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TO COMPLEX BANACH SPACES

S. J. DILWORTH AND JOSEPH P. PATTERSON
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Abstract. Let ε > 0 be sufficiently small. Then, for θ = 0.225
√
ε, there exists

δ := δ(ε) < 1 such that if (ei)
n
i=1 are vectors in the unit ball of a complex

Banach space X which satisfy

E

∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥ ≥ δn
(where (Zi) are independent complex Steinhaus random variables), then there

exists a set B ⊆ {1, . . . , n}, with |B| ≥ θn, such that∥∥∥∥∥∑
i∈B

ziei

∥∥∥∥∥ ≥ (1 − ε)
∑
i∈B
|zi|

for all zi ∈ C (i ∈ B). The
√
ε dependence on ε of the threshold proportion θ

is sharp.

1. Introduction

A well-known theorem of Elton [5, Th. 1] on `n1 subsystems has an ‘isomorphic’
and an ‘almost isometric’ version. For the isomorphic version and for related results,
we refer the reader to [5, 8, 13]. The isomorphic result was extended to complex
Banach spaces in [7, 8].

In this paper we are concerned with the almost isometric version of Elton’s
theorem, which may be formulated as follows.

Theorem (Elton). Suppose that θ ∈ (0, 1/2) and that ε ∈ (0, 1). There exists
δ := δ(θ, ε) < 1 such that if (ei)ni=1 are vectors in the unit ball of a real Banach
space X such that

average
±

∥∥∥∥∥
n∑
i=1

±ei

∥∥∥∥∥ ≥ δn
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(the average taken over all choices of ±), then there exists a set B ⊆ {1, . . . , n},
with |B| ≥ θn, such that ∥∥∥∥∥∑

i∈B
aiei

∥∥∥∥∥ ≥ (1− ε)
∑
i∈B
|ai|

for all real scalars (ai)i∈B.

A surprising and interesting feature of the above result is that the ‘threshold’
proportion θ = 1/2 is independent of ε. An example due to Szarek [5, p. 121]
shows that this is the optimal threshold, and recently it was shown that it is still
the optimal threshold even if the hypothesis is strengthened substantially, e.g. by
replacing the average value of ‖

∑n
i=1±ei‖ by the minimum value instead [4].

In this paper we prove a complex version of the above result. Accordingly, we
now assume that (ei)ni=1 are vectors in the unit ball of a complex Banach space X ,
and we seek a large set B ⊆ {1, . . . , n} such that∥∥∥∥∥∑

i∈B
ziei

∥∥∥∥∥ ≥ (1− ε)
∑
i∈B
|zi|

for all complex scalars (zi)i∈B . It is easy to see that the hypothesis of Elton’s
theorem—that the average of ‖

∑
±ei‖ over all choices of ± signs is large—is not

powerful enough to obtain the desired conclusion. In the complex setting we should
instead consider the average of ‖

∑
eiθjej‖ over all complex signs (eiθj ). This can

sometimes give rise to interesting phenomena which arise specifically in complex
Banach spaces: a good example of this is the property of complex uniform convexity
studied in [3].

In the language of probability theory, this means that we should replace Bernoulli
averages by Steinhaus averages. Let (Zi)∞i=1 be a sequence of independent complex
Steinhaus random variables (defined on a probability space (Ω,Σ, P )) uniformly
distributed on {z : |z| = 1}, i.e. P (a ≤ arg(Zi) ≤ b) = (b− a)/(2π) for 0 ≤ a ≤ b <
2π.

Now we can state the complex analogue of Elton’s theorem. (Here E denotes
expected value as usual.)

Theorem. Let ε > 0 be sufficiently small. Then, for θ = (0.99/(π
√

2))
√
ε, there

exists δ := δ(ε) < 1 such that if (ei)ni=1 are vectors in the unit ball of a complex
Banach space X which satisfy

E

∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥ ≥ δn,
then there exists a set B ⊆ {1, . . . , n}, with |B| ≥ θn, such that∥∥∥∥∥∑

i∈B
ziei

∥∥∥∥∥ ≥ (1− ε)
∑
i∈B
|zi|

for all complex scalars (zi)i∈B . Moreover, we may take δ = 1− 4.45 · 10−5ε3/2 for
all n ≥ N(ε).

Remarks. 1. Note that the ‘threshold’ now depends on ε.
2. The number 0.99 may be replaced by any number less than unity provided

the coefficient of ε3/2 in the estimate for δ is adjusted accordingly. Note that the
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coefficient of
√
ε, when 0.99 is replaced by unity, is approximately 0.225. We do not

know the best value for this coefficient, but Example 1 below shows that it cannot
exceed 1.3862.

3. The estimate for δ is a byproduct of the proof. We do not know whether the
ε3/2 dependence is of the correct order.

4. Obviously, there exists c > 0 such that, for θ = c
√
ε, the Theorem is valid for

all ε ∈ (0, 1).

The Theorem is reasonably sharp. Indeed, for any fixed δ < 1, the
√
ε depen-

dence of |A| on ε is of the correct order as the following example shows. This
example is based on the aforementioned example given by Szarek.

Example 1. Let q ≥ 2 and m ≥ 1 be positive integers and set n := mq. Let S
be the collection of all n-tuples (ξi)ni=1 of unimodular complex numbers such that
exactly m of the ξi’s fall into each of the following q arcs of the unit circle:

Aj =
{
eiθ : (j − 1)

(
2π
q

)
≤ θ < j

(
2π
q

)}
(1 ≤ j ≤ q).

We define a norm ‖·‖ on Cn in the following way (here (ei)ni=1 is the standard basis
of Cn): ∥∥∥∥∥

n∑
i=1

ziei

∥∥∥∥∥ = max
(ξi)∈S

∣∣∣∣∣
n∑
i=1

ξizi

∣∣∣∣∣ .
Note that ‖ei‖ = 1 (1 ≤ i ≤ n). By the Strong Law of Large Numbers,

E
1
n

∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥→ 1 as n→∞.

In particular, if δ < 1 is fixed, we have

E

∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥ > δn

for all sufficiently large n. Now fix y ∈ (0, 1/2) and suppose that |A| = 2m(1 + y).
Then we have ∥∥∥∥∥∑

i∈A
ei

∥∥∥∥∥ = 2m
∣∣∣1 + ye

2πi
q

∣∣∣
= |A|

(
1− 2π2y

(1 + y)2

1
q2

+O

(
1
q4

))
.

So, for large q, we have ∥∥∥∥∥∑
i∈A

ei

∥∥∥∥∥ ∼ |A|
(

1− 2π2y

(1 + y)2

1
q2

)
.

Thus, making the change of variable ε := (2π2y/(1 + y)2)/q2, we have

|A| = 2m(1 + y) =
2n(1 + y)

q
=

(√
2(1 + y)2

π
√
y

√
ε

)
n.
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The coefficient of
√
ε is minimized when y = 1/3. Setting y = 1/3, we get

|A| =
(

16
√

2
3π
√

3

√
ε

)
n.

This example shows that the best value for the coefficient of
√
ε in the Theorem is

no greater than (16
√

2)/(3π
√

3) ≈ 1.38612.

We present the proof of the Theorem in Section 3. The basic argument is similar
to the proof of Elton’s theorem in [5], but the details are considerably more compli-
cated. The reason for the extra complication can be traced to the aforementioned
fact that the threshold proportion is no longer independent of ε.

The proof of Elton’s theorem uses the combinatorial result known as the Sauer-
Shelah Lemma [9, 10, 11]. Besides Elton’s theorem, this result has found many
other applications in Banach space theory, e.g. [12]. Our result requires a nontrivial
extension of the Sauer-Shelah Lemma which is due to Karpovsky and Milman [6].
For completeness we include a direct proof of this result in Section 2.

Notation and terminology are standard. Since our results are asymptotic in
nature, we make the standing assumption that certain quantities, such as θn, are
positive integers. This helps to simplify the notation. We also use the following
notation for asymptotic comparisons: f(n) ∼ g(n) means limn→∞ f(n)/g(n) = 1
and f(n) . g(n) means limn→∞ f(n)/g(n) ≤ 1.

2. A theorem of Karpovsky and Milman

In this section we give a direct proof of a combinatorial result of Karpovsky and
Milman [6] that is needed for the proof of the Theorem. A more general result,
which yields the theorem of Karpovsky and Milman as a special case, was proved
by Alon [1] (see also [2] for an exposition).

Notation. Let q ≥ 2 and n ≥ 1 be fixed positive integers. Let Φqn be the collection
of all n-tuples (φi)ni=1, where φi ∈ {0, 1, . . . , q − 1}. For A ⊆ {1, . . . , n}, let ΦqA be
the collection of all tuples (φi)i∈A indexed by A. For any set S ⊆ Φqn, we define
the projection PA(S) in the natural way:

PA(S) = {(φi)i∈A : φ ∈ S}.
We say that A has full density in S if PA(S) = ΦqA. Also, we say that S has density
k if there exists a set A of full density in S such that |A| = k. (Note that if S has
density k, then it has density j for all 1 ≤ j ≤ k.)

The proof uses the following lemma which can be proved by a simple counting
argument which we omit.

Lemma 1. For all n > k ≥ 1 and q ≥ 2 the following combinatorial identity holds:
k∑
j=0

(
n

j

)
(q − 1)n−j =

k−1∑
j=0

(
n− 1
j

)
(q − 1)n−1−j +

k∑
j=0

(
n− 1
j

)
(q − 1)n−j .

Theorem (Karpovsky and Milman). If S ⊆ Φqn, 1 ≤ k ≤ n, and

|S| >
k−1∑
j=0

(
n

j

)
(q − 1)n−j ,

then S has density k.
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Remark 5. The case q = 2 is the Sauer-Shelah Lemma.

Proof. We will prove the result by a double induction argument, first on k and then
on n. The inductive hypothesis for k asserts that the result holds for all n ≥ k.
Clearly the result holds for k = 1 and all n ≥ 1, and so the induction on k starts.
Fix p ∈ {1, . . . , n} and set p := {1, . . . , n} \ {p}. For fixed k > 1, we will obtain the
result for all n ≥ k by induction on n. We note that if n = k the result is trivial
since

k−1∑
j=0

(
k

j

)
(q − 1)k−j = qk − 1.

So suppose that n > k > 1. Set Fp = {φ ∈ S : |P−1
p (Pp(φ)) ∩ S| = q}. (Recall

that Pp(S) is the projection of S onto the set of coordinates p.) Observe that Fp
consists of those φ ∈ S with the property that if the value of φ is freely changed at
coordinate p, then the new n-tuple so obtained still belongs to S.

First suppose that

|Fp| > q

k−2∑
j=0

(
n− 1
j

)
(q − 1)n−1−j.

Then

|Pp(Fp)| >
k−2∑
j=0

(
n− 1
j

)
(q − 1)n−1−j.

So, by our inductive hypothesis on k applied to k−1, we see that Pp(Fp) has density
k−1 in p. But this implies that Fp (and hence S) has density k in {1, . . . , n}. Now
suppose that

|Fp| ≤ q
k−2∑
j=0

(
n− 1
j

)
(q − 1)n−1−j.

Then

|Pp(S)| ≥ |Fp|
q

+
|S| − |Fp|
q − 1

=
|S|
q − 1

−
(

1
q − 1

)
|Fp|
q
,

since Pp is a q-to-1 mapping on Fp and at most a (q − 1)-to-1 mapping on S \ Fp.
Thus,

|Pp(S)| >
(

1
q − 1

)k−1∑
j=0

(
n

j

)
(q − 1)n−j −

k−2∑
j=0

(
n− 1
j

)
(q − 1)n−1−j


=
k−1∑
j=0

(
n− 1
j

)
(q − 1)n−1−j

by an application of Lemma 1 with k replaced by k − 1. Now by our inductive
hypothesis on n applied to n− 1 we see that Pp(S) has density k in p, and thus S
has density k in {1, . . . , n}.
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Example 2. For a fixed k and n, with 1 ≤ k ≤ n, let S consist of all n-tuples
which have at most k − 1 coordinates equal to 0. Clearly S has density k − 1 but
does not have density k. Also

|S| =
k−1∑
j=0

(
n

j

)
(q − 1)n−j .

This shows that the Karpovsky-Milman theorem is best possible.

3. The main result

We shall break the proof down into a long chain of lemmas. But first we must
redefine some of the notation introduced in Section 2.

Notation. Fix positive integers q ≥ 2 and n ≥ 1. Let φ = (φi)ni=1 be an n-tuple of
arcs, where each arc φi is of the form

φi =
{
eiθ :

(
j − 1
q

)
2π ≤ θ <

(
j

q

)
2π
}

for some 1 ≤ j ≤ q. Let Φqn be the collection of all such n-tuples.
Now fix α, β ∈ (0, 1); their precise values, depending on ε, will be chosen later.
Recalling that (Zi)ni=1 is a sequence of independent Steinhaus random variables

defined on a probability space (Ω,Σ, P ), let

E :=

{
ω ∈ Ω :

∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥ ≥ (1− αβ)n

}
and, for each φ ∈ Φqn, let

Eφ := E ∩ {ω ∈ Ω : Zi ∈ φi for 1 ≤ i ≤ n}.

Finally, let S := {φ ∈ Φqn : P (Eφ) > 0}.

Lemma 2. Suppose that

E

∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥ ≥ (1− αβ/2)n.(1)

Then P (Eφ) > 0 for at least qn/2 of the φ’s, i.e. |S| ≥ qn/2.

Proof.(
1− 1

2
αβ

)
n ≤ E

(∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥
)

= E

(∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥ |E
)
P (E) + E

(∥∥∥∥∥
n∑
i=1

Ziei

∥∥∥∥∥ |Ec
)

(1− P (E))

≤ nP (E) + (1− P (E))(1 − αβ)n.

Thus, P (E) ≥ 1/2. Note that, for each φ ∈ Φqn, we have

P (Eφ) ≤ P{ω ∈ Ω : Zi ∈ φi, 1 ≤ i ≤ n} = 1/qn.
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Thus,

1/2 ≤ P (E) =
∑
φ∈S

P (Eφ) ≤ |S|
qn
,

and so |S| ≥ qn/2.

For each φ ∈ S there exists an n-tuple of unimodular complex numbers (ξφi )ni=1

such that ξφi ∈ φi for 1 ≤ i ≤ n and∥∥∥∥∥
n∑
i=1

ξφi ei

∥∥∥∥∥ ≥ (1− αβ)n.

Indeed, since P (Eφ) > 0, we can choose any ω ∈ Eφ and then take ξφi = Zi(ω) for
all 1 ≤ i ≤ n.

For the rest of the proof we shall assume that (1) is satisfied.

Lemma 3. For each φ ∈ S there exists fφ, a complex linear functional in the unit
ball of X∗, with

fφ

(
n∑
i=1

ξφi ei

)
=

∥∥∥∥∥
n∑
i=1

ξφi ei

∥∥∥∥∥ ≥ (1− αβ)n.

Proof. The Sobczyk-Bohnenblust theorem, i.e. the Hahn-Banach theorem for com-
plex Banach spaces, guarantees the existence of this linear functional.

Setting fφi := fφ(ei), we obtain
∑n

i=1 <[ξφi f
φ
i ] ≥ (1− αβ)n for each φ ∈ S.

Lemma 4. Let Aφ = {i : <[ξφi f
φ
i ] ≥ 1− α}. Then |Aφ| ≥ (1 − β)n for all φ ∈ S.

Proof. For φ ∈ S, we have from above that

(1 − αβ)n ≤
n∑
i=1

<[ξφi f
φ
i ]

=
∑
i∈Aφ

<[ξφi f
φ
i ] +

∑
i∈(Aφ)c

<[ξφi f
φ
i ]

≤ |Aφ|+ (1− α)(n − |Aφ|).
= n− αn+ α|Aφ|.

Thus,
∣∣Aφ∣∣ ≥ (1 − β)n.

Lemma 5. There exist S′ ⊆ S with |S′| ≥ |S| /C(n, βn), and A ⊆ {1, . . . , n} with
|A| ≥ (1− β)n, such that for each φ ∈ S′ and i ∈ A we have <[ξφi f

φ
i ] ≥ (1− α).

Proof. Recall that
∣∣Aφ∣∣ ≥ (1 − β)n and that <[ξφi fi] ≥ (1 − α) for all φ ∈ S and

all i ∈ Aφ. By replacing Aφ by a smaller set, if necessary, we may assume that∣∣Aφ∣∣ = (1− β)n. Then there are at most C(n, βn) possible choices for Aφ. By the
Pigeonhole Principle there exists a set A ⊆ {1, . . . , n} with |A| ≥ (1 − β)n, and
there exists S ′ ⊆ S with |S′| ≥ |S|/C(n, βn), such that Aφ = A for all φ ∈ S′.

Lemma 6. Let PA(S′) be the projection of S′ onto A. Then

|PA(S′)| ≥ |S
′|

qβn
.
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Proof. Since |A| ≥ (1−β)n, it follows that at most qβn elements of S′ project onto
each element of PA(S′). Hence the result follows.

We now address the following question: for θ ∈ (0, 1), does PA(S′) have density
θn in A? By the Karpovsky-Milman Theorem, this question has an affirmative
answer if

|PA(S′)| >
θn∑
k=0

(
| A |
k

)
(q − 1)n−k.(2)

We shall show that (2) is satisfied for appropriate choices of α, β, and θ. First
we estimate the right-hand side of (2) from above. Note that, since |A| ≤ n, the
following lemma yields such an upper estimate.

Lemma 7. Suppose that θ < 1/q. Then

θn∑
k=0

(
n

k

)
(q − 1)n−k . 1

1−
(

θ
1−θ

)
(q − 1)

1√
2πnθ(1− θ)

(
(q − 1)1−θ

θθ(1 − θ)1−θ

)n
.(3)

Proof. We show that the sum can be dominated by a convergent geometric series
and then apply Stirling’s Formula. Set ak := C(n, k)(q − 1)n−k. Then

ak−1

ak
=
(

k

n+ 1− k

)
(q − 1) ≤

(
k

n− k

)
(q − 1).

So, for k ≤ θn, we have

ak−1

ak
≤
(

θ

1− θ

)
(q − 1) := ρ(θ).

Note that ρ(θ) < 1 since θ < 1/q. Hence

θn∑
k=0

(
n

k

)
(q − 1)n−k ≤

(
n

θn

)
(q − 1)n(1−θ)

∞∑
k=0

ρ(θ)k

≤ 1
1− ρ(θ)

(
n

θn

)
(q − 1)n(1−θ).

Using Stirling’s formula now to estimate C(n, θn) gives the result.

Next we estimate the left-hand side of (2) from below.

Lemma 8.

|PA(S′)| ≥ 1
2

√
β(1 − β)2πn

[
ββ(1− β)(1−β)q1−β

]n
.(4)

Proof.

|PA(S′)| ≥ |S
′|

qβn

(by Lemma 6)

≥ |S|
C(n, βn)qβn
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(by Lemma 5)

≥
1
2q
n

C(n, βn)qβn

(by Lemma 2)

& 1
2

√
β(1− β)2πn

[
ββ(1− β)(1−β)q1−β

]n
by Stirling’s Formula.

Lemma 9. Fix γ ∈ (0, 1) and let θ := γ/q. Then, for all sufficiently large q, there
exists β ∈ (0, 1) such that, for all sufficiently large n, PA(S′) has density θn in A.
Moreover, we can choose β ≤ θ and β ∼ θ as θ → 0, i.e. as q →∞.

Proof. If (2) is satisfied for θ = γ/q, then PA(S′) will have density θn in A. From
Lemmas 7 and 8, if β satisfies

ββ(1− β)(1−β)q(1−β) >
(q − 1)1−θ

θθ(1− θ)(1−θ) ,

then (2) will be satisfied for all sufficiently large n. This is simply because, for fixed
q and γ, the dominant terms in (3) and (4) are the exponential terms.

Taking logarithms of both sides, we require

β ln(β) + (1 − β) ln(1 − β) + (1− β) ln(q)

> (1− θ) ln(q − 1)− θ ln (θ)− (1− θ) ln (1− θ) .
Note that θ → 0 as q →∞. Hence, if β ≤ θ, then

lim
q→∞

β ln(β) = 0,

lim
q→∞

(1 − β) ln(1− β) = 0,

lim
q→∞

θ ln (θ) = 0,

and

lim
q→∞

(1− θ) ln (1− θ) = 0.

Hence, as q →∞, we simply require

(1− β) ln(q) & (1− θ) ln(q − 1),

which is satisfied by some β ≤ θ with β ∼ θ as q →∞.

For the rest of the proof we shall assume that θ = γ/q, where γ ∈ (0, 1) is fixed,
and that β ∼ θ has been chosen in accordance with the previous lemma so that
PA(S′) has density θn in A. Let B ⊆ A be a set of full density for PA(S′) satisfying
|B| ≥ θn.

We require the following simple lemma about complex numbers.

Lemma 10. Suppose that |z| ≤ 1 and that <[z] ≥ (1 − α). Suppose also that
ξ = eiφ, where −2π/q ≤ φ ≤ 2π/q. Then

< [zξ] ≥ (1− α) cos
(

2π
q

)
−
√

2α− α2 sin
(

2π
q

)
.
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Proof. Let z = x + iy and ξ = cosφ + i sinφ. Then x = <[z] ≥ (1 − α) and
y2 ≤ 1− x2 ≤ 2α− α2. So

<[zξ] = x cosφ− y sinφ ≥ (1 − α) cosφ−
√

2α− α2 sinφ.

The worst case clearly occurs when φ = 2π/q, which gives the result.

Lemma 11. Suppose that (ξi)i∈B are unimodular complex numbers, i.e. |ξi| = 1
for all i ∈ B. Then there exists fφ ∈ S′ such that, for all i ∈ B, we have

<[fφ(ξiei)] ≥ (1− α) cos
(

2π
q

)
−
√

2α− α2 sin
(

2π
q

)
.

Proof. Since B has full density in S′ there exists φ ∈ S′ such that ξi ∈ φi for all
i ∈ B. Thus,

<[fφ(ξφi ei)] = <[ξφi f
φ
i ] ≥ 1− α

for all i ∈ B. Since | arg(ξi)− arg(ξφi )| ≤ 2π/q, Lemma 10 gives

<[ξif
φ
i ] ≥ (1− α) cos

(
2π
q

)
−
√

2α− 2α2 sin
(

2π
q

)
for all i ∈ B.

Now suppose that (zi)i∈B is any collection of complex numbers. Let zi = |zi|ξi
be the polar decomposition of zi. Then by Lemma 11∥∥∥∥∥∑

i∈B
ziei

∥∥∥∥∥ ≥ <
[
fφ

(∑
i∈B
|zi|ξiei

)]
=
∑
i∈B
<[ξif

φ
i ]|zi|

≥
∑
i∈B

[
(1− α) cos

(
2π
q

)
−
√

2α− α2 sin
(

2π
q

)]
|zi|.

(5)

Now for the proof of the Theorem.

Proof of the Theorem. From the Taylor expansion we see that for large q and small
α, we have

(1− α) cos
(

2π
q

)
−
√

2α− α2 sin
(

2π
q

)
= 1− 2π2

q2
− α−

√
2α
(

2π
q

)
+ smaller terms.

Recall that β ∼ θ = γ/q as q →∞. Hence

1− 2π2

q2
− α−

√
2α
(

2π
q

)
= 1− 2π2

γ2
β2 − α− 2π

√
2

γ
β
√
α+ smaller terms.

Now we choose values for our parameters. Set γ = 0.999. Provided ε is sufficiently
small, we may choose q := q(ε) ∈ N such that Lemma 9 is satisfied and such that
θ = γ/q and the β given by Lemma 9 satisfy the following:

0.99
π
√

2

√
ε ≤ β ≤ θ ≤ 0.991

π
√

2

√
ε.
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Set α = 4 · 10−5ε. For these choices of parameters, we have

1− 2π2

γ2
β2 − α− 2π

√
2

γ
β
√
α ≥ 1− 0.999ε.

It follows that, for all sufficiently large n (depending on ε),

|B| ≥ θn ≥ (0.99/(π
√

2))
√
ε n,

and from (5) that for all (zi)i∈B , we have∥∥∥∥∥∑
i∈B

ziei

∥∥∥∥∥ ≥ (1− ε)
∑
i∈B
|zi|

for all sufficiently small ε. From Lemma 2 we see that for all sufficiently large n
we can take δ = 1 − αβ/2 ≤ 1 − 4.45 · 10−5ε3/2. Thus we have shown that for all
sufficiently small ε there exists an integer N(ε) such that the Theorem holds for all
n ≥ N(ε) with δ = 1− 4.45 · 10−5ε3/2.

It remains to dispose of the case n < N(ε). But in this case an easy triangle
inequality calculation which we omit shows that there exists δ′ := δ′(ε) < 1 such
that if n < N(ε) and E ‖

∑n
i=1 Ziei‖ ≥ δ′n, then ‖

∑n
i=1 ξiei‖ ≥ n − ε for all

unimodular complex numbers (ξi)ni=1. Let (zi)ni=1 be complex numbers satisfying∑n
i=1 |zi| = 1, and let zi = |zi|ξi be the polar decomposition of zi. Then∥∥∥∥∥

n∑
i=1

ziei

∥∥∥∥∥ ≥
∥∥∥∥∥
n∑
i=1

ξiei

∥∥∥∥∥−
∥∥∥∥∥
n∑
i=1

(1 − |zi|)ξiei

∥∥∥∥∥
≥ n− ε−

n∑
i=1

(1− |zi|)

= 1− ε = (1− ε)
n∑
i=1

|zi|.

Thus, for n < N(ε), we can take δ = δ′ and B = {1, . . . , n}, which completes the
proof.
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