now,
for each h ∈ H, let

h′(x) = h(x) ∩ (A+ 1/2V )

and let H ′ = {h′ : h ∈ H}. Then the set h′(x) is nonempty by assumption, convex
since Y is locally convex, compact as the intersection of a compact set and a closed
set. Also h′ is u.s.c. by [3, 1.7.17(c)]. Thus h′ ∈ Fc(X,Y ). Now we apply Theorem
3.2 with s(x) = A for all x (by definition h′x(x) ⊂ s(x) + V ). Therefore there exists
f ∈ Convγ(H ′) such that for all x, f(x) ⊂ s(x) + 3V = U . We know that r, f are
admissible. Therefore by Proposition 2.1, so is ϕ = fr : U → U . Now r is compact
and U is an ANR as a closed neighborhood in a locally convex space. Hence by
Theorem 2.2, ϕ has a fixed point y0 ∈ U ⊂W. Therefore by Proposition 4.1, there
exists g ∈ Conv(H) such that y0 is a fixed point of gr.

5. Properties of linear relations

Throughout the rest of the paper we assume that X and Y are normed spaces.

Definition 5.1 ([2, II.1.3, p. 25]). A multivalued map h : X → Y is called a linear
relation if it preserves nonzero linear combinations, i.e., for all x, y ∈ X and all
a, b ∈ R\{0}, we have

h(ax+ by) = ah(x) + bh(y).

Then h(0) is a linear subspace. The set of all linear relations will be denoted by
LR(X,Y ) and LR(X,X) = LR(X).
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Lemma 5.2 ([2, Proposition I.2.8, p. 7]). If T ∈ LR(X,Y ), x ∈ X, then

T (x) = y + T (0), for any y ∈ T (x).

We will concentrate on the following classes of linear relations:

LR0(X,Y ) = {h ∈ LR(X,Y ) : h is continuous, dimh(0) <∞},
LR0(Y ) = LR0(Y, Y ).

Of course, all bounded linear operators belong to LR0(X,Y ).
For a linear relation T ∈ LR0(X,Y ), let QT denote the natural quotient map

with domain X and null space T (0) [2, p. 25].

Lemma 5.3. If S ∈ LR0(X,Y ), T ∈ LR0(Y, Z), then TS ∈ LR0(X,Z).

Proof. QTT : S(0) → Z/T (0) is a linear operator, so dimQTTS(0) < ∞. Now
dimT (0) <∞ implies dimTS(0) <∞.

Definition 5.4 ([2]). A linear relation T ∈ LR0(X,Y ) is called bounded (compact)
if the single valued operator QTT is bounded (compact), i.e., it maps a bounded
set into a bounded (compact) set.

By Proposition II.3.2(a) in [2, p. 33], every element of LR0(X,Y ) is bounded.

Lemma 5.5. T ∈ LR0(X,Y ) is compact if and only if for any bounded B ⊂ X,
there is a compact set C ⊂ Y such that T (B) ⊂ C + T (0). Moreover C can be
chosen such that T (x) ∩ C 6= ∅ for all x ∈ B.

Proof. The “if” part is obvious. Next, if QTT : X → Z = Y/T (0) is a compact
linear operator, then for any bounded B ⊂ X, there is a compact D ⊂ Z such
that QTT (B) ⊂ D. Now since T (0) is a finite dimensional subspace of a normed
space, it is topologically complemented, i.e., Y is homeomorphic to Z⊕T (0). Then
C = D ⊕ {0} is compact in Y and T (B) ⊂ C + T (0).

Theorem 5.6. Suppose h ∈ LR0(Y, Z) and k ∈ LR0(X,Y ) is compact. Then
hk ∈ LR0(X,Z) is compact.

Proof. Let A be a bounded subset of X. Then by Lemma 5.5, k(A) ⊂ C + k(0),
where C is compact. Therefore hk(A) ⊂ h(C)+hk(0). It is easy to show that there
is a bounded set D in Z such that h(C) = D + h(0). Let h′(x) = h(x) ∩D. Then
h′(x) is compact as h(x) is finite dimensional. In particular, h′(x) is closed, so by
[3, 1.7.17(c)], h′ = h ∩D is u.s.c. Therefore h(C) ∩D = h′(C) is compact in Z by
[4, Proposition II.14.9, p. 69]. But D ⊂ h′(C), hence D is precompact. Thus

hk(A) ⊂ h(C) + hk(0) = D + h(0) + hk(0) = D + hk(0),

where D is precompact, so hk is compact by Lemma 5.5.

Therefore compact relations constitute a left ideal in LR0(Y ).
We call G ⊂ LR(Y ) a semialgebra if it is closed under nonzero linear combina-

tions and compositions. Lemma 5.3 implies that LR0(Y ) is a semialgebra.
We define the commutant of h as

Comm(h) = {f ∈ LR0(Y ) : f commutes with h}.
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Lemma 5.7. If h ∈ LR(Y ), then Comm(h) is a semialgebra.

Proof. First, Comm(h) is closed under linear combinations. Indeed, for f, f ′ ∈
Comm(h) and a, b ∈ R\{0}, we have

h(af + bf ′) = ahf + bhf ′ ⊂ afh+ bf ′h = (af + bf ′)h.

Second, if f, g both commute with h, then u = gf commutes with h. Indeed

hu = hgf ⊂ ghf ⊂ gfh = uh.

6. Invariant subspaces of linear relations

Lemma 6.1. Suppose G ⊂ LR(Y ) is a semialgebra. Then for any u ∈ Y , G(u) ∪
{0} is a linear subspace of Y .

Proof. Let x, y ∈ G(u). Then x ∈ f(u), y ∈ f ′(u) for some f, f ′ ∈ G. Suppose
a, b ∈ R\{0} and let g = af + bf ′ ∈ G. Then

ax+ by ∈ af(u) + bf ′(u) = g(u) ⊂ G(u).

Lemma 6.2. Suppose R ∈ LR(Y ). Then

Fix(R) = {x ∈ Y : x ∈ R(x)}

is a linear subspace of Y.

Proof. Let a, b ∈ R\{0} and x, y ∈ Fix(R). Then ax + by ∈ aR(x) + bR(y) =
R(ax+ by), so ax+ by ∈ Fix(R).

Lemma 6.3. Suppose h ∈ LR(Y ), R ∈ Comm(h) and h(0) ⊂ R(0). Then M =
Fix(R) is h-weakly-invariant.

Proof. Let x ∈ M = Fix(R). Then A = h(x) ∈ hR(x) ⊂ Rh(x) = R(A). In
particular, there is some z ∈ A such that R(z)∩A 6= ∅. Suppose y ∈ R(z)∩A. Now
we use Lemma 5.2 as follows:

z ∈ A = h(x) = y + h(0) ⊂ y +R(0) = R(z).

Hence z ∈ Fix(R) = M , so h(x) ∩M 6= ∅.

The main results of this paper are given below.

Theorem 6.4 (Weakly invariant subspaces). Suppose Y is a normed space, h ∈
LR(Y ), G ⊂ Comm(h) is a semialgebra, k ∈ Comm(h) is compact and k−1(0) 6= Y.
Suppose that for all g ∈ G, h(0) ⊂ gk(0). Then there exists a nontrivial closed linear
subspace M ⊂ Y such that

either (1) M is G-invariant,
or (2) M is finite-dimensional and h-weakly-invariant.

Proof. For each u ∈ Y, G(u) is G-invariant. Indeed, suppose x ∈ G(u) and g ∈ G.
Then x ∈ f(u) for some f ∈ G. Therefore gf ∈ G and g(x) ⊂ gf(u) ⊂ G(u).
Suppose now that Q = G(u0) is not dense in Y for some u0 ∈ Y \{0}. Then
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we can assume that Q 6= {0}, because otherwise span{u0} is G-invariant. Then
M = Q = Q ∪ {0} is the desired subspace. First, L = Q∪{0} is a linear subspace of
Y by Lemma 6.1. Second, since every f ∈ G is u.s.c., f(Q) ⊂ Q implies f(Q) ⊂ Q.
Hence M is G-invariant.

Assume now that G(y) is dense in Y for each y ∈ Y \{0}. Since k is u.s.c., k−1(0)
is closed. Therefore we can choose a closed convex neighborhood U ⊂ Y of some
b ∈ Y \{0} such that 0 /∈ U and U ⊂ Y \k−1(0). In addition we have

b ∈ G(y), for all y ∈ Y \{0}.(*)

Now we apply Theorem 4.3 with X = Y \{0}, A = {b} as follows. We let H =
{g ∩ U : g ∈ G}. Then H ⊂ Fc(Y ). We can also rewrite (*) as

H(x) ∩A 6= ∅, for all x ∈ Y \{0}.

By Lemma 5.5, there is a compact C ⊂ Y such that k(x) ∩ C 6= ∅. Define r ∈
Fc(Y, Y ) by r(x) = k(x) ∩ C. Since k is compact, r(U) is precompact. Therefore
by Theorem 4.3, for any neighborhood W of b, Conv(H)r has a fixed point in W.
Therefore there is g ∈ Conv(G) ⊂ G such that R = gk has a fixed point y0 6= 0.
Thus

M = Fix(R) 6= {0}.

Now R ∈ Comm(h) (Lemma 5.7), M is a linear subspace of Y (Lemma 6.2), and
M is h-invariant (Lemma 6.3).

Suppose now that B ⊂M is a bounded neighborhood of 0. Since R is compact
by Theorem 5.6, we have B ⊂ R(B) ⊂ C +R(0), where C is compact and R(0) is
finite dimensional. Therefore M is finite dimensional.

Corollary 6.5. Suppose Y is a normed space, h ∈ LR0(Y ), k ∈ Comm(h) is
compact, and k−1(0) 6= Y. Then there exists a nontrivial closed h-weakly-invariant
subspace M ⊂ Y .

Proof. Let

G = {P (h) : P is a polynomial without constant term}.

Then G ⊂ Comm(h) and G is a semialgebra. To check the rest of the conditions
of the theorem, observe that since 0 ∈ k(0), we have hn(0) ⊂ hnk(0) for all n ≥ 0.
Therefore h(0) ⊂ hn(0) ⊂ hnk(0) for all n ≥ 1, so that h(0) ⊂ P (h)(0) for any
polynomial P without constant term. Thus for all g ∈ G, h(0) ⊂ gk(0). Therefore
by the theorem there is a nontrivial closed linear subspace M ⊂ Y which is either
G-invariant or h-weakly-invariant. Since h ∈ G, M is h-weakly-invariant.

Remark 6.6. If h ∈ LR(Y ), then h(0) is a subspace of Y. However, it is not weakly
invariant as the following simple example shows. Take Y = R2, f : Y → Y the
rotation through π/2, N the y-axis, and h(x) = f(x) +N.

Remark 6.7. When both h and k are single valued, the corollary reduces to Lomo-
nosov’s Theorem 1.1. The corollary is vacuous when h is single-valued while k is
not, because hk ⊂ kh implies that k(0) is a finite-dimensional h-invariant subspace.
Yet in the next section we will obtain an application of Theorem 6.4 to linear
operators.
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7. Invariant subspaces of linear operators

In this section we generalize a well known corollary to Lomonosov’s Theorem
1.1.

Lemma 7.1. Suppose h, k ∈ LR(Y ). Then

G = {g ∈ Comm(h) : h(0) ⊂ gk(0)}
is a semialgebra.

Proof. By Lemma 5.7 Comm(h) is a semialgebra, so we need only to consider the
following: (1) Suppose h(0) ⊂ fk(0) and h(0) ⊂ gk(0), a, b 6= 0. Then h(0) ⊂
afk(0)+bgk(0) = (af +bg)k(0) because h(0) is a linear subspace. Thus G is closed
under nonzero linear combinations. (2) Suppose h(0) ⊂ fk(0), g commutes with h.
Now since 0 ∈ g(0), we have

h(0) ⊂ hg(0) ⊂ gh(0) ⊂ gfk(0).

Hence G is closed under compositions.

Suppose Y is a space over C. Given h ∈ LR(Y ), its eigenvalue λ ∈ C and
eigenvector u 6= 0 satisfy

λu ∈ h(u)

(or (λId − h)−1(0) 6= {0} [2, p. 223]). The eigenspace of h corresponding to λ is
given by

Ehλ = {u ∈ Y : λu ∈ h(u)}.
Lemma 7.2. If h ∈ LR(Y ) is u.s.c., then Ehλ is a closed linear subspace.

Proof. The set Ehλ = (λId − h)−1(0) is closed because h is u.s.c.

The next lemma follows from [2, Theorem V.3.3, p. 226].

Lemma 7.3. Let E be a finite dimensional space over C. Then any h ∈ LR0(E)
has an eigenvector.

We say that the maps h,k : Y → Y strictly commute if

kh = hk.

Theorem 7.4 (Invariant subspaces). Let Y be a normed space over C, h ∈ LR(Y )
is u.s.c., for any λ ∈ C, λId is not a selection of h, k ∈ Comm(h) compact,
and k−1(0) 6= Y. If a linear operator f : Y → Y strictly commutes with h and
h(0) ⊂ fk(0), then there is a nontrivial closed f -invariant subspace.

Proof. By Lemma 7.1

G = {g ∈ Comm(h) : h(0) ⊂ gk(0)}
is a semialgebra. Therefore by Theorem 6.4 there is a nontrivial closed subspace M
that is either (1) G-invariant or (2) finite-dimensional and h-weakly-invariant. In
the case of (1) M is f -invariant because f ∈ G. Consider (2). If h′ = h∩M : M →
M , then h′ is a linear relation with nonempty values. Then by Lemma 7.3, h′ has
an eigenvector corresponding to some λ ∈ C. Therefore the eigenspace N = Ehλ is
nonzero, closed, and not equal to the whole Y. Then for each x ∈ N, we have

λf(x) = f(λx) ∈ fh(x) = hf(x).

Hence f(x) ∈ N.
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The following result involves only single valued operators.

Corollary 7.5. Let Y be a normed space over C, N a finite dimensional subspace
of Y , and f, h, k : Y → Y bounded linear operators. Suppose for any λ ∈ C,
h 6= λId, k is nonzero compact. Suppose also that

(1) fh = hf,
(2) hk − kh ∈ N,
(3) h(N) ⊂ N.

Then there is a nontrivial closed f -invariant subspace.

Proof. Apply the above theorem to the linear relation k +N.

The author would like to thank the referee for helpful comments.
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