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ON A CHARACTERIZATION
OF MEASURES OF DISPERSION

A. S. FAINLEIB

(Communicated by Claudia M. Neuhauser)

Abstract. Measures of dispersion are characterized by the set of all bounded
random variables whose dispersion is minimized when taken around the origin.

1. Introduction

Let ϕ be a real valued function on R, X a bounded random variable (b.r.v.), and
a a real number. The functional Eϕ(X−a) may be used as a measure of dispersion
of X around a. The base of the measure is the set of all b.r.v. X such that

min
a
Eϕ(X − a) = Eϕ(X).(1)

For example, the base of the first absolute moment E|X − a| is the set of all b.r.v.
with zero median; the base of the second moment E(X − a)2 is the set of all b.r.v.
with zero mean value.

In this paper, we consider a characterization of the measures of dispersion by
their bases. Kagan and Shepp [2] proved that if ϕ is continuous and the base of
the measure Eϕ(X − a) contains all b.r.v. with EX = 0, then ϕ(x) = αx2 + ϕ(0)
with some α ≥ 0, and they also obtained a multivariate version of the result.

In what follows all the functions are real valued; f is a non-negative continuous
function on R with f(0) = 0; Bϕ denotes the base of the measure Eϕ(X − a) (so
B0 is the set of all b.r.v.).

Theorem 1. Let f satisfy the following conditions:

f(x) does not vanish identically on (−∞, 0) or on (0,∞)(2)

and

y

∫ z

0

{f(x+ y)− f(x)− f(y)} dx ≥ 0 for any y, z ∈ R.(3)

If

ϕ is continuous on R and Bf ⊆ Bϕ,(4)

then

ϕ(x) = αf(x) + ϕ(0)(5)

with some α ≥ 0.
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In particular, if f is convex on R, then (2) is equivalent to f(±∞) =∞. More-
over, in this case, the difference f(x + y) − f(x) is an increasing function of x for
any fixed y > 0 (see, for example, [1, 3.18]). Therefore, (3) is fulfilled and we have
the following:

Corollary. If f is convex on R and f(±∞) =∞, then (4) implies (5).

The bases of convex measures are described in the last section. Note that con-
vexity of f on R is not necessary for (3). For example, the function

f(x) = x2(x2 − 3x+ 3)

satisfies (2) and (3) but is not convex on R.

Theorem 2. Let f be absolutely continuous on each finite interval and satisfy (2).
Moreover, let g be defined on R, bounded on each finite interval, g(0) = 0 and
g(x) = f ′(x) at all the points of differentiability of f (hence, almost everywhere).
If ϕ is continuous on R and Bϕ contains all X ∈ B0 with Eg(X) = 0, then (5)
holds.

Condition (2) is essential. The functions

f(x) = (x+ |x|)2, g(x) = 4(x+ |x|) and ϕ(x) = (x+ |x|)3

satisfy all the conditions of Theorems 1 and 2 except (2). Moreover,

Bf = Bϕ = {X ∈ B0 : P (X > 0) = 0},
and Eg(X) = 0 is equivalent to X ∈ Bϕ. However, (5) is obviously not valid in
this case.

The functions f(x) = |x| and g(x) = signx satisfy all the conditions of Theorem
2. It follows from E signX = 0 that X has zero median. So if Bϕ contains all
b.r.v. with zero median, then we have (5) with f(x) = |x| (this also follows from
the Corollary). The result holds under more general conditions (in particular, the
function ϕ may be a priori discontinuous).

Theorem 3. Let ϕ be a function on R bounded from either above or below on some
interval and let 0 < p < 1. If Bϕ contains all binary r.v. X with minX≤0 ≤ maxX
and P (X = minX) = p, then (5) holds with

f(x) = |x|+ (2p− 1)x.(6)

Note that in this case Bf = {X ∈ B0 : P (X < 0) ≤ p ≤ P (X ≤ 0)} (so that Bf
consists of all bounded r.v. with zero quantile of order p).

2. Proof of Theorems 1 and 2

Let Yw denote an r.v. equal to w with probability 1,

M = {x ∈ R : f(x) > 0}
and [M ] is the closure of M . Set, moreover, for u, v ∈ M and u < 0 < v (there
exist the such u and v in view of (2))

λ = λ(u, v) = {vf(u)− uf(v)}−1.

Let Y = Y (u, v) be an r.v. with the distribution function F (x) = F (x, u, v) and

F (x) =
{
λf(v)(x − u) for x ∈ [u, 0],
λ{f(u)x− uf(v)} for x ∈ [0, v].
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Lemma 1. Let f satisfy (2). If Bϕ contains Y0, Yw for w /∈ [M ] and Y (u, v) for
u, v ∈M,u < 0 < v, then (5) holds with some α ≥ 0.

Proof. It follows from Yw ∈ Bϕ that

ϕ(w) = Eϕ(Yw) = min
a
Eϕ(Yw − a) = min

t
ϕ(t).

Therefore,

ϕ(0) = ϕ(w) = min
t
ϕ(t)(7)

for all w /∈ [M ] and we obtain (5) for all x /∈ [M ]. Now let u, v ∈ M,u < 0 < v.
Putting for any integrable function r

Er(z) = Er(Y + z) = λ{f(v)
∫ z

z+u

r(x) dx + f(u)
∫ z+v

z

r(x) dx},(8)

and taking into account that Y (u, v) ∈ Bϕ, we get E′ϕ(0) = 0, since ϕ is continuous
so Eϕ(z) is differentiable. Hence

s(u) = s(v) for u, v ∈M,u < 0 < v,

where

s(x) =
ϕ(x) − ϕ(0)

f(x)
.

It follows that s(x) has the same value α for all x ∈M , so we have (5) for all such
x. Since f and ϕ are continuous, it implies (5) for all x ∈ [M ] and thus for all real
x. It follows from (5) and (7) that

min
x
αf(x) = 0

so α ≥ 0.

To prove Theorem 1, it is enough now to show that

Y0, Yw, Y (u, v) ∈ Bf for any u, v ∈M,u < 0 < v, and any w /∈ [M ].

Since

f(w) = f(0) = 0 = min
t
f(t),

we have Y0, Yw ∈ Bf . It follows from (3) and (8) that∫ z

0

f(x+ u)− f(x)
f(u)

dx ≤ z ≤
∫ z

0

f(x+ v)− f(x)
f(v)

dx

and

Ef (z) ≥ Ef (0) for all z ∈ R,

so Y (u, v) ∈ Bf for u, v ∈M,u < 0 < v.
Similarly, to prove Theorem 2, it is enough to show that Eg(X) = 0 for

X = Y0, Yw, Y (u, v), where u, v ∈M,u < 0 < v, and w /∈ [M ].

Indeed, Eg(Y0) = g(0) = 0. If w /∈ [M ], then f(x) = 0 in some open interval
containing w; therefore, also in this interval, g(x) = f ′(x) = 0, so

Eg(Yw) = g(w) = 0.
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Moreover, it follows from (8) that

Eg{Y (u, v)} = Eg(0) = E′f (0) = 0

because f is absolutely continuous and so f(x) =
∫ x

0 g(t) dt (see, for example, [4,
11.7]).

3. Proof of Theorem 3

Continuity of ϕ is essential for the proof of Theorems 1 and 2. Therefore, we
now use another approach.

Let U = Up(u, v) (u < v) be a binary r.v. defined by

P (U = u) = p, P (U = v) = q = 1− p.(9)

Let x > 0 and u ∈ [0, x]. Then the r.v. Up(0, x) and Up(−u, x − u) satisfy the
conditions of Theorem 3. It follows from (1) and (9) that

pϕ(−u) + qϕ(x − u) ≥ pϕ(0) + qϕ(x)

and

pϕ(0) + qϕ(x) ≥ pϕ(−u) + qϕ(x − u),

whence

p{ϕ(−u)− ϕ(0)} = q{ϕ(x)− ϕ(x− u)}.(10)

In particular, we have by setting x = u that

p{ϕ(−u)− ϕ(0)} = q{ϕ(u)− ϕ(0)}.(11)

It follows from (10) and (11) that

ϕ(x) − ϕ(x− u) = ϕ(u)− ϕ(0) for x ≥ 0, u ∈ [0, x]

and (replacing x by u+ v)

ψ(u+ v) = ψ(u) + ψ(v) for any u, v ≥ 0,(12)

where ψ(x) = ϕ(x) − ϕ(0). So both the functions ψ and −ψ are convex on [0,∞)
[1, 3.20]. Since one of them is bounded from above on some interval, they are
continuous [1, 3.18] and therefore linear [1, 3.19]. Thus ψ(x) = βx, where β is a
constant, and

ψ(x) =
β

2p
{|x|+ (2p− 1)x} for x ≥ 0.

In view of (11), the last equality is also valid for x < 0. Setting α = β/2p, we obtain
(5) with f defined by (6). Finally, it follows from (5) and (1) for X = Up(0, 1) that
α ≥ 0.

Remark. According to the known Blumberg-Sierpinski theorem [3], every measur-
able convex function is continuous. So the proof shows that the condition on ϕ in
Theorem 3 may be replaced by measurability of ϕ.
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4. Convex measures of dispersion

A convex measure of dispersion is a measure Eϕ(X − a) generated by a convex
continuous function ϕ. The bases of the such measures may be described as follows.

Theorem 4. If ϕ is convex and continuous on R, then

Bϕ = {X ∈ B0 : Eϕ′−(X) ≤ 0 ≤ Eϕ′+(X)},(13)

where ϕ′− and ϕ′+ denote the left and right derivatives of ϕ, respectively.

In particular, if ϕ is convex and differentiable on R, then

Bϕ = {X ∈ B0 : Eϕ′(X) = 0}.

Proof. The proof of Theorem 4 is based on the following lemmas.

Lemma 2. Let functions ψn(x) (n = 1, 2, . . . ) and their variations be uniformly
bounded on an interval [a, b] and let

lim
n→∞

ψn(x) = ψ(x) for each x ∈ [a, b].

If K(x) is a function of bounded variation on [a, b], then

lim
n→∞

∫ b

a

ψn(x) dK(x) =
∫ b

a

ψ(x) dK(x).

It is enough to prove it for the cases in which ψ(x) ≡ 0 and K(x) is either
continuous or discrete on [a, b]. In the first case, it follows from the known Helly’s
theorem by integration by parts. In the second case,

In =
∫ b

a

ψn(x) dK(x) =
∑
m

ψn(xm)hm,

where m = 1, 2, . . . , xm runs over all the points of discontinuity of K(x) on [a, b]
and hm are the corresponding jumps, so that∑

m

|hm| <∞.

Let A > 0, |ψn(x)| ≤ A for all x ∈ [a, b], n = 1, 2, . . . , and let ε > 0 and∑
m>N

|hm| ≤ ε/A,

where N = N(ε). Then

|In| ≤
∑
m≤N

|ψn(xm)hm|+ ε,

whence it follows that

lim sup
n→∞

|In| ≤ ε, so lim
n→∞

In = 0,

because ψn(x)→ 0 and ε > 0 is arbitrary.



1606 A. S. FAINLEIB

Lemma 3. Let the functions ψn(x) increase on R and be uniformly bounded on
each finite interval. If

lim
n→∞

ψn(x) = ψ(x) for all real x,

then

lim
n→∞

Eψn(X) = Eψ(X) for all X ∈ B0.

It follows immediately from the previous lemma.

Lemma 4. Let τ(x) be a convex continuous function on R. Then:
(i) the ratio

τ(x + h)− τ(x)
h

(h 6= 0)

is an increasing function of x and h, bounded for bounded x and h;
(ii) the equality

τ(x0) = min
x
τ(x)

is equivalent to

τ ′−(x0) ≤ 0 ≤ τ ′+(x0).

It follows from known properties of convex functions [1, 3.18].
To prove Theorem 4, note that the function µ(x) = Eϕ(X + x) is also convex

and continuous on R for any fixed X ∈ B0. By Lemmas 3 and 4,

µ′±(0) = lim
h→±0

E
ϕ(X + h)− ϕ(X)

h
= Eϕ′±(X).(14)

By Lemma 4, X ∈ Bϕ if and only if µ′−(0) ≤ 0 ≤ µ′+(0). Taking (14) into account,
we obtain (13).
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