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A q-SERIES IDENTITY AND THE ARITHMETIC
OF HURWITZ ZETA FUNCTIONS

GWYNNETH H. COOGAN AND KEN ONO

(Communicated by David E. Rohrlich)

Abstract. Using a single variable theta identity, which is similar to the Jacobi
Triple Product identity, we produce the generating functions for values of
certain expressions of Hurwitz zeta functions at non-positive integers.

1. Introduction and statement of results

In a recent paper [3], D. Zagier used a q-series identity to prove that

−e−t/24
∞∑
n=0

(1− e−t)(1 − e−2t) · · · (1 − e−nt) =
1
2

∞∑
n=0

L(χ12,−2n− 1)
(−t/24)n

n!

where χ12 is the Kronecker character for Q(
√

12). Subsequently, the second author,
G. E. Andrews and J. Jimenez Urroz [1] obtained two infinite families of such q-
series identities. In a few ad hoc cases, these identities produced further generating
functions for L-function and zeta values such as

−e−t/8
∞∑
n=0

(1− e−2t)(1 − e−4t) · · · (1− e−2nt)
(1 + e−t)(1 + e−3t) · · · (1 + e−(2n+1)t)

=
1
2

∞∑
n=0

L(χ2,−2n− 1) · (−t/8)n

n!
.

Here χ2 is the Kronecker character for Q(
√

2).
Since these results are born out of the arithmetic of basic hypergeometric func-

tions (for more on basic hypergeometric functions, see [2]), we refer to them as
‘hypergeometric’. Clearly, this method for computing ζ-values at non-positive inte-
gral arguments is very different from the classical approach involving special values
of Bernoulli polynomials. Here we show that such hypergeometric generating func-
tions are widespread, and may be obtained in a systematic, rather than ad hoc,
fashion.

We begin by recalling the Jacobi Triple Product Identity [2, p. 19, eq. (17.3)]
∞∏
n=1

(1 − q2n)(1 + z2q2n−1)(1 + z−2q2n−1) =
∞∑

n=−∞
z2nqn

2
.
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Our results depend on a hypergeometric analog of this classical result. We begin
by fixing notation. Let (a; q)0 := 1, and for every positive integer n let

(a; q)n := (1− a)(1− aq)(1 − aq2) · · · (1− aqn−1).(1.1)

Proposition 1.1. The following formal power series identity is true:

A(z; q) :=
1

1 + z
·
∞∑
n=0

(z; q)nzn

(−zq; q)n
=
∞∑
n=0

(−1)nz2nqn
2
.

This identity follows from an identity due to Rogers and Fine [2, p. 15, eq. (14.1)].
We include a proof in the next section for the benefit of those unfamiliar with basic
hypergeometric series. The following is the result of a simple calculation.

Corollary 1.2. If 0 ≤ b < a and ζz and ζq are complex numbers, then

Θ(a, b, ζz, ζq; z, q) := ZbQb
2 ·A(Za/2Qab;Qa

2
)

=
∞∑
n=0

(−1)nζan+b
z ζ(an+b)2

q z(an+b)q(an+b)2
,

where Z := ζzz and Q := ζqq.

To illustrate our results regarding hypergeometric generating functions for ζ-
values, consider the following series:

Θ(2, 1, 1, 1; z, q) :=
zq

1 + zq2
·
∞∑
n=0

(zq2; q4)nznq2n

(−zq6; q4)n
=
∞∑
n=0

(−1)nz(2n+1)q(2n+1)2
.

(1.2)

Since the Taylor series of 1− e−nt is

1− e−nt = tn − t2n

2
+
t3n

6
− · · · ,

we find that Θ(2, 1, 1, 1; 1, e−t) is a well defined formal power series in t:

Θ(2, 1, 1, 1; 1, e−t) =
e−t

1 + e−2t
·
∞∑
n=0

(e−2t; e−4t)ne−2nt

(−e−6t; e−4t)n
=

1
2

+
1
2
t+

5
4
t2 + · · · .

(1.3)

Observe that the naive substitution of z = 1 and q = e−t in the right-hand side of
(1.2) does not produce a well defined t-series.

It turns out that the series in (1.3) satisfies

Θ(2, 1, 1, 1; 1, e−t) =
1
2

+
1
2
t+ · · · =

∞∑
n=0

L(χ−1,−2n) · (−t)n
n!

.(1.4)

Here χ−1 is the non-trivial Dirichlet character with modulus 4. Therefore, (1.4)
is a hypergeometric generating function whose coefficients interpolate values of
L(χ−1, s) at non-positive even integers.

If 0 < c ≤ 1 is a rational number, then let ζ(s, c) denote the Hurwitz zeta-
function

ζ(s, c) :=
∞∑
n=0

1
(n+ c)s

.(1.5)
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These functions possess an analytic continuation to the whole complex plane, with
the exception of a simple pole at s = 1. It is easy to see that (1.4) is equivalent to

Θ(2, 1, 1, 1; 1, e−t) =
∞∑
n=0

(ζ(−2n, 1/4)− ζ(−2n, 3/4)) · (−16t)n

n!
.(1.6)

The preceding example illustrates our first general result.

Theorem 1.3. Suppose that 0 ≤ b < a are integers, and suppose that α, β and m
are positive integers for which both

1) ord2(m) < ord2(2a2β),
2) aα+ 2aβ(b+ ak) ≡ 0 (mod 2m) for some residue class k (mod 2m).

If ζz := e2πiα/m and ζq := e2πiβ/m, then as a formal power series in t we have

Θ(a, b, ζz, ζq; 1, e−t)

=
∞∑
n=0

m−1∑
j=0

cjζ

(
−2n,

2aj + b

2am

)
− djζ

(
−2n,

(2j + 1)a+ b

2am

) (−4a2m2t)n

n!
,

where cj := ζ
(2ja+b)
z ζ

(2ja+b)2

q and dj := ζ
((2j+1)a+b)
z ζ

((2j+1)a+b)2

q .

Here we highlight one special case of Theorem 1.3. The following corollary
provides the generating function for the values at non-positive even integers for
certain differences of Hurwitz zeta functions.

Corollary 1.4. If 0 ≤ b < a, then as a formal power series in t we have

Θ(a, b, 1, 1; 1, e−t) =
∞∑
n=0

(
ζ

(
−2n,

b

2a

)
− ζ

(
−2n,

a+ b

2a

))
(−4a2t)n

n!
.

Note that (1.6) is a special case of this result.
We now obtain further such series using Corollary 1.2. To state these results,

let Θ′(a, b, ζz, ζq; z, q) denote the series obtained by differentiating, summand by
summand, Θ(a, b, ζz, ζq; z, q) with respect to z.

Theorem 1.5. Assuming the notation and hypotheses in Theorem 1.3, as a formal
power series in t we have

Θ′(a, b, ζz , ζq; 1, e−t)
2am

=
∞∑
n=0

m−1∑
j=0

(
cjζ

(
−2n− 1,

2ja+ b

2am

)
− djζ

(
−2n− 1,

(2j + 1)a+ b

2am

))
(−4a2m2t)n

n!
,

where cj := ζ2aj+b
z ζ

(2aj+b)2

q and dj := ζ
((2j+1)a+b)
z ζ

((2j+1)a+b)2

q .

As a corollary, we have the following counterpart to Corollary 1.4.

Corollary 1.6. If 0 ≤ b < a, then as a formal power series in t we have

Θ′(a, b, 1, 1; 1, e−t)
2a

=
∞∑
n=0

(
ζ

(
−2n− 1,

b

2a

)
− ζ

(
−2n− 1,

a+ b

2a

))
(−4a2t)n

n!
.
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2. Proof of Proposition 1.1

We prove Proposition 1.1 by following the method described in [2, pp. 14-15,
Sec. 13].

Proof of Proposition 1.1. Consider the function

B(z, t; q) :=
∞∑
n=0

(z; q)ntn

(−zq; q)n
=
∞∑
n=0

Bnt
n.(2.1)

Note that A(z; q) = 1
1+zB(z, z; q). We determine its transformation under the map

B(z, t; q)→ B(zq, tq; q),

and iterate it to obtain the proposition. The fact that (z; q)n = (1 − z)(zq; q)n−1

implies

B(z, t; q) = 1 +
(1 − z)
(1 + zq)

tB(zq, t; q).(2.2)

Since Bn+1(1 + zqn+1) = Bn(1− zqn), by multiplying by tn+1 and summing on n
we obtain

∞∑
n=0

Bn+1t
n+1 + z

∞∑
n=0

Bn+1(tq)n+1 = t

∞∑
n=0

Bnt
n − tz

∞∑
n=0

Bn(tq)n.

This is equivalent to the second transformation formula

B(z, t; q) =
(1 + z)
(1 − t) − z

(1 + t)
(1− t)B(z, tq; q).(2.3)

Transformations (2.2) and (2.3) imply

B(z, t; q) =
(1 − zt)
(1 − t) −

(1− z)(1 + t)
(1− t)(1 + zq)

tqzB(zq, tq; q).

One iteration of this transformation formula yields

B(z, t; q) =
(1− zt)
(1− t) −

(1− z)(1 + t)(1− ztq2)
(1− t)(1 + zq)(1− tq) ztq

+
(1− z)(1− zq)(1 + t)(1 + tq)

(1 − t)(1− tq)(1 + zq)(1 + zq2)
z2t2q4B(zq2, tq2; q).

An infinite number of iterations yields

B(z, t; q) =
1

1− t ·
∞∑
n=0

(z; q)n(−t; q)n
(−zq; q)n(tq; q)n

(1− ztq2n)(−1)nzntnqn
2
.

If t = z above, the cancellation among the q-factorial terms above yields

A(z; q) =
1

1 + z
·B(z, z; q) =

∞∑
n=0

(−1)nz2nqn
2
.



HURWITZ ZETA FUNCTIONS 723

3. Proof of Theorems 1.3 and 1.5

Proof of Theorems 1.3 and 1.5. We let z = 1 and replace q by e−t = 1− t+ t2/2 +
. . . , and notice that the sum is a convergent power series in t when (1−ζa/2z ζab+ka

2

q )

vanishes for infinitely many integers k and (1 + ζ
a/2
z ζab+ca

2

q ) does not vanish for
any integer c.

To guarantee that the numerators of the summands in this series start with
larger and larger powers of t, we require that ζa/2z ζab+ka

2

q = 1 for infinitely many
integers k. This implies that

aα+ 2β(ab+ ka2) ≡ 0 (mod 2m).(3.1)

This is the second hypothesis in Theorem 1.3. Next, if both the numerator and the
denominator vanish, then for some k and c = k + d ∈ Z

1− ζa/2z ζabq ζ
a2k
q = 0 and 1 + ζa/2z ζabq ζ

a2c
q = 0

⇒ ζa
2k
q + ζa

2c
q = e

2πia2kβ
m (1 + e2πia

2dβ
m ) = 0 ⇒ m =

2a2dβ

2n+ 1
,

for d and some odd integer 2n+1. However, this is prohibited by the first hypothesis
in Theorem 1.3. Therefore, the formal power series in t is well defined.

Define coefficients c(n) by

Θ(a, b, ζz, ζq; 1, e−t) =
∞∑
n=0

c(n)tn =
∞∑
n=0

(−1)nζan+b
z ζ(an+b)2

q e−t(an+b)2
.

We consider the Mellin transform of Θ(a, b, ζz, ζq; 1, e−t) :∫ ∞
0

Θ(a, b, ζz, ζq; 1, e−t)ts−1dt =
∫ ∞

0

∞∑
n=0

(−1)nζan+b
z ζ(an+b)2

q e−t(an+b)2
ts−1dt

=
∞∑
n=0

(−1)nζan+b
z ζ(an+b)2

q

∫ ∞
0

e−t(an+b)2
ts−1dt

=
∞∑
n=0

(−1)nζan+b
z ζ

(an+b)2

q

(an+ b)2s

∫ ∞
0

e−tts−1dt

= Γ(s)L(ψ, 2s).(3.2)

Here L(ψ, s) is the generalized L-function defined by analytically continuing the
Dirichlet series

L(ψ, s) :=
∞∑
n=1

ψ(n)
ns

,

where ψ(n) := (−1)(n−b)/aζnz ζ
n2

q if n ≡ b (mod a), and 0 otherwise. Since ψ has
period 2am we can write L(ψ, s) as a linear combination of Hurwitz zeta functions.

L(ψ, s) = (2am)−s
2am∑
r=1

ψ(r)ζ
(
s,

r

2am

)
,

which turns out as

L(ψ, s) = (2am)−s
m−1∑
j=0

(
cjζ

(
s,

2aj + b

2am

)
− djζ

(
s,
a(2j + 1) + b

2am

))
,(3.3)
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where

cj = ζ2aj+b
z ζ(2aj+b)2

q and dj = ζa(2j+1)+b
z ζ(a(2j+1)+b)2

q .

On the other hand if we are careful about the way in which we evalute the
integral in the Mellin transform, we are able to locate and identify its residues.∫ ∞

0

Θ(a, b, ζz, ζq; 1, e−t)ts−1dt

=
∫ 1

0

Θ(a, b, ζz, ζq; 1, e−t)ts−1dt+
∫ ∞

1

Θ(a, b, ζz, ζq; 1, e−t)ts−1dt

=
∫ 1

0

∞∑
n=0

c(n)tn+s−1dt+
∫ ∞

1

Θ(a, b, ζz, ζq; 1, e−t)ts−1dt

=
∫ 1

0

N−1∑
n=0

c(n)tn+s−1 +O(tN+s−1)dt+
∫ ∞

1

Θ(a, b, ζz, ζq; 1, e−t)ts−1dt

=
N−1∑
n=0

c(n)
s+ n

+A(s),

where because e−t is small for large t, A(s) is analytic for Re(s) > −N . It is clear
now that the residue at s = −n is c(n). By (3.6), this implies that

c(n) = Ress=−n (L(ψ, 2s)Γ(s)) =
(−1)n

n!
· L(ψ,−2n).

Therefore we find that

Θ(a, b, ζz, ζq; 1, e−t) =
∞∑
n=0

(−1)nL(ψ,−2n)tn

n!
.

Theorem 1.3 now follows from (3.3).
To prove Theorem 1.5, observe that the product rule implies that

Θ′(a, b, ζz, ζq; 1, e−t)

converges under the same hypotheses in Theorem 1.3. The only difference in the
calculation of the t expansion for the derivative is the factor (an+ b) which ends up
yielding Γ(s)L(ψ, 2s− 1) in the analog of (3.6). The rest of the proof of Theorem
1.5 follows mutatis mutandis.
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