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Abstract. We apply a method of quasilinearization to a boundary value prob-
lem for an ordinary differential equation on an unbounded domain. A uniquely
determined Green’s function, which is integrable and of fixed sign, is employed.
The hypotheses to apply the quasilinearization method imply uniqueness of so-
lutions. The quasilinearization method generates a bilateral iteration scheme
in which the iterates converge monotonically and quadratically to the unique
solution.

In this paper, we shall apply a method of quasilinearization to the singular
boundary value problem (BVP),

x′′(t) + q(t)x(t) = f(t, x(t)), t ∈ R+,(1)

x(0) = x0, x(t) bounded on R+,(2)

where x0 is real, f : R+ × R → R is continuous, q : R+ → R− is continuous, and
q(t) ≤ −c2 < 0, t ∈ R+, for some c2 > 0. We model the singular BVP based on the
work of Bebernes and Jackson [1].

The method of quasilinearization has recently been studied and extended exten-
sively. It is generating a rich history beginning with the works by Bellman [2, 3].
Lakshmikantham, Leela, Vatsala, and many co-authors have extensively developed
the method and have applied the method to a wide range of problems. We refer the
reader to the recent work by Lakshmikantham and Vatsala [12] and the extensive
bibliography found there. The method we produce here is modeled by the method
developed by Lakshmikantham, Leela and McRae [11]; this method is referred to as
the improved generalized quasilinearization method. Analogous methods have been
applied to two-point boundary value problems for ordinary differential equations
and we refer the reader to the papers, [15, 13, 14, 10, 6, 7, 4].

To our knowledge, this paper provides the first application of the quasilineariza-
tion method to singular boundary value problems on unbounded domains. Devi
and Vatsala [5] have recently applied the method to a singular BVP on a bounded
domain.

The method of quasilinearization for BVPs employs a delicate balance of upper
and lower solution methods with monotone methods. Recently, Eloe, Grimm and
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Mashburn [8] developed both the monotone methods and the upper and lower
solution methods that provide the supporting material. Before we develop the
quasilinearization method here, we shall prove one result, Theorem 1, not proved
by Eloe, Grimm and Mashburn [8]; we shall state without proof the other results we
require from [8]. In Theorem 2 we shall develop the method of quasilinearization.

Throughout most of this paper (Lemmas 1, 2, and 3 are exceptions) we shall
assume that

(3) x1 ≤ x2 =⇒ f(t, x1) ≤ f(t, x2), t ∈ R+.

We also require the definitions of upper and lower solutions for the BVP, (1),
(2).
β is an upper solution of the BVP, (1), (2), if β′′ is continuous on R+ and

β′′(t) + q(t)β(t) ≤ f(t, β(t)), t ∈ R+,

β(0) ≥ x0, β(t) bounded on R+,

and α is a lower solution of the BVP, (1), (2), if α′′ is continuous on R+ and

α′′(t) + q(t)α(t) ≥ f(t, α(t)), t ∈ R+,

α(0) ≤ x0, α(t) bounded on R+.

Theorem 1. Assume the monotonicity condition (3). Let α and β denote a lower
and an upper solution of the BVP, (1), (2), respectively. Then

(4) α(t) ≤ β(t), t ∈ R+.

Proof. Set h = α− β and note by the definition of upper and lower solutions that
h(0) ≤ 0. Assume for the sake of contradiction that h is not non-positive on R+.
Set

τ = sup{t ≥ 0 : h(t) ≤ 0}.
Then h(τ) = 0 and h′(τ) ≥ 0.

As a first case, assume there is some t1 > τ such that h′(t1) < 0. Then there
exists some t0 ∈ (τ, t1) such that h(t0) is a maximum value of h on [τ, t1]. Thus,
h(t0) > 0, h′(t0) = 0, and h′′(t0) ≤ 0. By the definition of upper and lower
solutions, and an application of (3),

(5) h′′(t0) ≥ f(t0, α(t0))− f(t0, β(t0))− q(t0)h(t0) > 0.

This is a contradiction and so, for the second case, assume h′(t) ≥ 0, t ≥ τ .
By the definition of τ , h(τ + 1) > 0. Thus, there exists c ∈ (τ, τ + 1) such that
h′(c) > 0. It follows as in the development of (5) that if h(t) ≥ 0, then h′′(t) ≥ 0.
Thus, h′′(t) ≥ 0 on (τ,∞) and so, h′ is nondecreasing on (τ,∞). In particular,

h′(t) ≥ h′(c) > 0, t ∈ [c,∞),

which implies that h is unbounded. This contradicts the definition of upper and
lower solutions of the BVP, (1), (2) and completes the proof. �

Corollary 1. Under the hypotheses of Theorem 1, solutions of the BVP, (1), (2),
are unique.

Lemmas 1, 2, and 3 have all been obtained in [8]. Theorem 4.2 is stated incor-
rectly in [8] and is stated correctly here in Lemma 1.
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Lemma 1. Assume f : R+ × R → R is continuous and for each M > 0, there
exists fM : R+ → R+ which is bounded and continuous and such that

|f(s, x)| ≤ fM (s), |x| ≤M.

Assume q : R+ → R− is continuous such that q(t) ≤ −c2 < 0 for some c2 >
0. Assume there exist α and β, lower and upper solutions of the BVP, (1), (2),
respectively, such that α and β satisfy (4). Then, there exists a solution, x, of the
BVP, (1), (2), satisfying

(6) α(t) ≤ x(t) ≤ β(t), t ∈ R+.

Lemma 2. If −q(t) ≥ c2 > 0, then there exists a unique solution, p0(t), of the
BVP,

x′′(t) + q(t)x(t) = 0, t ∈ R+,

satisfying the boundary conditions, (2).

Lemma 3. Assume f : R+ × R → R is continuous and for each M > 0, there
exists fM : R+ → R+ which is bounded and continuous and such that

|f(s, x)| ≤ fM (s), |x| ≤M.

Assume q : R+ → R− is continuous such that q(t) ≤ −c2 < 0 for some c2 > 0.
Then there exists a uniquely defined Green’s function, G(t, s), defined on R+ ×R+

such that x is a solution of the BVP, (1), (2), if, and only if, x is bounded and
continuous on R+ and

x(t) = p0(t) +
∫ ∞

0

G(t, s)f(s, x(s))ds, t ∈ R+.

The Green’s function satisfies the sign property

G(t, s) < 0, (t, s) ∈ (0,∞)× (0,∞)

and the integrability property ∫ ∞
0

|G(t, s)|ds ≤ 1/c2.

We now develop the quasilinearization method for the BVP, (1), (2).

Theorem 2. Assume f satisfies the monotonicity condition (3). Assume fx and
fxx exist and are continuous on R+ × R. Assume f : R+ × R → R is continuous
and for each M > 0, there exists fM : R+ → R+ which is bounded and continuous
and such that

|f(s, x)| ≤ fM (s), |fx(s, x)| ≤ fM (s), |x| ≤M.

Assume q : R+ → R− is continuous such that q(t) ≤ −c2 < 0 for some c2 >
0. Assume there exists φ(t, x), defined on R+ × R, such that φ, φx, and φxx are
continuous on R+ × R and such that

φxx(t, x) > 0, (t, s) ∈ R+ × R.
Moreover, assume there exists φM : R+ → R+ which is bounded and continuous
and such that

|φ(s, x)| ≤ φM (s), |φx(s, x)| ≤ φM (s), |φxx(s, x)| ≤ φM (s), |x| ≤M.

Set φ = F − f ; we shall require that

(7) Fxx(t, x) ≥ 0, (t, s) ∈ R+ × R.
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Assume α0 and β0, are lower and upper solutions of the BVP, (1), (2), respectively.
Then there exist monotone sequences, {αn} and {βn}, that are solutions of linear
differential equations and that converge in the space of bounded continuous functions
on R+ to the unique solution of the BVP, (1), (2). Moreover, the convergence is
quadratic.

Proof. First apply Theorem 1 and then Lemma 1 to note that there exists a unique
solution, x, of the BVP, (1), (2), satisfying

α0(t) ≤ x(t) ≤ β0(t), t ∈ R+.

By (7), it follows that

(8) f(t, x) ≥ f(t, y) + Fx(t, y)(x− y)− (φ(t, x) − φ(t, y)), (t, x, y) ∈ R+ × R2.

t ∈ R+, x, y ∈ R.
Define two truncations for the nonlinear term f . Define

g(t, x;α0, β0) = f(t, α0(t)) + Fx(t, β0(t))(x − α0(t))− (φ(t, x) − φ(t, α0(t)))

and

G(t, x;β0) = f(t, β0(t)) + Fx(t, β0(t))(x − β0(t)) − (φ(t, x) − φ(t, β0(t))).

For the sake of exposition, we may suppress explicit dependence on t in some of
the algebraic expressions below. Note that since φxx(t, x) > 0, it follows that

gxx(t, x;u, v) < 0, Gxx(t, x; v) < 0, (t, x) ∈ R+ × R.
Thus,

(9) g(t, x;u, v) ≥ g(t, y;u, v) + gx(t, x;u, v)(x− y), (t, x, y) ∈ R+ × R2,

and

(10) G(t, x;u) ≥ G(t, y;u) +Gx(t, x;u)(x − y), (t, x, y) ∈ R+ × R2.

Define further linear truncations, h and H , by

h(t, x;α0, β0) = g(t, α0(t);α0, β0) + gx(t, α0(t);α0, β0)(x− α0),

H(t, x;α0, β0) = G(t, β0(t);β0) +Gx(t, α0(t);β0)(x − β0),
and consider two additional linear BVPs,

(11) x′′(t) + q(t)x(t) = h(t, x;α0, β0), t ∈ R+,

with the boundary conditions, (2), and

(12) x′′(t) + q(t)x(t) = H(t, x;α0, β0), t ∈ R+,

with the boundary conditions, (2). Because of the boundedness assumptions on f ,
fx, φ, and φx, Lemma 1 can apply to each of the BVPs, (11), (2), and (12), (2).

We shall outline the first portion of the proof before providing the technical
details. We have already noted that α0(t) ≤ β0(t), t ∈ R+. Show that α0 and β0

are lower and upper solutions for the truncated BVP, (11), (2); apply Lemma 1
and obtain a solution, α1, of the BVP, (11), (2), satisfying

(13) α0(t) ≤ α1(t) ≤ β0(t), t ∈ R+.

Similarly, show that α0 and β0 are lower and upper solutions for the truncated
BVP, (12), (2); apply Lemma 1 and obtain a solution, β1, of the BVP, (12), (2),
satisfying

(14) α0(t) ≤ β1(t) ≤ β0(t), t ∈ R+.
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Now, show that α1 and β1 are lower and upper solutions for the original BVP, (1),
(2); apply Theorem 1 and obtain

(15) α0(t) ≤ α1(t) ≤ β1(t) ≤ β0(t), t ∈ R+.

Let us first obtain (13). Since

h(t, α0;α0, β0) = g(t, α0;α0, β0) = f(t, α0),

α0 is clearly a lower solution of the BVP, (11), (2). As for β0, apply (8) and (9) to
obtain

f(t, β0(t)) ≤ f(t, α0(t))− Fx(t, β0(t))(α0(t)− β0(t))

+ (φ(t, α0(t)) − φ(t, β0(t))) = g(t, β0(t);α0, β0)

≤ g(t, α0(t);α0, β0) + gx(t, α0(t);α0, β0)(β0 − α0)

= h(t, β0;α0, β0).

Thus, β0 is an upper solution of the BVP, (11), (2). Apply Lemma 1 and obtain
the existence of a solution, α1, of the BVP, (11), (2), satisfying (13).

To obtain (14), β0 is now clearly an upper solution of the BVP, (12), (2). As for
α0, apply (8) and (10) to obtain

f(t, α0(t)) ≥ f(t, β0(t)) + Fx(t, β0(t))(α0(t)− β0(t))

− (φ(t, α0)− φ(t, β0)) = G(t, α0(t);β0)

≥ G(t, β0(t);β0) +Gx(t, α0(t);β0)(α0 − β0)

= H(t, β0;α0, β0).

Thus, α0 is a lower solution of the BVP, (12), (2). Apply Lemma 1 and obtain the
existence of a solution, β1, of the BVP, (12), (2), satisfying (14).

To complete the first part of the argument, we show that α1 and β1 are lower
and upper solutions, respectively of the original BVP, (1), (2). First, consider, α1.
Apply (9), (8) and note that Fxx ≥ 0 implies Fx is increasing in x to obtain

h(t, α1;α0, β0) = g(t, α0;α0, β0) + gx(t, α0;α0, β0)(α1 − α0)

≥ g(t, α1;α0, β0)

= f(t, α0) + Fx(t, β0)(α1(t)− α0(t))− (φ(t, α1)− φ(t, α0))

≥ f(t, α0) + Fx(t, α1)(α1(t)− α0(t)) − (φ(t, α1)− φ(t, α0))

≥ f(t, α1(t)).

Thus, α1 is a lower solution of the BVP, (1), (2). To see that β1 is an upper solution
of the BVP, (1), (2), employ (10) and Gx decreasing to obtain

H(t, β1;α0, β0) = G(t, β0;β0) +Gx(t, α0;β0)(β1 − β0)

≤ G(t, β1;β0) + (Gx(t, α0;β0)−Gx(t, β1;β0))(β1 − β0)

≤ G(t, β1;β0) ≤ f(t, β1).

The next step of the proof is inductive and we outline the details. Define induc-
tively

g(t, x;αn, βn) = f(t, αn(t)) + Fx(t, βn(t))(x − αn)− (φ(t, x) − φ(t, αn)),

G(t, x;βn) = f(t, βn(t)) + Fx(t, βn(t))(x − βn)− (φ(t, x) − φ(t, βn)),

h(t, x;αn, βn) = g(t, αn;αn, βn) + gx(t, αn;αn, βn)(x− αn),
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and

H(t, x;αn, βn) = G(t, βn;βn) +Gx(t, αn;βn)(x− βn).

At each step, we have that αn and βn are lower and upper solutions, respectively,
of the BVP, (1), (2), so

αn(t) ≤ βn(t), t ∈ R+,

by Theorem 1. Show that αn and βn are lower and upper solutions, respectively,
of a BVP,

x′′(t) + q(t)x(t) = h(t, x(t);αn, βn), t ∈ R+,

satisfying the boundary conditions, (2), and apply Lemma 1 to obtain the existence
of a solution, αn+1, of this BVP satisfying

αn(t) ≤ αn+1(t) ≤ βn(t), t ∈ R+.

Similarly, obtain the existence of a corresponding solution, βn+1, of the BVP,

x′′(t) + q(t)x(t) = H(t, x(t);αn, βn), t ∈ R+,

satisfying the boundary conditions, (2); in particular,

αn(t) ≤ βn+1(t) ≤ βn(t), t ∈ R+.

Finally, show that αn+1 and βn+1 are lower and upper solutions, respectively, of
the original BVP, (1), (2), and apply Theorem 1 to obtain

αn(t) ≤ αn+1(t) ≤ βn+1(t) ≤ βn(t), t ∈ R+.

Due to the monotonicity and boundedness, there exists α such that {αn} con-
verges uniformly to α on compact subsets of R+. Moreover,

h(t, αn+1;αn, βn)→ f(t, α).

It follows by Lemma 3 and the dominated convergence theorem that

α(t) = p0(t) +
∫ ∞

0

G(t, s)f(s, α(s))ds, t ∈ R+;

in particular, by Lemma 3, α = x, the unique solution of the BVP, (1), (2). Simi-
larly, β = x, the unique solution of the BVP, (1), (2).

We close the proof by showing the convergence is quadratic. We show the details
for the convergence in βn; the details for the the convergence in αn are analogous.
Let x denote the unique solution of the BVP, (1), (2). Set,

rn = βn − x ≥ 0, pn = x− αn ≥ 0, en = max{||rn||, ||pn||},

where || · || denotes the supremum norm on bounded continuous functions on R+.
With repeated applications of the mean value theorem, there exist

x(t) ≤ cn(t) ≤ dn(t) ≤ βn(t)
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such that
r′′n+1(t) + q(t)rn+1(t) = (β′′n+1(t) + q(t)βn+1(t)) − (x′′(t) + q(t)x(t))

= H(t, βn+1;αn, βn)− f(t, x)

= f(t, βn) + (Fx(t, βn)− φx(t, αn))(βn+1 − βn)− f(t, x)

= fx(t, cn)(βn − x) + (Fx(t, βn)− φx(t, αn))(βn+1 − βn)

≥ fx(t, cn)(βn − x) + (Fx(t, βn)− φx(t, cn))(βn+1 − βn)

= fx(t, cn)(βn − x) + (Fx(t, βn)− φx(t, cn))(βn+1 − x)

+ (φx(t, cn(t)) − Fx(t, βn(t)))(βn − x)

= (Fx(t, cn(t))− Fx(t, βn(t)))rn(t) + (Fx(t, βn)− φx(t, cn))rn+1(t)

≥ (Fx(t, cn(t))− Fx(t, βn(t)))rn(t) + (Fx(t, cn)− φx(t, cn))rn+1(t)

≥ Fxx(t, dn(t))(cn(t)− βn(t))rn(t) + fx(t, cn)rn+1 ≥ −M ||en||2

for some M > 0.
Finally, note that since βn+1 and x are bounded and are solutions of x′′(t) +

q(t)x(t) = H(t, x;αn, βn) and (1), respectively, it follows that r′′n+1 is bounded.
Thus, rn+1 is the unique solution of the BVP,

x′′(t) = r′′n+1(t) + q(t)rn+1(t), t ∈ R+,

satisfying the boundary conditions,

x(0) = 0, x(t) bounded on R+;

in particular, by Lemma 3

0 ≤ rn+1(t) =
∫ ∞

0

G(t, s)(r′′n+1(s) + q(s)rn+1(s))ds

≤M
∫ ∞

0

|G(t, s)|ds||rn||2 ≤M ||rn||2/c2.

�

Remark 1. If fxx ≥ 0, and sufficiently bounded, then F = f and φ = 0 is sufficient.
Conditions other than the convexity condition, (7), can be employed [14]. For
example, if fxx ≤ 0, and sufficiently bounded, take F = f and φ = 0. Define
truncations, g and G, by

g(t, x;α0) = f(t, α0(t)) + Fx(t, α0(t))(x − α0(t)))

and
G(t, x;β0, α0) = f(t, β0(t)) + Fx(t, α0(t))(x − β0(t)).

See [9].

Remark 2. An analogous theorem to Theorem 2 can be stated and proved where one
obtains quadratic convergence but the iterates are solutions of nonlinear equations.
One employs g and G in the truncated BVPs instead of h and H . Similar details
are presented in [11], [10] or [12] for example. In the statement of the theorem, one
would require F to be convex and satisfy all the boundedness hypotheses; one would
not need to require these conditions on φ or fx. For this case, F (t, x) = e−x/(1+t2)
suffices and the hypotheses of the theorem are weakened.

The author thanks the referee for useful and insightful observations.
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