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Abstract. We analyze the connection between compactness of operators on
the Bergman space and the boundary behaviour of the corresponding Berezin
transform. We prove that for a special class of operators that we call radial
operators, an oscilation criterion is a sufficient condition under which the com-
pactness of an operator is equivalent to the vanishing of the Berezin transform
on the unit circle. We further study a special class of radial operators, i.e.,
Toeplitz operators with a radial L1(D) symbol.

Let L2
a denote the Bergman space of functions analytic on the unit disk D. For

a general bounded operator A on the Bergman space, the Berezin transform of A
is the function Ã defined by

Ã(z) = 〈Akz , kz〉, z ∈ D ,

where 〈·, ·〉denotes the inner product in L2
a, and kz is the normalized evaluation

function from L2
a. The function kz is defined by

kz(w) =
1− |z|2

(1 − z̄w)2
, for w ∈ D,

and has the property that 〈f, kz〉 = (1− |z|2)f(z), for every f in L2
a.

The Berezin transform is a function that is bounded by the norm of the operator.
It is also easy to see that each bounded operator on L2

a is uniquely determined by its
Berezin transform. Thus, the behavior of the operator can be analyzed by exploring
the corresponding Berezin transform. This idea can be employed in a much more
general context where the space on which the operator acts is a so-called standard
functional Hilbert space, an example of which is the Bergman space. For results on
Berezin transforms on standard functional Hilbert spaces, see for example [6] and
[10].

Let P denote the Bergman projection from L2(D) onto L2
a and let f ∈ L1(D).

The Toeplitz operator Tf is defined by

Tfg = P (fg), for g in L2
a.

The Toeplitz operator is bounded whenever f ∈ L∞(D), but is not bounded
for every f in L1(D). The boundedness and compactness of Toeplitz operators on
the Bergman space have been of interest to mathematicians working in operator
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theory and the theory of holomorphic spaces for many years. There have been
many interesting results and approaches, as for example in [2], [3], [4], [9], [15] and
[16].

In this article we are interested in the Berezin transform approach to compactness
of radial operators motivated by the results obtained by a similar approach in the
case of Toeplitz operators.

The Berezin transform of an operator A on the Bergman space has an explicit
formula given by

Ã(z) = (1− |z|2)2
∞∑

m,n=0

√
n+ 1

√
m+ 1〈Aen, em〉z̄nzm, for z ∈ D,

where the functions en(z) =
√
n+ 1 zn, n = 0, 1, 2, ..., form the standard orthonor-

mal basis for the Bergman space. The formula for Ã is derived by using the fact that
the evaluation function kz can be expressed as a double sum over an orthonormal
basis, i.e.,

kz(w) = (1− |z|2)
∞∑

m,n=0

en(z) en(w), for w ∈ D.

For more details on this and on some of the properties of the Berezin transform
mentioned below, see [3], [12], [16].

It is not hard to see that the Berezin transform is a real analytic function on
D, which implies that it is infinitely differentiable on D. On the other hand, its
boundary behavior can be very irregular: for example, it is not known if the Berezin
transform of a bounded operator on L2

a must have radial limits almost everywhere
on the unit circle. One of the deeper results on Berezin transforms obtained in [1]
and [4] states that a function f is a bounded harmonic function on D if and only if
f(z) = T̃f (z), for every z ∈ D. Note that bounded harmonic functions have radial
limits almost everywhere on the unit circle. It is also true that if f is a function
that is continuous on the closed unit disk, then f(ξ) = T̃f (ξ) for every ξ in the unit
circle. See [16] for a proof of that claim.

We know more about the boundary values of the Berezin transform in the case
when the corresponding operator is compact. Since {kz} converges weakly and
uniformly to zero as |z| converges to 1, Ã(z) converges to zero uniformly as |z|
approaches 1, whenever the operator A is compact on L2

a. The main topic in this
paper is the problem of determining for which operators on L2

a the vanishing on the
boundary of D of the Berezin transform of the operator implies that the operator is
compact. This is not true for every operator, and there are several counterexamples
in the literature. We will mention here two of them; both are examples of radial
operators for which we provide a definition later in the paper.

One example (from [3]) is an operator that has a diagonal representation with
respect to the standard basis {en} of L2

a. That operator is the composition operator
Cφ defined by Cφ f = f ◦ φ for every f in L2

a, where φ(z) = −z. The Berezin
transform of Cφ is the function

C̃φ(z) =
(1− |z|2)2

(1 + |z|2)2
,

and lim|z|→1 C̃φ(z) = 0. On the other hand, Cφ is a unitary operator such that
C∗φ = Cφ = C−1

φ and so it is not compact.
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We mention here that composition operators provide an example of a class of
operators for which the Berezin transform has even more explicit form than in
the general case. Namely, using the fact that C∗φ kz = 1−|z|2

1−|φ(z)|2 kφ(z), we get that

C̃φ(z) =
(

1−|z|2
1−z̄φ(z)

)2

, for z ∈ D.
Since the set of boundary fixed points of φ must have measure zero whenever φ

is not the identity function, it is easy to see that C̃φ has a radial limit zero almost
everywhere on the unit circle.

An additional example of a non-compact operator with boundary vanishing
Berezin transform is the projection operator P onto the subspace generated by
the orthonormal set {e2n : n = 0, 1, 2, ...} (see [2]). Since the projection has an
infinite dimensional rank, it is not compact, yet the Berezin transform

P̃ (z) = (1− |z|2)2
∞∑
n=0

(2n + 1)(|z|2)2n

converges to zero as |z| converges to one.
We denote by ϑ the class of bounded operators on L2

a for which the vanishing of
the Berezin transform on the boundary of the unit disk implies that the operator
is compact. The previous two examples show that ϑ does not contain all of the
bounded operators on L2

a. In [2], S. Axler and D. Zheng have proven that finite sums
of finite products of Toeplitz operators with L∞(D) symbols belong to the class ϑ.
The problem of determining if this is true even for a single such Toeplitz operator
has been open for a number of years. There were several partial results with special
restrictions on the symbol f of the Toeplitz operator Tf , under which it has been
determined that Tf must belong to the class ϑ. Zhu in [15] and Luecking in [8]
proved that Tf is in ϑ whenever f is bounded and positive, Korenblum and Zhu
proved in [7] that the same holds if f is bounded and radial, and Stroethoff proved
in [13] that the same conclusion holds if f is uniformly continuous with respect to
the hyperbolic metric.

Our main result determines another family of operators which belong to the
class ϑ, namely the class of radial operators with bounded oscillation (to be defined
below). These are not all Toeplitz operators and include some of the Toeplitz
operators with unbounded radial symbols. For related results on Toeplitz operators
with unbounded radial symbols, see [5] and [14].

Let f be a function in L1(D) and let rad(f) be the function defined by

rad(f)(z) =
1

2π

∫ 2π

0

f(eitz)dt.

We say that rad(f) is the radialization of f , and we will say that f is radial if
it is equal to its radialization. Thus a radial function is such that f(z) = f(|z|).
Generalizing the idea to operators, for a bounded operator A on L2

a, we define
Rad(A) to be the operator

Rad(A) =
1

2π

∫ 2π

0

U∗t AUt dt,
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where Ut is the unitary operator such that (Utf)(z) = f(e−itz) for f in L2
a and z

in D. The integral definition above means that for f and g in L2
a,

〈Rad(A)f, g〉 =
1

2π

∫ 2π

0

〈U∗t AUt f, g〉dt.

We will say that the operator A is radial whenever A = Rad(A). Before we
provide examples of radial operators, we look more closely at the Berezin transform
of Rad(A).

Proposition 0.1. R̃ad(A)(z) = Rad(Ã)(z) for all z in the unit disk, and A is
radial if and only if its Berezin transform function is radial.

Proof. Since

Utkz(w) = kz(e−itw) =
1− |z|2

(1 − z̄e−itw)2
= keitz(w)

we have that

R̃ad(A)(z) = 〈Rad(A)kz , kz〉 =
1

2π

∫ 2π

0

〈AUt kz, Utkz〉dt

=
1

2π

∫ 2π

0

〈A keitz, keitz〉dt =
1

2π

∫ 2π

0

Ã(eitz)dt.

Thus R̃ad(A)(z) = rad(Ã)(z) for all z in D. Hence, if A is a radial operator, then
its Berezin transform must be a radial function. On the other hand, whenever the
Berezin transform of an operator is radial, i.e., whenever R̃ad(A)(z) = Ã(z) for
all z in D, since the operators are uniquely determined by their Berezin transform,
R̃ad(A) = Ã implies that Rad(A) = A.

Now, for f in L1(D), let

f̃(z) =
∫
D
f(w)|kz(w)|2dm(w).

Even though the Toeplitz operator Tf may not be bounded, its domain includes
H∞ and its Berezin transform T̃f is well defined and equal to f̃ . We call f̃ the

Berezin transform of the function f . Note that r̃ad(f) = rad(f̃), since for z in D,
we have

r̃ad(f)(z) =
∫
D
rad(f)(w)|kz(w)|2dm(w)

=
1

2π

∫ 2π

0

(∫
D
f(weit)|kz(w)|2dm(w)

)
dt

=
1

2π

∫ 2π

0

(∫
D
f(weit)|keitz(eitw)|2dm(w)

)
dt

=
1

2π

∫ 2π

0

(∫
D
f(u)|keitz(u)|2dm(u)

)
dt

=
1

2π

∫ 2π

0

f̃(eitz)dt = rad(f̃ )(z).

Thus, f is radial if and only if f̃ is radial and so, by Proposition 0.1, the Toeplitz
operator Tf is radial if and only if f is radial.
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Note also that every operator A with harmonic Berezin transform must be a
Toeplitz operator with symbol Ã. That is true since Ã = ˜̃A = T̃Ã. So, a radial
operator with harmonic Berezin transform is a Toeplitz operator Tf with radial
harmonic symbol f . But, for such an operator, since limr→1 f(r) must exist, i.e.,
since f is continuous on the closed unit disk, the operator Tf is compact if and only
if f(1) = 0.

Proposition 0.2. Let A be a radial bounded operator on L2
a. Then A is a diagonal

operator with respect to the standard basis {en} of L2
a.

Proof. This is easy to see from the following:

〈Aen, em〉 = 〈RadA en, em〉 =
1

2π

∫ 2π

0

〈AUten, Utem〉dt

=
1

2π

∫ 2π

0

〈A(e−int), e−intem〉dt

=
1

2π

∫ 2π

0

e−i(m−n)t〈Aem, en〉dt = 0, whenever nm.

Note that the compactness of an operator A on the Bergman space can be ex-
pressed with the help of radial operators as follows: A is compact if and only if A∗A
is compact if and only if there exists a unitary operator U such that U∗A∗AU is a
compact radial operator.

Let an = 〈Aen, en〉. We want to see what the correlation is between the behavior
of the sequence {an} and the boundary behaviour of the Berezin transform Ã. Of
course, whenever an converges to zero, if |z| approaches one, then Ã(z) converges
to zero. The converse is not always true, as the two counterexamples of diagonal
non-compact operators above show. We will show that under a specific oscillation
restriction on the sequence {an} we have that for the radial operator A, Ã(z)→ 0
as |z| → 1 is a sufficient condition for compactness of A, i.e., that A belongs to the
class ϑ.

Note first that for radial A, since Ã(z) = rad(Ã)(z) = Ã(|z|), we have that
Ã(z) = (1 − |z|2)2

∑
n(n + 1)an|z|2n. Thus, the question of whether A is in ϑ is

equivalent to the following problem:
• when does lim|t|→1−(1 − |z|2)2

∑
n(n + 1)an|z|2n = 0 imply that an → 0 as

n→∞?
In general, this is a problem on sequences and series of complex numbers and has

a connection with applications of Tauberian theorems, such as the ones considered
in [11]. The same approach has been used in [7] to prove that in case A is a Toeplitz
radial operator Tf with a bounded symbol f , we have that an → 0, as n → ∞,
if and only if

(
1− |z|2

)2∑∞
n=0(n + 1)an|z|2n → 0 as |z| → 1. We give below a

sufficient condition for a general radial operator A such that the convergence of
the above series to zero as |z| → 1 implies that an → 0, as n → ∞, i.e., that the
operator A is compact.

Theorem 0.3. Let A be a bounded radial operator on the Bergman space with di-
agonal {an}, such that n(an − an−1) is bounded. Then Ã(z) → 0, as |z| → 1−,
implies that A is compact (i.e., A belongs to the class ϑ).
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Proof. Since A is radial, Ã(z) =
(
1− |z|2

)2∑∞
n=0(n+ 1)an|z|2n. A result from [11]

states that for a sequence {bn} such that

lim
t→1−

(1− t)
∞∑
n=0

bnt
m = 0

and such that {bn} is bounded, we have that

lim
n→∞

1
n+ 1

n∑
k=0

bk = 0.

Let b0 = a0, let bn = (n + 1)an − nan−1, for n ≥ 0 and let t = |z|2. Then by an
argument similar to that in [7] we have that

lim
t→1−

Ã(z) = lim
t→1−

(1− t)2
∞∑
n=0

(n+ 1)antn

= lim
t→1−

(1− t)(a0 +
∞∑
n=1

((n+ 1)an − nan−1)tn

= lim
t→1−

(1− t)(a0 +
∞∑
n=1

bnt
n) = 0.

Thus, limt→1−(1 − t)(
∑∞

n=0 bnt
n) = 0. We also have that {bn} is bounded, since

bn = n(an − an−1) + an, and so limn→∞
1

n+1

∑n
k=0 bk = 0. But

1
n+ 1

n∑
k=0

bk =
1

n+ 1
(a0 +

n∑
k=1

((k + 1)ak − kak−1)) =
1

n+ 1
(n+ 1)an = an,

and we have that limn→∞ an = 0. So, the operator A is compact.

Note that for a general radial operator A, the boundedness of n(an − an−1)
does not imply compactness of A. For example, that happens when A is a scalar
operator. Another counterexample is when A is a diagonal operator with diagonal
{an} such that each an is a point on the curve (t, sin 1

t ), t > 0. If each an = (tn,
sin 1

tn
) is chosen such that tn → 0 as n→∞, and such that the length of the curve

between an and an−1 is 1
n , then we have that the set of limit points of {an} is the

closed interval [−1, 1]. Hence, the operator A is neither compact nor is it a scalar
plus a compact, even though n(an − an−1) is bounded.

The condition that n(an − an−1) is bounded is a criterion on the oscillation of
the sequence {an}; it requires that the rate of oscillation cannot be slower than
1
n . Note that as long as the oscillation of a sequence tends to zero, i.e., as long as
an − an−1 → 0, as n → ∞, we have that either the sequence converges, or that
the sequence has an uncountable set of accumulation points. In fact, as pointed
out in [5], it is easy to see that whenever an − an−1 → 0, as n → ∞, the set of
limit points of the sequence {an} must be a closed connected subset of C. If that
set is a single point, i.e., if the sequence {an} converges, then the operator A is a
sum of a scalar and a compact operator. That happens, for example, whenever A
is a radial Toeplitz operator Tf with f continuous on the closed unit disk, i.e., with
f such that limr→1− f(r) exists. It can also happen even when f is unbounded
and with limr→1− f(r) not existing, since the operator Tf can still be compact in
that case. Recall that if Tf is compact, then limr→1− f̃(r) = limn→∞ an = 0, but
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for unbounded f, it is not known if limr→1 f̃(r) = 0 implies that limn→∞ an = 0.
The above proposition guarantees that if the oscillation condition is satisfied, then
Tf is in the class ϑ even though f is unbounded, i.e., f̃(z) → 0 if and only if
limn→∞ an = 0.

Theorem 0.4. Let f be a radial function in L1(D) and let Tf be bounded on L2
a.

If f(r) − 1
1−r

∫ 1

r
f(s)sds is bounded for 0 ≤ r < 1, then Tf is compact if and only

if limr→1− f̃(r) = 0, and so Tf is in the class ϑ.

Proof. If A is the Toeplitz operator Tf , then

an = (n+ 1)
∫
D
f(z)|z|2ndm(z).

So, if f is radial, i.e., if f(z) = f(|z|), changing to polar coordinates, we get that

an = 2(n+ 1)
∫ 1

0

f(r)r2n+1dr.

But then n(an − an−1) = 2n2
∫ 1

0
f(r)r2n−1(1 − r2)dr + 2n

∫ 1

0
f(r)r2n+1dr. The

second term in the sum equals n
n+1an, and so, for a bounded operator Tf we have

that n(an − an−1) is bounded whenever the first term in the sum is bounded. On
the other hand

2n2

∫ 1

0

f(r)r2n−1(1− r2)dr

= 2n2

∫ 1

0

(
f(r) − 1

1− r

∫ 1

r

f(s)sds
)
r2n−1(r2 − 1)dr

+2n2

∫ 1

0

1
1− r

(∫ 1

r

f(s)sds
)
r2n−1(r2 − 1)dr.

Using integration by parts in the second summand we can see that it has the same
rate of growth as an, i.e., that it is bounded. Since 2n2

∫ 1

0 r
2n−1(r2 − 1)dr ≤ 2, we

get that n(an − an−1) is bounded whenever f(r) − 1
1−r

∫ 1

r
f(s)sds is bounded for

0 ≤ r < 1.

Note that in case f is radial and is in L∞(D), we get that f(r)− 1
1−r

∫ 1

r
f(s)sds is

also bounded, and so, by Theorem 0.4, Tf is compact if and only if limr→1− f̃(r) = 0.
The fact that Tf is compact if and only if limr→1− f̃(r) = 0 whenever f is bounded
(and radial) was originally proved in [7].

Note also that in case f is radial and positive, the expression 1
1−r

∫ 1

r f(s)sds plays
a special role in the so-called Carleson measure characterization of the boundedness
and compactness of Tf .

Let Sξ(r) =
{
z ∈ D; 1− r < |z| < 1, arg ξ − 1−r

2 < arg z < arg ξ + 1−r
2

}
for 0 ≤

r < 1 and ξ in the unit circle ∂D. D. Luecking’s results from [7] tell us that
for f positive and in L1(D), the operator Tf is bounded on L2

a(D) if and only if
1

m(Sξ(r))

∫
Sξ(r)

f(z)dm(z) is bounded for all ξ in the unit circle ∂D and all 0 ≤ r < 1;
the operator Tf is compact if and only if

lim
r→1

sup
ξ∈∂D

1
m(Sξ(r))

∫
Sξ(r)

f(z)dm(z) = 0.
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Since m(Sξ(r)) is equivalent to 1
(1−r)2 , then, whenever f is positive and radial, we

have that
1

m(Sξ(r))

∫
Sξ(r)

f(z)dm(z) =
1

m(S1(r))

∫
S1(r)

f(z)dm(z) =
1
π

1
1− r

∫ 1

r

f(s)sds.

Hence, the boundedness and compactness of Tf on L2
a(D) for f positive and radial

can be restated in terms of 1
1−r

∫ 1

r f(s)sds. Similar results can also be found in [5]
and [14].
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