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CHARACTERIZATIONS OF PARACOMPACTNESS
AND LINDELÖFNESS BY THE SEPARATION PROPERTY

YUKINOBU YAJIMA

(Communicated by Alan Dow)

Abstract. The separation property in our title is that, for two spaces X and
Y , any two disjoint closed copies of X in Y are separated by open sets in Y . It
is proved that a Tychonoff space X is paracompact if and only if this separation
property holds for the space X and every Tychonoff space Y which is a perfect
image of X × βX (where βX denotes the Stone-Čech compactification of X).
Moreover, we give a characterization of Lindelöfness in a similar way under
the assumption of paracompactness.

1. Introduction

Throughout this paper, all spaces are assumed to be Hausdorff. Let Y be a
space. We say that two disjoint subsets A and B in Y are separated by open sets in
Y if there are two disjoint open sets U and V in Y such that A ⊂ U and B ⊂ V .
Here we deal with the separation property that, for two spaces X and Y , any two
disjoint closed copies of X in Y are separated by open sets in Y .

Arhangel’skĭı [Ar] gave a survey on relative topological properties and relative
topological spaces. Since this subject includes not only some applications but also
many problems, it has been studied in many papers. As an application of it,
Arhangel’skĭı and Tartir [AT] characterized compactness by the relative regularity
property. Moreover, they raised two problems which suggested a characterization
of Lindelöfness by the separation property above (see [AT, Problems 1 and 2]).
Bella and Yaschenko [BY] answered these problems as follows. Matveev, Pavlov
and Tartir [MPT] also independently proved almost the same result.

Theorem 1.1 ([BY], [MPT]). For a Tychonoff space X, the following are equiva-
lent.

(a) X is Lindelöf.
(b) For every Tychonoff space Y , any two disjoint closed copies of X in Y are

separated by open sets in Y .

The survey [Ar] mainly dealt with relative normality: For a space Y , we say that
a subspace X in Y is (strongly) normal in Y if for any disjoint closed sets A and
B in Y (in X), A∩X and B ∩X are separated in Y . Their proofs of Theorem 1.1
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simultaneously yield an answer to [Ar, Problems 49 and 50] (= [AT, Problems 3
and 4]) for this property, which is

Theorem 1.2 ([BY], [MPT]). For a normal space X, the following are equivalent.
(a) X is Lindelöf or almost compact.
(b) X is (strongly) normal in every larger Tychonoff space Y .

In Theorems 1.1 and 1.2, the space Y ranges over the class of all Tychonoff spaces
containing X . In fact, the spaces Y constructed in [BY], [MPT] are so complicated
that they cannot be represented in terms of only the space X . So it seems to be
natural to consider the following question:

Question. Can the class over which Y ranges in Theorems 1.1 or 1.2 be restricted
to some smaller class C(X) of spaces related to X?

On the other hand, the author [Ya] proved that a Tychonoff space X is Lindelöf
if and only if the subspace (X × αX) ∪ (αX ×X) of the square (αX)2 is normal
for some compactification αX of X . This result is based on Tamano’s Theorem
for paracompactness in [T1], [T2] stated below. These two results give us some
suggestions about how to find the class C(X). The purpose of this paper is to give
an answer to our Question for Theorem 1.1, which will be divided into two steps.

In the first step, we prove that paracompactness can be characterized in a similar
way as in Theorem 1.1. In the characterization, C(X) is given as the class consisting
of all Tychonoff spaces that are perfect images of the product X×βX of the spaceX
and its Stone-Čech compactification βX . This result itself might be more interesting
than the original purpose.

In the second step, by the first one, we may assume the paracompactness of X
for our purpose. Under this assumption, we can also characterize Lindelöfness in
a similar way as Theorem 1.1, where C(X) is given by the class consisting of the
subspaces (X × γX) ∪ (γX ×X) of (γX)2 for all compactifications γX of X .

Thus, our results do not only give an extension of Theorem 1.1, but also our
proof seems to be rather simpler than those in [BY], [MPT].

2. Paracompactness

Lemma 2.1. Let X be a space and C a compact space. Let F be a closed subspace
in X ×C. Let Fx be a non-empty subset of C such that {x} × Fx = F ∩ ({x} ×C)
for each x ∈ X. Let Y be the quotient space of X ×C by identifying {x}×Fx with
a point 〈x, px〉 for each x ∈ X. Let q : X × C → Y be the quotient map. Then we
have

(1) q is a perfect map;
(2) {〈x, px〉 : x ∈ X} is a closed subspace of Y which is homeomorphic to X;
(3) if X is Tychonoff, then Y is also Tychonoff.

Proof. (1): Let πX : X × C → X be the projection. Let M be a closed subset in
X × C. Note that q−1q(M) = M ∪

(
[πX(M ∩ F ) × C] ∩ F

)
. Since πX is a closed

map, q−1q(M) is a closed set in X × C. Since q is a quotient map, it follows that
q is a closed map. It is obvious that q−1(y) is compact for each y ∈ Y . Hence q is
a perfect map.

(2): Let P = {〈x, px〉 : x ∈ X}. Since each Fx is non-empty, we have P = q(F ).
Since q is a closed map, P is a closed subset in Y . Consider the natural map
ϕ : P → X defined by ϕ(x, px) = x for each x ∈ X . Then it is clear that ϕ
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is a continuous bijection. Note that ϕ(A) = πX(q−1(A)) for each A ⊂ P . Let
R be a closed subset in P . Since R is closed in Y and πX is a closed map, it
follows that ϕ(R) is closed in X . Hence ϕ is a closed map, which means that it is
a homeomorphism.

(3): Let y ∈ Y and let K be a non-empty closed set in Y with y 6∈ K. In case
y 6= 〈x, px〉 for each x ∈ X , we can easily find a continuous function f : Y → [0, 1]
such that f(y) = 0 and f(K) = {1}. Hence, we only need to consider the case that
y = 〈x, px〉 for some x ∈ X . Let L = q−1(K). By q−1(y) = F ∩ ({x}×C), we have
F ∩ L ∩ ({x} × C) = ∅. Since C is compact, there are an open neighborhood U of
x in X and a binary open cover {V,W} of C such that

(U × V ) ∩ L = ∅ and (U ×W ) ∩ F = ∅.
Let A = πC

(
F ∩ (U ×C)

)
and B = πC

(
L∩ (U ×C)

)
, where πC : X×C → C is the

projection. Since V ∩B = ∅ and W ∩A = ∅, it follows that ClC A∩ClC B = ∅. Since
C is normal, there is a continuous function ψ : C → [0, 1] such that ψ(A) = {0}
and ψ(B) ⊂ {1}. On the other hand, since X is Tychonoff, there is a continuous
function ϕ : X → [0, 1] such that ϕ(x) = 0 and ϕ(X \ U) ⊂ {1}. Now, define a
function g : X ×C → [0, 1] by g(s, t) = min{1, ϕ(s) +ψ(t)} for each 〈s, t〉 ∈ X ×C.
Then g is continuous. By the definition of g, we have

g(q−1(y)) ⊂ g
(
{x} ×A

)
= {0} and g

(
q−1(K)

)
= {1}.

Since g is constant on q−1(z) for each z ∈ Y , we can define a function h : Y → [0, 1]
such that g = h ◦ q. Since g is continuous and q is a quotient map, h must be
continuous. Now, it is easily verified that h(y) = 0 and h(K) = {1}. Hence the
space Y is Tychonoff. �

Two disjoint subsets A and B in a space X are completely separated if there is
a continuous function f : X → [0, 1] such that f(A) ⊂ {0} and f(B) ⊂ {1}. For a
Tychonoff space X , we denote by βX the Stone-Čech compactification of X , and
by ∆X the diagonal of X , that is, ∆X = {〈x, x〉 : x ∈ X}.

Let us restate Tamano’s Theorem, which plays important roles here.

Tamano’s Theorem ([T1], [T2]). For a Tychonoff space X, the following are
equivalent.

(a) X is paracompact.
(b) X × βX is normal.
(c) For each compact subset K of βX − X, X × K and ∆X are completely

separated in X × βX.

Burke [Bu] gave another proof of Tamano’s Theorem in his own way getting the
following result. We also use his idea to prove our Theorem 2.3 below.

Lemma 2.2 ([Bu]). A space X is paracompact if and only if every open cover
U of X has an open refinement V such that for each x ∈ X there are an open
neighborhood Wx of x and a finite subcollection W of U with St(Wx,V) ⊂

⋃
W and

x ∈
⋂
W.

Theorem 2.3. For a Tychonoff space X, the following are equivalent.
(a) X is paracompact.
(b) For every compactification γX of X, any two disjoint closed copies of X in

X × γX are completely separated in X × γX.
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(c) For every Tychonoff space Y which is a perfect image of X × βX, any two
disjoint closed copies of X in Y are separated by open sets in Y .

Proof. (a) ⇒ (b) and (a) ⇒ (c): These are obvious.
(b)⇒ (a): Let K be any compact subset of βX−X . Then the quotient space of

βX by identifying K with a point p is a compactification of X , which is denoted by
γX . Since p ∈ γX −X , it follows that X × {p} and ∆X are disjoint closed copies
of X in X × γX . So X ×{p} and ∆X are completely separated in X × γX . Hence
X × K and ∆X are completely separated in X × βX . It follows from Tamano’s
Theorem that X is paracompact.

(c) ⇒ (a): For each open set U in X , let U∗ be an open set in βX with U∗ ∩
X = U . Let U be an open cover of X . We may assume that U has no finite
subcover. Let F = X × βX −

⋃
{U × U∗ : U ∈ U}. Let Fx ⊂ βX be such that

{x}×Fx = F ∩ ({x}× βX) for each x ∈ X . Then each Fx is non-empty. Let Y be
the quotient space of X × βX by identifying {x}×Fx with a point 〈x, px〉 for each
x ∈ X .

By Lemma 2.1 (1) and (3), Y is a Tychonoff space and a perfect image of
X × βX . Let P = {〈x, px〉 : x ∈ X}. It follows from Lemma 2.1 (2) that P is a
closed subset of Y which is homeomorphic to X . It is easily checked that ∆X is
a closed subset in Y which is homeomorphic to X . Hence P and ∆X are disjoint
closed copies of X in Y . By the assumption, there is an open set G in Y such
that ∆X ⊂ G ⊂ ClY G ⊂ Y − P . Without loss of generality, we may assume that
G =

⋃
{Vα × V ∗α : α ∈ Λ}, where Vα is an open set in X for each α ∈ Λ. Now, we

put U∗ = {U∗ : U ∈ U}, V = {Vα : α ∈ Λ} and V∗ = {V ∗α : α ∈ Λ}. Pick any
point x ∈ X , and fix it.

Claim. px 6∈ ClYx St(U∗x ,V∗) for some open neighborhood Ux of x in X , where
Yx denotes the quotient space of βX by identifying Fx with a point px.

Proof. Since 〈x, px〉 6∈ ClY G, we can take an open neighborhood H of 〈x, px〉 in
Y with H ∩ G = ∅. There are an open neighborhood Ux of x in X and an open
set Wx in βX such that {x} × Fx ⊂ Ux × Wx ⊂ q−1(H). Then we have that
(Ux ×Wx) ∩ (Vα × V ∗α ) = ∅ for each α ∈ Λ. Since X is dense in βX , U∗x ∩ V ∗α 6= ∅
implies Wx ∩ V ∗α = ∅ for each α ∈ Λ. Hence we have Wx ∩ St(U∗x ,V∗) = ∅. This
implies that px 6∈ ClYx St(U∗x ,V∗).

Note that βX − Fx = St(x,U∗). By the Claim, the compact set ClYx St(U∗x ,V∗)
is contained in Yx − {px} = St(x,U∗). There is a finite subcollection S of U∗
such that St(U∗x ,V∗) ⊂

⋃
S and x ∈

⋂
S. Here, let W = {S ∩ X : S ∈ S}.

Then W is a finite subcollection of U such that x ∈
⋂
W . Moreover, we have

St(Ux,V) = St(U∗x ,V∗) ∩X ⊂
⋃
S ∩X =

⋃
W . Hence it follows from Lemma 2.2

that X is paracompact. �

3. Lindelöfness

A space X is ω1–compact (or the extent of X is countable) if every closed discrete
subset in X is at most countable. According to [AT], [MPT], Gordienko [Go] proved
that if a Tychonoff space X is normal in every larger Tychonoff space, then X is
ω1–compact.

Here, for a Tychonoff space X and a compactification γX of X , let us regard
(X × γX) ∪ (γX ×X) as the subspace of the square (γX)2. Modifying the proof
of [Ya, Lemma 2.2], we obtain the following.
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Lemma 3.1. If for every compactification γX of a Tychonoff space X, any two
disjoint closed copies of X in (X × γX) ∪ (γX ×X) are separated by open sets in
it, then X is ω1–compact.

Proof. Assume that X is not ω1–compact. There is an uncountable closed discrete
subset D in X . Let D∗ be the set of all accumulation points of D in βX . Consider
the quotient space of βX by identifying D∗ with a point p. As this is a compact-
ification of X , we denote it by γX . Note that p ∈ γX −X and that γX contains
the one-point compactification A(D) = D ∪ {p} of D as a closed subspace. Let
Z = (X × γX) ∪ (γX × X) and let Y = A(D)2 − {〈p, p〉}. Then Y is a closed
subspace of Z. Since X × {p} and {p} ×X are disjoint closed subsets in Z, there
are disjoint open sets U and V in Z such that X × {p} ⊂ U and {p} × X ⊂ V .
Hence D×{p} and {p}×D are separated by open sets U ∩ Y and V ∩ Y in Y . On
the other hand, it is easily seen that D× {p} and {p} ×D cannot be separated by
open sets in Y (for example, see the proof of [Gr, Lemma 2.5]). �
Theorem 3.2. For a Tychonoff space X, the following are equivalent.

(a) X is Lindelöf.
(b) For every compactification γX of X, any two disjoint closed copies of X in

(X × γX) ∪ (γX ×X) are completely separated in it.
(c) X is paracompact, and for every compactification γX of X, any two disjoint

closed copies of X in (X × γX) ∪ (γX ×X) are separated by open sets in
it.

Proof. (a) ⇒ (b): Since (X × γX) ∪ (γX ×X) is Lindelöf, it is normal.
(b) ⇒ (c): It suffices to show that X is paracompact, which can be verified in

the same way as in the proof of Theorem 2.3. Let K be any compact subset of
βX −X . We let γX be the compactification of X by identifying K with a point p
in βX . Then X ×{p} and ∆X are completely separated in (X × γX)∪ (γX ×X).
Thus, they are also completely separated in X × γX . Hence X ×K and ∆X are
completely separated in X × βX . It follows from Tamano’s Theorem that X is
paracompact.

(c) ⇒ (a): It follows from Lemma 3.1 that X is ω1–compact. Thus, we have
only to recall that every paracompact and ω1–compact space is Lindelöf. �

As a consequence, Theorem 1.1 in the Introduction immediately follows from
our Theorems 2.3 an 3.2.
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