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HELLY-TYPE THEOREMS FOR HOMOTHETS
OF PLANAR CONVEX CURVES

KONRAD J. SWANEPOEL

(Communicated by John R. Stembridge)

Abstract. Helly’s theorem implies that if S is a finite collection of (positive)
homothets of a planar convex body B, any three having non-empty intersec-
tion, then S has non-empty intersection. We show that for collections S of
homothets (including translates) of the boundary ∂B, if any four curves in S
have non-empty intersection, then S has non-empty intersection. We prove
the following dual version: If any four points of a finite set S in the plane
can be covered by a translate [homothet] of ∂B, then S can be covered by a
translate [homothet] of ∂B. These results are best possible in general.

1. Definitions and notation

We denote the real d-dimensional vector space by Rd, and call R2 the plane. We
denote the convex hull, boundary and interior of a set S ⊆ Rd by convS, ∂S, intS,
respectively. A set of points S is in convex position if S ⊆ ∂convS. A closed,
bounded and convex set B ⊆ Rd with non-empty interior is a convex body. A convex
curve C is the boundary ∂B of some convex body B in the plane. We denote the
boundary of a triangle by ∆. We only consider segments with distinct endpoints
x 6= y, denoted by [xy]. A wedge is the union of two non-parallel segments with
a common endpoint, i.e., [ab] ∪ [bc] for some non-collinear a, b, c. A convex curve
C is strictly convex if it contains no segment [xy]. The line through x and y is
denoted by ←→xy. An affine diameter of a convex curve C in the direction v is a
segment [ab] parallel to v with a, b ∈ C such that no other segment parallel to v
with endpoints on C is longer than [ab].

A translate of a set S is a set of the form v + S for some v ∈ R2. A (positive)
homothet of S with homothety factor λ > 0 is a set of the form v + λS for some
v ∈ R2. (Thus we do not allow negative homothets, but allow translates.) For
S ⊆ Rd, let HS denote the collection of homothets of S, TS the collection of
translates of S, and H(ε)

S the collection of homothets of S with homothety factor
in the interval [1, 1 + ε].

The size of a finite set A is denoted by #A. The following definitions are mod-
ifications of the congruence index introduced by Blumenthal [2, §37]. A collection
S has Helly index (n, k) if any finite sub-collection T ⊆ S of size #T > n+ k has
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non-empty intersection, provided any n sets in T have non-empty intersection. If
S has Helly index (n, 0) we say that it has Helly order n.

A collection S has Menger index (n, k) if any finite set S of size #S > n+ k is
contained in some set of S whenever each subset of S of n elements is contained in
some set of S. If S has Menger index (n, 0) we say that it has Menger order n.

For the sake of simplicity we only consider finite sub-collections T and finite
sets S in these definitions. Although the word “finite” may be removed from the
definition of Helly index in Theorem A below by a compactness argument, it is not
possible to remove “finite” from the definition of Menger index in Theorem B.

2. Introduction

2.1. Motivation. A Helly-type theorem is an analogue of

Helly’s theorem ([12]). The collection of convex sets in Rd has Helly order d+1.

See the surveys [4] and [6] for collections of Helly-type theorems. Most of them
deal with collections of convex sets. Notable exceptions are the theorem of Amenta
[1] (also known as the theorem of Morris [6]) on disjoint unions of convex sets, the
theorem of Motzkin [16, 5] on collections of algebraic varieties, and the theorem
of Maehara [14, 7] on spheres. In [17] the author proved a Helly-type result for
collections of boundaries of axis-aligned boxes and in [18] for boundaries of convex
polygons in the plane. Note that finding the smallest Helly order of TB for a given
convex body B is known as the Szökefalvi-Nagy problem, and is known only for a
few classes of convex bodies (see [3, Chapter 4]).

A Helly-type theorem can also concern coverings instead of intersections, an ex-
ample of which is the following consequence of Helly’s theorem, noted by Vincensini
and Klee [6].

Vincensini-Klee theorem. Let B be a convex body in Rd. Then TB has Menger
order d+ 1.

To deduce this theorem from Helly’s theorem, we only need the following simple

Lemma 1. For any S ⊆ Rd, TS has Helly index (n, k) iff TS has Menger index
(n, k).

Proof. The lemma follows from the following observation: Given x1, . . . ,xm ∈ Rd,
we have that

x ∈
m⋂
i=1

(xi + S) ⇐⇒ {x1, . . . ,xm} ⊆ x− S.

Thus {xi + S : i = 1, . . . ,m} has non-empty intersection iff {x1, . . . ,xm} can be
covered by a translate of −S. It follows that TS has Menger index (n, k) iff T−S
(or equivalent, TS) has Helly index (n, k).

In this paper we study Helly and Menger indices for translates and homothets of
convex curves in the plane. We now give an overview of previously known results,
and then discuss our results and open problems.

2.2. Previous results. The following result, especially in the case of circles, must
be a very old observation. See [2, §61] for the case of circles and [13, 8, 9] for the
case of strictly convex curves.
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Figure 1. Convex curve with inscribed hexagon

Proposition. For any convex curve C, TC does not have Helly order 3. Hence
HC does not have Helly order 3 and, by Lemma 1, TC does not have Menger order
3.

Proof. Find an affine regular hexagon inscribed in C, with vertices x1, . . . ,x6, in
this order, and centre x0. (There always exists such a hexagon [11].) See Figure 1.
Then the required four translates are C,C+x1−x0, C+x3−x0, C+x5−x0.

The following result is proved in [2, §61] for circles and [13] for strictly convex
smooth curves (although their proof does not use smoothness), and [8, 9] in gen-
eral, where stronger results are also shown. The proof given below highlights the
combinatorial character of the result.

Proposition. For any strictly convex curve C, HC has Helly index (3, 1).

Proof. The statement is a purely combinatorial consequence of the well-known fact
that two distinct homothets of a convex curve intersect in at most two points (see
also Lemma 2 below). The result follows from the the following easily proved
lemma.

Lemma. Let S be a collection of sets such that #(S1 ∩ S2) ≤ 2 for all distinct
S1, S2 ∈ S, and #(S1 ∩S2 ∩S3) ≥ 1 for all distinct S1, S2, S3 ∈ S. Then

⋂
S 6= ∅,

except if #S = 4 and there exists a set of four elements X = {x1, x2, x3, x4} such
that {S ∩X : S ∈ S} = {X \ {xi} : i = 1, 2, 3, 4}.

Getmanenko [8, 9] also has similar results for unbounded convex curves, and
refinements of the above result.

Proposition (Getmanenko [8, 9]). For any convex curve C, HC has Helly order
6. Hence TC has Helly and Menger orders 6.

2.3. New results.

Theorem A. For any convex curve C in the plane, HC has Helly order 4.

There exist convex curves C for which even TC does not have Helly index (3, k)
for any k. Call a convex curve C flat if it contains two parallel segments on different
supporting lines. Also, call C thin if C contains a segment [ab] on some line `, and
such that the line equidistant from ` and `′ intersects C in two points c and d such
that cd < ab, where `′ 6= ` is a supporting line of C parallel to `. See Figure 5.
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Figure 2. For any flat or thin curve there are infinitely many
translates with non-empty intersection although any three intersect

Figure 3. For any triangular curve there are infinitely many ho-
mothets with non-empty intersection although any three intersect

Proposition 1. Let C be a convex curve in the plane.
1. If C is flat or thin but is not a triangle, then TC does not have Helly index

(3, k) for any k ∈ N.
2. The collection T∆ has Helly index (3, 1), but H(ε)

∆ does not have Helly index
(3, k) for any k ∈ N and ε > 0.

See Figures 2 and 3 for examples.
Let E be the class of convex curves C that are neither flat nor thin.

Corollary 1. If TC has Helly index (3, 1), then either C is a triangle or C ∈ E.

The following conjecture would settle the question of the best Helly index for
homothets or translates of any convex curve.

Conjecture 1. If C ∈ E, then HC has Helly index (3, 1).

In proving Theorem A, it is convenient to first prove a covering version, i.e., a
theorem about the Menger order of homothets of a convex curve.

Theorem B. For any convex curve C in the plane, HC has Menger order 4.

This theorem is best possible in the following strong sense:

Proposition 2. For any convex curve C except a triangle and any ε > 0, H(ε)
C

does not have Menger index (3, k) for any k ∈ N.
Also, H(1/2)

∆ does not have Menger index (3, k) for any k ∈ N.

We remark that H(ε)
∆ has Menger index (3, 1) for any ε < 1/2. We omit the

simple proof.
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Applying Lemma 1 to Theorem B and Proposition 1 we obtain the following:

Proposition 3. Let C be a convex curve in the plane.
1. The collection TC has Menger order 4.
2. If C is flat or thin but is not a triangle, then TC does not have Menger index

(3, k) for any k ∈ N.
3. T∆ has Menger index (3, 1).

From Conjecture 1 the following would follow, completing the picture for trans-
lates.

Conjecture 2. If C ∈ E, then TC has Menger index (3, 1).

It remains to prove Propositions 1 and 2 (Section 4) and Theorems A and B
(Section 5). Note that the proofs of Theorems A and B, although elementary, are
quite intricate when compared to e.g. the proof of Helly’s Theorem in R2. Before
the proofs we do some geometric preparation in Section 3.

We conclude the Introduction with the following remarks. First, in dimensions
higher than two it seems that only for very restricted classes of convex bodies B
(such as polytopes or certain semi-algebraic sets) would H∂B or T∂B have finite
Helly or Menger orders.

Second, we may also consider the collection CS of congruent copies of a set S.
Getmanenko [8] showed that for many compact sets B with non-empty interior in
Rd, as well as the k-skeletons of convex polytopes, with 2 ≤ k ≤ d, CB does not
have a finite Menger order. Blumenthal [2, §61] showed that if C is the boundary of
a regular n-gon in the plane, then CC has Menger order 2n+1 with Getmanenko [8]
improving this to 2n for n sufficiently large. Getmanenko furthermore shows that
for the boundary C of any convex n-gon, CC has Menger order 2n + 6. It would
be interesting to characterize those planar convex curves C such that CC has finite
Helly or Menger orders. See [19] for examples of curves C such that CC does not
have Menger index (3, 1).

3. The geometry of homothets of convex curves

Here we discuss basic facts about the covering of sets by homothets of a convex
curve and the intersection of homothets of a convex curve.

The following technical lemma is already mentioned in e.g. [10]. A detailed proof
may be found in [15, p. 107]. See also [9, Lemma 5].

Lemma 2. Let T = {x1,x2,x3} ⊂ R2 be any three points. Let T ′ = {x′1,x′2,x′3}
be a homothet of T . If T ∪ T ′ is in convex position, then either T is collinear, or
for some i, (T ∪ T ′) \ {xi,x′i} is collinear.

Lemma 3. Let T = {x1,x2,x3} be a non-collinear set and C a convex curve in
the plane that is not a triangle homothetic to ∂convT . If T is contained in more
than one homothet of C, then there exist distinct i, j (depending only on T and C)
such that any homothet C′ of C containing T also contains [xixj ].

Proof. By Lemma 2, if T ⊆ C′∩C′′ (C′ and C′′ distinct homothets of C), then there
are distinct i, j such that [xixj ] ⊆ C′∩C′′. Suppose that for each choice of distinct
i, j, there is a homothet Cij of C such that T ⊂ Cij , but [xixj ] ∩ Cij = {xi,xj}.
Then we obtain [x1x3] ⊆ C12 ∩ C23, [x2x3] ⊆ C12 ∩ C13, [x1x2] ⊆ C13 ∩ C23. It
follows that C12 contains the wedge [x1x3]∪ [x2x3]. Hence C contains a homothet
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Figure 4. The intersection of homothets of a convex closed curve

of this wedge. Similarly, C contains two other such wedges, and it follows that C
is homothetic to ∂convT .

It is readily seen that Lemma 3 does not hold for a triangle homothetic to
∂convT .

The following lemma describes the intersection of a collection of homothets of a
convex curve. Note that although the general case is interesting in its own right,
for the purposes of this paper we only need to know how two homothets intersect
(see [15, §3.3] for a discussion of the history of this special case).

Lemma 4. Let C be a convex closed curve in the plane. The intersection of at
least two distinct homothets of C is the union of two sets, each of which is either
a segment, a singleton or empty (Figure 4), unless C is the boundary of a triangle
and the number of homothets is more than two, in which case the intersection can
also be a set of three points homothetic to the vertex set of C.

Proof. We assume that C is not the boundary of a triangle, as this case is simple.
Let S be a collection of at least two homothets of C. Note that

⋂
S is in convex

position, since it is contained in a convex curve. If
⋂
S is collinear, then it is clearly

either empty, a singleton, two points or a segment. Thus without loss of generality
let a, b, c be three non-collinear points in

⋂
S. By Lemma 3 we have without loss

of generality that [bc] ⊆
⋂
S. Also assume without loss of generality that [bc] is a

maximal segment in
⋂
S, i.e.,

⋂
S ∩←→bc = [bc].

If there is a point of
⋂
S on ←→ac except a or c, then [ac] ⊆

⋂
S; again assume

that [ac] is a maximal segment in
⋂
S, and choose an x between a and c, and a y

between b and c. Then x, y, and any point in
⋂
S \ ([ac] ∪ [bc]) would contradict

Lemma 3. It follows that
⋂
S = [ac] ∪ [bc].

We may now assume that
⋂
S ∩←→ac = {a, c}, and similarly,

⋂
S ∩←→bc = {b, c}.

Then for any d ∈
⋂
S \ ({a} ∪ [bc]) we have that {a, b, c,d} is in convex position,

since
⋂
S is in convex position. If [cd] ⊂

⋂
S, then Lemma 3 will be contradicted

by a point between c and d, a point between b and c, and a. Since [ac] 6⊆
⋂
S,

by Lemma 3 it now follows that [ad] ⊂
⋂
S. Assume without loss of generality

that [ad] is a maximal segment in
⋂
S. Then a point in

⋂
S \ ([ad]∪ [bc]), a point

between a and d, and a point between b and c, contradicts Lemma 3. It follows
that

⋂
S = [ad] ∪ [bc].

4. The examples

Proof of Proposition 1. We omit the simple proof that T∆ has Menger and Helly
indices (3, 1). Figure 3 shows that H(ε)

∆ does not have Helly index (3, k) for any
k ∈ N.
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Figure 5. A thin convex curve

Now let C be a flat convex curve. We show that TC does not have Menger index
(3, k). We may assume without loss that [(x−αv)(x+αv)], [(y−βv)(y+βv)] ⊆ C,
where y − x and v are linearly independent, 0 < α ≤ β, and α, β maximal. Then
there exist continuous functions f, g : [0, 1]→ R such that f, g > 0 and

C =[(x− αv)(x+ αv)] ∪ [(y − βv)(y + βv)]

∪ {(1− λ)x+ λy + f(λ)v : 0 ≤ λ ≤ 1}
∪ {(1− λ)x+ λy − g(λ)v : 0 ≤ λ ≤ 1} .

Choose ε ∈ (0, 1) such that f(ε) = g(1 − ε). This is possible since f(0) − g(1) =
α−β ≤ 0 and f(1)− g(0) = β−α ≥ 0. Let S = {x,y}∪ [(z−αv)(z+αv)], where
z = (1 − ε)x + εy + f(ε)v ∈ C. That any three points of S are covered by some
translate of C follows from the following easily verified facts:

1. {x,y, z + γv} ⊆ C + γv for all γ ∈ [−α, α],
2. {x} ∪ [(z − αv)(z + αv)] ⊆ C + (1− ε)(x− y) + f(ε)v,
3. {y} ∪ [(z − αv)(z + αv)] ⊆ C + ε(y − x) + f(ε)v.

Finally, note that S is not in convex position, hence is not coverable by any translate
of C (Figure 2).

Now let C be a thin convex curve that is not a triangle. Let C contain the
segment [ab] on line `, with no other segment parallel to `. Let `′ 6= ` be a line
parallel to `, supporting C. Let the line 1

2 (`+ `′) equidistant from ` and `′ intersect
C in c and d. Let `′ intersect C in p. Let q = p+ a− c and r = p+ b− d. Then
S = {p, c,d} ∪ [qr] is the desired set. See Figures 5 and 2.

Proof of Proposition 2. We first describe an S ⊆ R2 of size > 3 + k showing that
H(1/2)

∆ does not have Menger index (3, k) for any k. Let the vertices of ∆ be
a1,a2,a3. Let bi = 1

3ai + 2
3ai+1, ci = 2

3ai + 1
3ai+1 for all i, with indices modulo 3.

Let c = 1
3 (a1 + a2 + a3). Let S′ be an arbitrary subset of at least 3 + k elements

of [b1c1] ∪ [b2c2] ∪ [b3c3] such that S′ contains at least one element of each [bici].
Then S = {c} ∪ S′ is the required set.

Now let C be a convex curve that is not a triangle. By the proof of Proposition 1
we already know that if C is the boundary of a parallelogram, then TC does not
have Menger index (3, k) for any k ∈ N. If C is not a triangle or a parallelogram,
then it is easily seen that C contains an arc Γ that is not contained in the union
of two segments, and such that no chord of Γ is an affine diameter of C. Let the
endpoints of Γ be a and b. Let p be a point inside C sufficiently near the boundary
(depending on ε). Let S = Γ ∪ {p}. Consider any two points c,d ∈ Γ together
with p. By enlarging this subset slightly such that the images of c and d stay on
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Figure 6. Proof of Proposition 2

C, the image of p eventually hits C. Since p is sufficiently near the boundary, this
happens before the homothety ratio exceeds 1 + ε. See Figure 6. Thus any three
points of S can be covered by a homothet in H(ε)

C .
If S can be covered by some homothet of C, then Γ would be contained in the

intersection of two distinct homothets of C, hence contained in the union of two
(possibly degenerate) segments, by Lemma 4, a contradiction. Thus S cannot be
covered by any homothet of C.

We can modify this construction to make S finite by choosing at least 3 + k
points on Γ that still cannot be covered by the union of two segments.

5. Proofs of the theorems

Proof of Theorem B. We omit the simple proof that the Menger order of H∆ is 4,
and assume for the remainder of the proof that C is not the boundary of a triangle.
Assume that #S > 4 and that any four points in S can be covered by a homothet
of C. Assume that S is non-collinear, as the theorem is otherwise trivial. We now
apply the following theorem of Steinitz (see [6]):

Let p ∈ Rd and S ⊆ Rd. If p ∈ int convS, then p ∈ int convS′ for some
S′ ⊆ S with #S′ ≤ 2d−1, except if S = {p+λiei,p−µiei : i = 1, . . . , d}
for some λi, µi > 0 and some basis e1, . . . , ed of Rd.

Since any four points of S are in convex position, if S is not in convex position, then
S consists of 5 points {a, b, c,d, e} with e between a and c, and between b and d.
By considering how homothets of C cover any 4 points of S, we obtain that C has
two supporting lines parallel to ac, and similarly, two supporting lines parallel to
bd. We may therefore circumscribe a parallelogram around C, with a side parallel
to ac (of length r, say), and a side parallel to bd (of length s, say). Since {a, b, c,d}
can be covered by a homothet of C, we have ac/r = bd/s. Since {a, c,d, e} can
be covered by a homothet of C, ac/r ≤ de/s. Similarly, ac/r ≤ be/s. It follows
that bd/s ≥ 2ac/r, a contradiction.

Thus S is in convex position. If some three points of S can be covered by only
one homothet of C, then the whole S must be covered by this homothet. We may
therefore assume without loss of generality that any three points of S are in more
than one homothet of C. We now repeatedly apply Lemma 3.

Suppose convS has at least six vertices. Let x1, . . . ,x6 be any six vertices in
this order on the boundary. The points x1,x3,x5 can be covered by more than one
homothet of C. By Lemma 3 one of the segments [x1x3], [x3x5], [x5x1] is contained
in each homothet covering x1,x3,x5. If it is [x1x3], then considering the homothet
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covering {x1,x2,x3,x5} gives a contradiction, since [x1x3] is then forced to be in
the interior. A similar contradiction is obtained for the other two possibilities.

Thus convS has at most five vertices. If there are exactly five vertices x1, . . . ,x5

(in this order), then with the same reasoning as before, any homothet of C con-
taining e.g. {x2,x4,x5} must contain [x4x5]. Thus any homothet of C containing
all vertices except x1 must contain [x2x3] ∪ [x4x5], etc. It follows that C can be
inscribed in a pentagon with sides parallel to xixi+1. By the following lemma, this
pentagon is homothetic to ∂convS, hence S can be covered by a homothet of C.

Lemma 5. Consider two convex pentagons x1x2x3x4x5 and x′1x
′
2x
′
3x
′
4x
′
5 with

xixi+1 parallel to x′ix
′
i+1 for each i. Assume that for each i, some homothet of

[xixi+1]∪ [xi+2xi+3] is contained in [x′ix
′
i+1]∪ [x′i+2x

′
i+3]. Then the two pentagons

are homothetic.

Proof of Lemma 5. Let αi = ^xi+1xixi+2, βi = ^xi−2xixi+2, γi = ^xi−2xixi−1,
with similar definitions for α′i, β

′
i, γ
′
i (where indices are taken modulo 5). Then

clearly γ′i ≤ γi and α′i ≤ αi for all i. Since αi+βi+γi = α′i+β′i+γ′i (the pentagons
have parallel sides), it follows that βi ≤ β′i for all i. Since

∑
i βi = 180◦ =

∑
i β
′
i,

we obtain βi = β′i for all i. Thus αi + γi = α′i + γ′i for all i, hence αi = α′i and
γi = γ′i for all i. Thus each triangle 4xixi+1xi+2 is similar to 4x′ix′i+1x

′
i+2. It

follows that the pentagons are homothetic.

Proof of Theorem B, continued. We now consider the case where convS has exactly
four vertices x1,x2,x3,x4 (labelled in this order). Since #S > 4, there is a point
in the relative interior of some edge of convS, say y1 between x1 and x2.

If there is a point in the relative interior of an edge adjacent to [x1x2], say y2

between x2 and x3, then, by Lemma 3, one of the edges of x4y1y2 is contained in
any homothet of C containing x4,y1,y2. This leads to a contradiction as before.
Thus there is no point in S between x2 and x3, nor between x1 and x4.

There are now two cases:

1. There is no point between x3 and x4.
2. There is a point between x3 and x4.

In case 1, apply Lemma 3 to homothets of C covering x1,x2,x4. If all such homo-
thets cover [x1x2], then we have found a homothet covering S. We may therefore
assume without loss of generality that any homothet of C covering x1,x2,x4 also
covers [x1x4], and similarly, any homothet of C covering x1,x2,x3 also covers
[x2x3].

Thus any homothet of C covering x1,x2,x4,y1 also contains [x1x4] ∪ [x1x2].
Thus C contains a wedge homothetic to [x1x4] ∪ [x1x2]. Similarly, C contains a
wedge homothetic to [x1x2] ∪ [x2x3]. It then easily follows that a homothet of
C covering x1,x2,x3,x4 must also cover [x1x4] ∪ [x2x3]. If this homothet does
not already cover [x1x2], we may apply a further homothety to obtain a homothet
covering [x1x2] ∪ [x1x4] ∪ [x2x3].

In case 2, let y2 be a point between x3 and x4. As in case 1 we obtain that one
of the following two situations occurs:

(a) Any homothet of C covering x1,x2,x4 also covers [x1x4], and any homothet
of C covering x1,x2,x3 also covers [x2x3].

(b) Any homothet of C covering x1,x3,x4 also covers [x1x4], and any homothet
of C covering x2,x3,x4 also covers [x2x3].
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Assume without loss of generality that we have (a) (as in case 1). As before we have
that C contains homothets of [x1x4] ∪ [x1x2] and [x1x2] ∪ [x2x3]. By Lemma 3,
any homothet of C covering x2,x4,y2 must cover [x4y2]. Thus any homothet
covering x1,x2,x4,y2 also covers the wedge [x1x4]∪[x4y2]. Similarly, C contains a
homothet of [x2x3]∪[x3x4]. Thus C is a quadrilateral with sides parallel to the sides
of convS. As in case 1 there is a homothet of C covering [x1x2] ∪ [x1x4] ∪ [x2x3].
It is then not difficult to see that there is a homothet of C covering [x1x2] and
[x3x4].

We now consider the case where convS has three vertices, say x1,x2,x3. If
there are further points of S on only one edge, say y between x1 and x3, then any
homothet of C covering {x1,x2,x3,y} contains S. If there are further points of S
on all three edges, then Lemma 3 applied to three such points, one from each edge,
provides a contradiction. We may therefore assume that there are points y1,y2 ∈ S
with y1 between x2 and x3 and y2 between x3 and x1, and no points of S between
x1 and x2.

Suppose that [x2x3] is contained in any homothet of C covering x1,x2,x3. Then
any homothet covering x1,x2,x3,y2 covers all of S. A similar argument holds
for [x1x3]. We may therefore assume that any homothet of C covering x1,x2,x3

contains [x1x2], by Lemma 3. Considering x1,x2,x3,y1, we see that C has a wedge
homothetic to [x1x2] ∪ [x2x3]. Similarly, C has a wedge homothetic to [x1x2] ∪
[x1x3]. Using Lemma 3 again, any homothet of C covering x1,x2,y1,y2 must
cover [x1y2] and [x2y1]. Thus C contains a homothet of [x1y2] ∪ [x1x2] ∪ [x2y1].
Any homothet of C covering x3,y1,y2 must contain [x3y1] or [x3y2]. Assume
without loss of generality that it contains [x3y1]. Then any homothet containing
x1,x3,y1,y2 must contain [x3y1] ∪ [x3x1]. Thus C is a triangle, a case that we
excluded.

Finally, the case where convS has 2 vertices is trivial.

Proof of Theorem A. We again omit the simple proof that H∆ has Helly order 4,
and assume for the remainder of the proof that C is not the boundary of a triangle.
We assume that

⋂
S = ∅ and aim for a contradiction. Let k + 1 be the smallest

cardinality of a sub-collection of S with empty intersection. By assumption, k ≥
4. Without loss of generality we may assume that S is this sub-collection, say
S = {C1, . . . , Ck+1}. For each j = 1, . . . , k + 1, choose xj ∈

⋂
i6=j Ci. Let X =

{x1, . . . ,xk+1}. Then xj 6∈ Cj and any subset of X of size k contained in some
Ci. By Theorem B, X is contained in some homothet C0 of C. Thus for all
i = 1, . . . , k + 1, C0 and Ci are two distinct homothets of C covering X \ {xi}.
Also, X is in convex position.

If convX has at least six vertices, say x1, . . . ,x6 in this order, then, since
x2,x4,x6 are contained in more than one homothet of C, one of [x2x4], [x4x6],
[x6x2] must be contained in C0, by Lemma 3. But C0 also contains x1,x3,x5,
contradicting its convexity.

If convX has exactly five vertices, say x1, . . . ,x5, then by Lemma 3, since
x1,x2,x4 are contained in more than one homothet of C, [x1x2] ⊂ C0. Simi-
larly, [xixi+1] ⊂ C0 for all i. It follows that C0 = ∂convX . Again using Lemma 3,
all homothets of C containing x1,x2,x4,x5 must contain [x1x2] and [x4x5]. But
there is only one such homothet, viz. C0 (since C0 is the pentagon with vertices
x1, . . . ,x5). This is a contradiction, since C3 is another such homothet.



HELLY-TYPE THEOREMS FOR HOMOTHETS 931

If convX has exactly four vertices, say x1, . . . ,x4, then, since #X > 4, there
must be an x5 on some edge, say on [x3x4]. Thus [x3x4] ⊂ C0. Since x5 6∈ C5,
[x3x4] 6⊂ C5. Also, [x1x3] 6⊂ C0. Applying Lemma 3 to x1,x3,x4, we find that
[x1x4] ⊂ C0. Similarly, [x2x3] ⊂ C0. Applying Lemma 3 to x1,x2,x5, we obtain
that [x1x2] ⊂ C0. It follows that C0 = ∂convX . Thus there is only one homothet
containing x1,x2,x3,x4, a contradiction.

If convX has exactly three vertices, say x1,x2,x3, then, since #X ≥ 5, there
must be at least two other points x4,x5. If they are on the same edge, say on
[x1x2], then, since x1,x2,x4 ∈ C5, we must also have x5 ∈ C5, a contradiction.
Thus x4 and x5 are on different edges, say x4 ∈ [x1x2] and x5 ∈ [x2x3]. Apply
Lemma 3 to x1,x2,x3. If all homothets containing x1,x2,x3 also contain [x1x3],
then C0 = ∂conv{x1,x2,x3}. Thus C is a hollow triangle, a case we excluded.
If all such homothets contain [x1x2], then x4 ∈ C4, a contradiction. If all such
homothets contain [x2x3], then we have a similar contradiction.

Finally, if convX is collinear, then there are at least four points x1,x2,x3,x4

on a line, say with x2,x3 between x1 and x4. Since x1,x2,x4 ∈ C3, it follows that
[x1x4] ⊂ C3. But then x3 ∈ C3, a contradiction.

Our original assumption
⋂
S = ∅ was therefore incorrect.
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