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THE NUMERICAL RADIUS AND BOUNDS
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(Communicated by David Sharp)

Abstract. Let p(t) be a monic polynomial. We obtain two bounds for zeros
of p(t) via the Perron root and the numerical radius of the companion matrix
of the polynomial.

Consider the monic polynomial

p(t) = tn + an−1t
n−1 + an−2t

n−2 + · · ·+ a1t+ a0.(1)

Fujii and Kubo [2] derived from the Buzano inequality a bound for the zeros of
p(z) = 0:

|z| ≤ cos
π

n+ 1
+

1
2

(
|an−1|+ (|an−1|2 + |an−2|2 + · · ·+ |a0|2)1/2

)
.(2)

Let A = (aij) ∈ Mn be a nonnegative matrix. The famous Perron-Frobenius
theorem shows that A has a nonnegative real eigenvalue ρ(A) such that ρ(A) ≥ |λ|,
for every eigenvalue λ of A. The eigenvalue ρ(A) is called the Perron root of A.
By the directed graph of A, we mean as usual the directed graph with n vertices
1, 2, . . . , n such that there is a directed arc from i to j if aij > 0. Let si =

∑n
j=1 aij .

The mean weight of a directed path σ of the sequential directed arcs i1, i2, . . . , ik+1

in the directed graph is the geometric mean wσ = (si1si2 · · · sik)1/k. Alpin [1]
obtained that

ρ(A) ≤ max
σ

wσ,

where σ runs over all simple contours in the directed graph of A.

Remark 1. It is known [3, 8.1.18] that the spectral radius of any matrix A is less
than or equal to the spectral radius (=Perron root) of the nonnegative matrix,
whose (i, j)-element is the absolute value of the (i, j)-element of A.
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Relating to the polynomial (1), we consider the companion matrix of the poly-
nomial which is the n-by-n matrix

A =



0 · · · · · · · · · −a0

1 0 · · · · · ·
...

0 1
. . . · · ·

...
... · · · . . . . . . −an−2

0 · · · · · · 1 −an−1


.(3)

It is known that the characteristic polynomial of the companion matrix A is p(t).
Applying Alpin’s result and Remark 1 to the companion matrix (3), the following
bound is immediate.

Theorem 1. Let p(t) be the polynomial defined by (1) and p(z) = 0. Then

|z| ≤ max
1≤k≤n

(
(1 + |an−1|)(1 + |an−2|) · · · (1 + |an−k|)

)1/k

.

Remark 2. Let us denote FK(p) as the bound at the right-hand side of (2), A(p)
the bound in Theorem 1, and C(p) the maximum absolute value of the coefficients of
p. Suppose we can find a sequence of polynomials pn(t) such that C(pn) approaches
infinity as n→∞, and A(pn) is bounded for all n, for example by considering the
polynomials

pn(t) = tn + t+ n, n = 2, 3, . . . .

Then FK(pn) goes to infinity, and A(pn) = 21//2(1 + n)1/n converges to 1, A(pn)
is an “infinity sharper” than FK(pn). Furthermore, we compare the bounds with
the well known estimate (cf. [6, p. 65])

|z| ≤ 2 max{|an−k|1/k : 1 ≤ k ≤ n}.

For the polynomial pn, this estimate 2n1/n is closely comparable to A(pn).

Let A ∈Mn(C). The numerical range of A is the set of complex numbers

W (A) = {x∗Ax : x ∈ Cn, |x| = 1}.

By the well known Toeplitz-Hausdorff theorem, the numerical range W (A) is a
convex subset of C containing the eigenvalues of A. The numerical radius w(A) of
A is the largest modulus of any point in W (A). (For references on the properties
of the numerical range, see, for instance [4, Chapter 1].) From the numerical range
standpoint, we investigate the numerical radius of the companion matrix of p(t).
The result is applicable to give a bound for the zeros of p(t).

Let A = (aij) ∈Mn, and let

Ri(A) =
n∑

j=1,j 6=i
|aij | and gi(A) = (Ri(A) +Ri(A∗))/2, 1 ≤ i ≤ n.

The Geršgorin disc thorem (cf. [3, 6.1.1]) shows that the spectrum σ(A) of A is
contained in Geršgorin discs:

σ(A) ⊂
n⋃
i=1

{z : |z − aii| ≤ Ri(A)}.(4)
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Brauer [3, 6.4.7] improved the Geršgorin theorem (4), and obtaining a smaller
inclusion region, the so-called ovals of Cassini:

σ(A) ⊂
n⋃

i,j=1,i6=j
{z : |z − aii| |z − ajj | ≤ Ri(A)Rj(A)}.(5)

Johnson [5] used Geršgorin disc theorem (4) and obtained a Geršgorin inclusion
region for the numerical range of a matrix that

W (A) ⊂ conv
{ n⋃
i=1

{z : |z − aii| ≤ gi(A)}
}
,

where “conv” stands for the convex hull of a set. It seems that we may use the
inclusion (5) and make the following guess that

W (A) ⊂ conv
{ n⋃
i,j=1,i6=j

{z : |z − aii| |z − ajj | ≤ gi(A)gj(A)}
}
.(6)

However, the matrix A = ( 1 1
0 0 ) gives a counterexample: the inclusion (6) is false.

In the following, we are able to extend Johnson’s result [5] to a containment region
which is the convex hull of the same type of Cassini ovals.

Theorem 2. Let A = (aij) ∈Mn. Then

W (A) ⊂ G(A),

where

G(A) = conv
{ n⋃
i,j=1,i6=j

{z : |z − aii| |z − ajj | ≤
(
g2
i (A)g2

j (A) + |aii − ajj |2
)1/2}}.

Proof. Since W (βA) = βW (A) and G(βA) = βG(A) for every complex number β,
we may assume without loss of generality that the Frobenius norm

‖A‖2 =
( n∑
i,j=1

|aij |2
)1/2

= 1.

We claim first that if G(A) is contained in the right half plane, then W (A) is also
contained in the right half plane. Observe that G(A) enjoys two numerical range
properties:

G(A+ λI) = G(A) + λ and G(eiθA) = eiθG(A).

Consider a typical curve in the region G(A):

|z − aii| |z − ajj | = αij ,(7)

where αij =
(
g2
i (A)g2

j (A) + |aii − ajj |2
)1/2

. Assume aii = p1 +
√
−1p2 and ajj =

q1 +
√
−1q2, where p1, p2, q1, q2 ∈ R. The equation of rectangular coordinates of

(7) becomes (
(x− p1)2 + (y − p2)2

)(
(x− q1)2 + (y − q2)2

)
= α2

ij .(8)

Suppose p1 ≤ q1. The case q1 ≤ p1 can be treated in a similar way. It is obvious
that aii belongs to the region bounded by the curve (8) which is contained in G(A).
By the assumption that G(A) lies in the right half plane, we obtain that p1 > 0, and
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the intersections of the curve (8) with the the horizontal line y = p2 are contained
in the right half plane. Therefore, the roots of the function

f(x) = (x− p1)2
(

(x− q1)2 + (p2 − q2)2
)
− α2

ij

are positive. We compute that

f ′(x) = 2(x− p1)
(

(x − q1)2 + (p2 − q2)2
)

+ 2(x− q1)(x− p1)2.

Then f ′(x) ≤ 0 for x ≤ p1, and thus f is decreasing on (−∞, 0). Now since f has no
negative roots and f(x) takes positive values for negative sufficient large numbers
x, it follows that f(0) > 0. The condition f(0) > 0 is equivalent to the inequality

p2
1q

2
1 + p2

1(p2 − q2)2 > g2
i (A)g2

j (A) + |aii − ajj |2.(9)

From (9) and the assumption that ‖A‖2 = 1, we have

p2
1q

2
1 > g2

i (A)g2
j (A) + (p1 − q1)2 + (1− p2

1)(p2 − q2)2 ≥ g2
i (A)g2

j (A),

and thus

p1q1 > gi(A)gj(A).(10)

The condition (10) gives a criterion for no nonnegative solutions of the following
equation:

|x− p1| |x− q1| = gi(A)gj(A).

Hence the region

{z : |z − p1| |z − q1| ≤ gi(A)gj(A)}(11)

is contained in the right half plane.
Let AH and AK be the Hermitian parts of A such that A = AH + iAK . Then

W (A) ⊂W (AH) + iW (AK).

By Brauer’s result (5),

σ(AH) ⊂
n⋃

i,j=1,i6=j
{z : |z −Re aii| |z −Re ajj | ≤ gi(A)gj(A)}.(12)

By (11) and (12), σ(AH) is contained in the right half plane. Since ReW (A) =
W (AH) is the convex hull of the σ(AH), it follows that W (A) is contained in the
right half plane, and this proves the claim.

Now suppose α ∈ W (A). Then 0 ∈ W (A − αI). If 0 /∈ G(A − αI), then
there would exist θ such that G(eiθ(A − αI)) = eiθG(A − αI) is contained in
the right half plane. By the claim, W (eiθ(A − αI)) is contained in the right half
plane. But then 0 /∈ eiθW (A − αI) = W (eiθ(A − αI)), a contradiction. Thus
0 ∈ G(A− αI) = G(A) − α, and therefore α ∈ G(A).

As a consequence of Theorem 2, we locate a bound for the zeros of p(t) defined
in (1).

Theorem 3. Let p(t) be the polynomial (1) and p(z) = 0, and A be the matrix
defined by (3). Let α = max1≤i<n gi(A). Then

|z| ≤ |an−1|/2 +
(
|an−1|2/4 + (α2g2

n(A) + |an−1|2)1/2
)1/2

.
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Proof. The possible Cassini ovals in Theorem 2 are

|z| ≤ (gi(A)gj(A))1/2, 1 ≤ i 6= j < n,(13)

and

|z| |z + an−1| ≤ (g2
i (A)g2

n(A) + |a2
n−1|)1/2, 1 ≤ i < n.(14)

From (13), we have |z| ≤ α. From (14), we have

|z| ≤ |an−1|/2 +
(
|an−1|2/4 + (α2g2

n(A) + |an−1|2)1/2
)1/2

.

The inclusion follows from the facts that

α ≤ |an−1|/2 +
(
|an−1|2/4 + (α2g2

n(A) + |an−1|2)1/2
)1/2

and σ(A) ⊂W (A).

The quantities gi(A) appearing in Theorem 3 are easy to evaluate explicitly in
terms of the coefficients of p(z):

g1(A) = (1 + |a0|)/2, g2(A) = (2 + |a1|)/2, . . . , gn−1(A) = (2 + |an−2|)/2

and

gn(A) = (1 + S)/2 where S =
n−2∑
k=0

|ak|.

Thus α = maxi gi(A) is either (1+S)/2 or β = max1≤k≤n−2(2+ |ak|)/2, depending
on which is greater. Theorem 3 may then be stated as follows: any root z of p must
satisfy

|z| ≤ |an−1|/2 +
(
|an−1|2/4 + (α2((1 + S)/2)2 + |an−1|2)1/2

)1/2

,(15)

where α = max{β, (1 + S)/2}.
On the other hand, we may more directly estimate the roots based on Brauer’s

containment of σ(A). Brauer’s theorem (5) applied to the companion matrix A
tells us that any root z of p satisfies one of the inequalities

|z|2 ≤ Ri(A)Rj(A) (i < j < n)

or

|z(z + an−1)| ≤ Rn(A)Rj(A) (j < n).

Now R1(A) = |ao|, Rj(A) = 1 + |aj−1|, 1 < j < n, and Rn(A) = 1. Let M and m
denote the largest and second largest numbers among

|a0|, 1 + |a1|, . . . , 1 + |an−2|.

Clearly a root z must satisfy either |z| ≤ (Mm)1/2 or |z|(|z| − |an−1|) ≤M , i.e.,

|z| ≤ max{(Mm)1/2, (|an−1|+ (|an−1|2 + 4M)1/2)/2}.(16)

Applying Brauer’s theorem to the adjoint of the comapnion matrix A gives us
corresponding inequality

|z| ≤ max{1, (|an−1|+ (|an−1|2 + 4S)1/2)/2}.(17)
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In fact, it turns out that (16) and (17), taken together, are stronger than the
inequality (15) of Theorem 3, unless S is quite small. The right-hand side of (15)
is no less than

Q = |an−1|/2 +
(
|an−1|2/4 + (((1 + S)/2)4 + |an−1|2)1/2

)1/2

and

(|an−1|+ (|an−1|2 + 4S)1/2)/2 ≤ Q.
Thus (15) cannot be stronger than (17) unless the right-hand side of (15) is smaller
than 1. Then (15) is also stronger than (16) since M,m ≥ 1 when n ≥ 4. But
if the right-hand side of (15) is less than 1, then we have α(1 + S)/2 < 1 with
α = (2 + |ak|)/2 > (1 + S)/2, putting strong restrictions on the size of S.

Remark 3. We give a comparison among the numerical bounds obtained by Fujii-
Kubo (2), Theorem 1, Theorem 3, and (17). Consider the polynomial p(t) =
t5+2t4+1. The numerical bounds obtained by Fujii-Kubo (2), Theorem 1, Theorem
3, and (17) are approximated to 2.984, 3.000, 2.750 and 2.414, respectively. (17) is
the best bound among them.

On the other hand, consider the polynomial p(t) = t5 +0.01t4 +0.01t+0.01 with
small coefficients. The numerical bounds obtained by Fujii-Kubo (2), Theorem 1,
Theorem 3, and (17) are 0.719, 1.010, 0.716, and 1.000 respectively. In this case,
Theorem 3 is the best.
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