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A NOTE ON REGULAR DIRICHLET SUBSPACES

MASATOSHI FUKUSHIMA AND JIANGANG YING

(Communicated by Claudia M. Neuhauser)

Abstract. In this short article we shall consider the Dirichlet space associated
with the distorted Brownian motion on a one-dimensional closed interval and
prove that it admits no proper regular Dirichlet subspaces.

Let X be a locally compact separable metric space and m a fully supported pos-
itive Radon measure on X . C0(X) will denote the space of continuous functions on
X with compact support. A Markovian symmetric closed form (E ,F) on L2(X ;m)
is called a Dirichlet form, while it is called regular if F ∩ C0(X) is dense both in
C0(X) with uniform norm and in F with E1-norm. The regularity guarantees the
existence of a unique associated symmetric Hunt process on X .

Assume that (E ,F) is a regular Dirichlet form on L2(X,m) and F̂ a linear
subspace of F . If (E , F̂) is also a regular Dirichlet form on L2(X,m), it is natural
to ask whether or not F̂ coincides with F . If not, what condition would guarantee
the coincidence? The question was originally raised in [3] where it was asked if
strong subordination is equivalent to subordination.

In this article, we will prove that the regular Dirichlet form corresponding to
distorted Brownian motion (including the ordinary reflecting Brownian motion) on
a 1-dimensional closed interval admits no proper regular Dirichlet subspaces. But
the problem remains open in the higher dimensional cases.

Let us consider a one dimensional interval I = (0, 1) and a function ρ on I such
that

ρ ≥ 0, ρ,
1
ρ
∈ L1(I).

We let

E(u, v) =
1
2

∫
I

u′ v′ ρ dx(1)

for u, v ∈ F , where

F = {u ∈ L2(I; ρdx) : u is absolutely continuous, u′ ∈ L2(I; ρdx)}.

Lemma 1. (E ,F) is a regular Dirichlet space on L2(Ī; ρdx).
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Proof. We have∣∣∣∣∫
I

uφdx

∣∣∣∣ ≤ C
√∫

I

u2ρdx, u ∈ L2(I; ρdx), φ ∈ Cb(I),

for C = sup
x∈I
|φ(x)|

√∫
I

1
ρ
dx. Suppose that un ∈ F , n = 1, 2, · · · , constitute an

E-Cauchy sequence and un → u ∈ L2(I; ρdx) in L2(I; ρdx). Then u′n → v for some
v ∈ L2(ρdx) in L2(ρdx). By the above inequality∫

I

vφdx = lim
n→∞

∫
I

u′nφdx = − lim
n→∞

∫
I

unφ
′dx = −

∫
I

uφ′dx

for each φ ∈ C1
0 (I), and we see that u ∈ F and u′ = v.

Notice that F ⊂ C(Ī) because of the inequality

(u(x)− u(y))2 =

(∫ y

x

u′(t)
√
ρ(t)

1√
ρ(t)

dt

)2

≤ E(u, u) ·
∫ y

x

1
ρ(x)

dx,(2)

for u ∈ F , 0 ≤ x < y ≤ 1. Since F is an algebra separating points of Ī, it is dense
in C(Ī).

Theorem 2. Let F̂ be a subspace of F such that (E , F̂) is a regular Dirichlet space
on L2(Ī , ρdx). Then F̂ = F .

Proof. First, (E , F̂) is a regular local Dirichlet space on L2(Ī). Second, it is irre-
ducible because F̂ contains no discontinuous function. The inequality (2) implies
that each one point of Ī has a positive capacity. Since F̂ is dense in C(Ī), there
exists u ∈ F̂ with u ≥ 1 and hence 1 = u∧ 1 ∈ F̂ and E(1, 1) = 0. Therefore (F̂ , E)
is point recurrent.

Let M = (Xt, Px) be the associated diffusion process on Ī. Let

F̂0 = {u ∈ F̂ : u(0) = 0}.

(F̂0, E) is a regular Dirichlet space on L2((0, 1]) and associated with the part of M
on the set (0, 1]. By inequality (2) again, we see that the extended Dirichlet space
F̂0,e of F̂0 is transient and equal to F̂0.

We shall consider a hitting probability with respect to M. Let σ0 and σ1 be the
hitting time of {0} and {1} respectively, and define

s(x) = Px(σ1 < σ0) x ∈ (0, 1].

Then, s coincides with the 0-order equilibrium potential of {1} with respect to
(F̂0, E) and satisfies that s ∈ F̂0 and E(s, v) = 0 for all v ∈ F̂ with v(0) = v(1) = 0.
On the other hand, s is strictly increasing on I and s(0) = 0, s(1) = 1 since any
singleton has positive capacity. ψ(s) ∈ F̂0 for all ψ ∈ C1(R) with ψ(0) = 0, because
ψ ◦ s is a normal contraction of M · s for M = supx∈I |ψ′(x)|. Therefore∫

I

s′(x)ψ′(s(x))s′(x)ρ(x)dx = 0

for all ψ ∈ C1
0 (I), namely, ∫

I

s′(t(x))ρ(t(x))ψ′(x)dx = 0
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for all ψ ∈ C1
0 (I), where t(x) = s−1(x). Hence s′(t(x))ρ(t(x)) is a constant on I

and so is s′(x)ρ(x).
Consequently we obtain

s(x) = c0

∫ x

0

1
ρ(y)

dy, x ∈ I, c0 =
(∫ 1

0

1
ρ(y)

dy

)−1

.

Let

F0 = {u ∈ F : u(0) = 0}.

By inequality (2) again, we see that the metrics E1 and E are equivalent on the space
F0 and F0 is a Hilbert space with inner product E . Suppose v ∈ F0 is E-orthogonal
to the space F̂0(⊂ F0). Then

E(ψ(s), v) = 0 for all ψ ∈ C1(R) with ψ(0) = 0.

By what has been proved, the left-hand side equals

c0

∫
I

ψ′(s(x))v′(x)dx = c0

∫
I

ψ′(x)
d

dx
(v(t(x)))dx.

Since this vanishes for any ψ ∈ C1
0 (I), we have that

d

dx
v(t(x)) is constant and

hence v(x) = C s(x) for some constant C. Letting ψ(x) = x in the above, we get
c20 C

∫
I

1
ρ(x)dx = 0, yielding that C = 0.

We have proved that F0 = F̂0. Since any v ∈ F can be expressed as

v(x) = v(0) + w(x) for w(x) = v(x) − v(0)(∈ F0)

and F̂ contains constant functions, F̂ must be identical with F .

Corollary 3. Let D be a linear subspace of F such that D is dense in C(Ī) and,
for any ε > 0, there exists a real function φε on R such that

φε(t) = t ∀t ∈ [0, 1], −ε ≤ φε(t) ≤ 1 + ε ∀t ∈ R, and

0 ≤ φε(t)− φε(t′) ≤ t− t′ whenever t < t′,

and φε(D) ⊂ D. Then D is E1-dense in F , namely, D becomes a core of the Dirichlet
space (E ,F) on L2(Ī , ρ dx).

Proof. Let F̂ be the closure of D in the Dirichlet space (F , E). Then (F̂ , E) is a
regular Dirichlet space on C(Ī) (Theorem 3.1.1 of [1]).

For each k = 1, 2, · · · ,∞, the space Ck(Ī) of the restrictions to Ī of all k-times
continuously differentiable functions on R is an example satisfying the conditions
of Corollary 1. But the denseness of Ck(Ī) in F is readily seen by mollifying each
element of F . We can consider less simple examples of D of Corollary 1.

For instance, denote by m the Lebesgue measure on Ī, take a Cantor-like set
A ⊂ Ī ([2]) such that

0 < m(A ∩ J) < m(J) for any interval J ⊂ Ī , 1
2
< m(A) < 1,

and let

p(x) =
1
γ

∫ x

0

(IA(ξ)− IAc(ξ))m(dξ), x ∈ Ī ,
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where γ = 2m(A) − 1. p(x) is extended to a continuous function on R by setting
p(x) = x outside Ī. For 0 ≤ a < b ≤ 1, we then define a function pa,b(x) on Ī by

pa,b(x) = (a ∨ [a+ (b− a)p(
x− a
b− a )]) ∧ b.

Since the family D0 = {pa,b; 0 ≤ a < b ≤ 1} separates points of Ī , the linear lattice
D (the linear space stable under the operations ∨,∧) generated by D0 and constant
functions satisfies the conditions of the Kakutani-Krein Theorem (Corollary 1 on
p. 10, [4]). However each element of D0 is not strictly monotone on any subinterval
of Ī and it is not straightforward to see that this space D is dense in F .

The diffusion process M = (Xt, Px) considered in the proof of Theorem 1 is
called a distorted Brownian motion on Ī and it admits the following expression:

Xt −X0 = Bt +Nt, t ≥ 0, Px-a.s.

for all x ∈ Ī , where Bt is a one dimensional standard Brownian motion starting at
the origin and Nt is a continuous additive functional of zero energy ([1]). In the
special case that ρ = 1, the distorted Brownian motion is the reflecting Brownian
motion on Ī and the above expression is reduced to the Skorohod equation.

Corollary 3 says that, while the distorted Brownian motion M on Ī is uniquely
determined by the function ρ through the expression (1) of the form E on a space
D satisfying conditions of the corollary, M does not depend on any specific choice
of such a space D.

References

[1] Fukushima, M., Oshima, Y., Takeda, M., Dirichlet forms and symmetric Markov processes,
Walter de Gruyter, Berlin-New York, 1994. MR 96f:60126

[2] Rudin, W., Real and complex analysis, McGraw-Hill, 1986. MR 88k:00002
[3] Ying, J., Killing and subordination, Proc. Amer. Math. Soc. 124, No. 7(1996), pp. 2215-2222.

MR 97a:31005
[4] Yoshida, K., Functional analysis, Springer-Verlag, 1965

Department of Mathematics, Kansai University, Osaka 564-8680, Japan

E-mail address: fuku@ipcku.kansai-u.ac.jp

Department of Mathematics, Fudan University, Shanghai 200433, People’s Republic

of China

E-mail address: jying@math.zju.edu.cn

http://www.ams.org/mathscinet-getitem?mr=96f:60126
http://www.ams.org/mathscinet-getitem?mr=88k:00002
http://www.ams.org/mathscinet-getitem?mr=97a:31005

	References

