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A THREE-CURVES THEOREM FOR VISCOSITY
SUBSOLUTIONS OF PARABOLIC EQUATIONS

JAY KOVATS

(Communicated by David S. Tartakoff)

Abstract. We prove a three-curves theorem for viscosity subsolutions of fully
nonlinear uniformly parabolic equations F (D2u, t, x)− ut = 0.

0. Introduction

Three-curves theorems play a central role in the qualitative theory of partial
differential equations, starting with Hadamard’s classical three-circles theorem for
the real part of an analytic function. Briefly stated, this theorem says that if ∆u ≥ 0
in a domain Ω ⊂ R2 containing two concentric circles of radii r1, r2 and the region
between them and if M(r) denotes the maximum of u on any concentric circle of
radius r, then M(r) is a convex function of log r. An application of this is Liouville’s
theorem: functions harmonic in the plane, except possibly at one point and bounded
either above or below, are constant. In n dimensions, the three-spheres theorem
states that if ∆u ≥ 0 in a domain Ω ⊂ Rn containing two concentric spheres of
radii r1, r2 and the region between them and if M(r) denotes the maximum of u
on any concentric sphere of radius r, then M(r) is a convex function of r2−n. A
three-cylinders theorem for linear parabolic equations appears in [G].

In this paper we prove the fully nonlinear analogue of a three-curves theorem
which appears in [PW] for the 1-dimensional heat equation. Specifically, in Theorem
1.1, we prove the following. Suppose u is a viscosity subsolution of the uniformly
parabolic nonlinear equation F (D2u, t, x)− ut = 0 (with F (0, ·) = 0) in any region
containing two concentric concave paraboloids of opening 2ρ−2

1 and 2ρ−2
2 and the

region between them (see below for more details). If M(ρ) denotes the maximum
of u on any concentric concave paraboloid of opening 2ρ−2, with ρ1 < ρ < ρ2, then
there exists an a priori function ψ(ρ), such that M(ρ) is a convex function of ψ(ρ).

Let M > 0, x ∈ Rn. We say that P (x) is a paraboloid of opening M if P (x) =
±M2 |x|2 + l(x) + l0, where l is linear and l0 is constant. P (x) is convex if + appears

and concave if − appears. So for t0, ρ > 0, the equation t = t0 − |x|
2

ρ2 denotes the
graph of a concave paraboloid of opening 2

ρ2 with vertex at (t0, 0) ∈ Rn+1, which we

will henceforth write as ρ = |x|√
t0−t . By concentric concave paraboloids of opening

2ρ−2
1 and 2ρ−2

2 , we mean these paraboloids have common vertex (t0, 0).
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Our region Q ⊂ Rn+1 is described as follows. Q is bounded below by the line
t = 0 and above by the line t = t′, where t′ < t0. Q is bounded laterally by
the arcs of the paraboloids ρ1 = |x|√

t0−t and ρ2 = |x|√
t0−t of openings 2ρ−2

1 and

2ρ−2
2 respectively, with ρ1 < ρ2. Geometrically, Q is a concave paraboloid shell,

truncated just below the vertex (t0, 0). For ρ1 ≤ ρ ≤ ρ2, define the functions

M1(ρ) = max
|x|=ρ

√
t0−t

0≤t≤t′

u(t, x),

M2 = max
ρ1
√
t0≤|x|≤ρ2

√
t0
u(0, x),

M(ρ) = max{M1(ρ),M2}.

Hence M(ρ) = maxQ u.
We now make a few brief comments about viscosity subsolutions of parabolic

equations. For f ∈ C(Q) and positive constants λ ≤ Λ, S(λ,Λ, f) denotes the
class of viscosity subsolutions of the equation M+(D2u, λ,Λ)− ut = f(t, x). That
is, u ∈ C(Q) and satisfies M+(D2u, λ,Λ) − ut ≥ f(t, x) in the viscosity sense,
where for any real n× n symmetric matrix M

M+(M,λ,Λ) =M+(M) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei,

where ei = ei(M) are the eigenvalues of M . By diagonalizing M , it can be shown
that M+ is subadditive. That is, M+(M + N) ≤ M+(M) +M+(N) for any
symmetric matrices M,N .

In general, a function u, continuous in a bounded domainQ ⊂ Rn+1, is a viscosity
subsolution of the fully nonlinear parabolic equation

F (D2u(t, x), t, x) − ut(t, x) = f(t, x), (t, x) ∈ Q,

if the following condition holds: if (t0, x0) ∈ Q, ψ ∈ C2(Q) and u − ψ has a local
maximum at (t0, x0) (i.e., ψ touches u from above at (t0, x0)), then

F (D2ψ(t0, x0), t0, x0)− ψt(t0, x0) ≥ f(t0, x0).

Finally, it is known (see Proposition 2.13 [CC]) that viscosity subsolutions of
F (D2u, t, x)−ut = f(t, x) belong to the class S(λn ,Λ, f(t, x)−F (0, t, x)). So if u is
a viscosity subsolution of the uniformly parabolic nonlinear equation F (D2u, t, x)−
ut = 0 and F (0, ·) = 0, then u ∈ S(λn ,Λ, 0). Our Theorem 1.1 applies to this class
of functions. See [CC] (Chapter 2) and [W] (Chapter 3) for a complete discussion
about viscosity solutions of fully nonlinear equations.

We will need the following lemma, which appears in [CC] for the elliptic case
and in [W] for the parabolic case.

Lemma 0.1. Let u ∈ S(λ,Λ, f), ϕ ∈ C2(Q) and suppose M+(D2ϕ(z), λ,Λ) −
ϕt(z) ≤ g(z) ∀ z = (t, x) ∈ Q. Then u− ϕ ∈ S(λ,Λ, f − g) in Q.

Proof. Let ψ be any C2(Q) function touching the graph of u−ϕ from above at the
point z0 = (t0, x0) ∈ Q. Then ψ+ϕ ∈ C2(Q) and touches the graph of u from above
at z0. Since u ∈ S(λ,Λ, f), we haveM+(D2(ψ+ϕ)(z0))−(ψ+ϕ)t(z0) ≥ f(z0). By
the subadditivity ofM+, this givesM+(D2ψ(z0))+M+(ϕ(z0))−ψt(z0)−ϕt(z0) ≥
f(z0), which by assumption on ϕ yieldsM+(D2ψ(z0))−ψt(z0) ≥ f(z0)−g(z0).
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1. Main theorem

Before we state Theorem 1.1, we make some comments concerning the maximum
principle which relate to our theorem. For simplicity, we make these remarks for the
linear setting, Lu− ut ≥ 0, where L := aij(t, x) ∂

∂xi∂xj , the aij(t, x) are measurable
and satisfy λ|ξ|2 ≤ aij(t, x)ξiξj ≤ Λ|ξ|2, ∀ ξ ∈ Rn. The same comments hold true
for the class S(λ,Λ, 0).

Let M(ρ) be defined as above. If u is nonconstant and satisfies Lu − ut ≥ 0
in Q, then by the maximum principle, M(ρ) cannot be constant in any interval,
nor have an interior maximum. Moreover, M(ρ) cannot have a relative maximum
(since u is a subsolution) and so has at most one minimum. Hence M(ρ) either
always increases, always decreases or first decreases and then increases.

Three-curves theorems rely heavily on the maximum principle. In our three-
paraboloids theorem, we use the maximum principle in the following way. Suppose
Lu − ut ≥ 0 in Q. We define a function ϕ(ρ) = a + bψ(p), where constants a, b
(with b > 0) are chosen so that ϕ(ρ1) = M(ρ1), ϕ(ρ2) = M(ρ2) and Lϕ− ϕt ≤ 0
in Q. This gives Lϕ − ϕt ≤ Lu − ut in Q and u ≤ ϕ on ∂′Q. By the maximum
principle, u ≤ ϕ in Q and hence M(ρ) ≤ ϕ(ρ) for ρ ∈ (ρ1, ρ2).

But to do this, since Lϕ − ϕt = b(Lψ − ψt) and b > 0, we need ψ to satisfy
Lψ − ψt ≤ 0. Yet b = M(ρ2)−M(ρ1)

ψ(ρ2)−ψ(ρ1) and b > 0 implies that ψ(ρ) is increasing or
decreasing with M(ρ). Thus we need to find a function ψ(ρ) which is an increasing
supersolution and another function ψ(ρ) which is a decreasing supersolution. We
denote the increasing supersolution by ψ+(ρ) and the decreasing supersolution by
ψ−(ρ). The explicit forms of ψ+, ψ− in the fully nonlinear setting are given in
equations (3) and (4). Hence in our nonlinear setting, it is not a single function
ψ but a pair (ψ+, ψ−) which satisfies the conclusion of our Theorem 1.1. This
unavoidable feature occurs even in the linear case for subsolutions of uniformly
elliptic equations with measurable coefficients Lu := aij(x)uxixj = 0 in the simple
case of spheres |x| = r, where r ∈ (r1, r2). See Chapter 2.12 in [PW] for a complete
discussion of three-curves theorems for elliptic equations.

Of course, if ψ is a solution to the differential equation, then so is ϕ (indepen-
dent of the sign of b) and the single function ψ will satisfy the desired convexity
inequality. It is this situation that lends itself most easily to applications. In partic-
ular, for the three-spheres theorem for ∆u ≥ 0 in a spherical region in Rn (n ≥ 3),
ψ(r) = r2−n, while for the three-paraboloids theorem for ∆u − ut ≥ 0, the single

ψ that works is ψ(ρ) =
∫ ρ
α
er

2/4

rn−1 dr. See equation (6) in our proof of Tychonov’s
theorem, which is an application of the three-paraboloids theorem for the heat
equation.

Theorem 1.1. Let u ∈ S = S(λ,Λ, 0) in a domain Q ⊂ Rn+1 containing two
concave concentric parabaloids of opening 2ρ−2

1 and 2ρ−2
2 and the region between

them. If M(ρ) denotes the maximum of u on any concentric concave paraboloid of
opening 2ρ−2, with ρ1 < ρ < ρ2, then there exists a differentiable function ψ(ρ),
depending only n, λ,Λ and ρ, such that

M(ρ) ≤ M(ρ1)(ψ(ρ2)− ψ(ρ)) +M(ρ2)(ψ(ρ) − ψ(ρ1))
ψ(ρ2)− ψ(ρ1)

.(1)

Proof. For ρ = |x|√
t0−t , define the function ϕ(ρ) = a + bψ(ρ), where constants a, b

(b > 0) are chosen so that ϕ(ρ1) = M(ρ1) and ϕ(ρ2) = M(ρ2). We will find ψ
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such that v = u − ϕ ∈ S(λ,Λ, 0) and then apply the maximum principle to v on
Q. Since u ∈ S(λ,Λ, 0) and ϕ ∈ C2(Q), by Lemma 0.1, we need only show that
M+(D2ϕ(t, x), λ,Λ) − ϕt(t, x) ≤ 0, ∀ (t, x) ∈ Q.

From ϕxixj = b
{
ψ′′(ρ)ρxiρxj + ψ′(ρ)ρxixj

}
and ϕt = b ψ′(ρ)ρt, direct calcula-

tion gives

ϕxixj (t, x) =
b

|x|2(t0 − t)

{
ψ′′xixj +

ψ′

ρ

(
δij |x|2 − xixj

)}
, ϕt(t, x) =

bψ′ · ρ
2(t0 − t)

.

(2)

That is,

D2ϕ(t, x) =
b

|x|2(t0 − t)

{
xTx

(
ψ′′ − ψ′

ρ

)
+
ψ′

ρ
|x|2I

}
and for the matrix inside the braces, ψ′

ρ |x|2 is an eigenvalue of multiplicity n − 1,
while |x|2ψ′′ is an eigenvalue of multiplicity 1. Say ψ′ ≥ 0. Then if ψ′′ ≥ 0,

M+(D2ϕ(t, x)) =
b

|x|2(t0 − t)

{
Λ(n− 1)

ψ′

ρ
|x|2 + Λ|x|2ψ′′

}
=

bΛ
t0 − t

{
(n− 1)

ψ′

ρ
+ ψ′′

}
,

and hence

M+(D2ϕ(t, x)) − ϕt(t, x) =
bΛ
t0 − t

{
(n− 1)

ψ′

ρ
+ ψ′′ − ψ′ρ

2Λ

}
=

bΛ
t0 − t

{
ψ′′ + ψ′

(
n− 1
ρ
− ρ

2Λ

)}
,

while, if ψ′′ < 0,

M+(D2ϕ(t, x)) =
b

|x|2(t0 − t)

{
Λ(n− 1)

ψ′

ρ
|x|2 + λ|x|2ψ′′

}
=

bλ

t0 − t

{
ψ′′ +

Λ(n− 1)
λ

· ψ
′

ρ

}
,

and hence

M+(D2ϕ(t, x)) − ϕt(t, x) =
bλ

t0 − t

{
ψ′′ +

Λ(n− 1)
λ

· ψ
′

ρ
− ψ′ρ

2λ

}
=

bλ

t0 − t

{
ψ′′ + ψ′

(
c1
ρ
− ρ

2λ

)}
,

where c1 = Λ(n−1)
λ . Since n− 1 ≤ c1, both cases for ψ′ ≥ 0 give

M+(D2ϕ(t, x))− ϕt(t, x) ≤ bK

t0 − t

{
ψ′′ + ψ′

(
c1
ρ
− ρ

2Λ

)}
= 0(3)

for

ψ = ψ+(ρ) :=
∫ ρ

α

er
2/4Λ

rc1
dr

and K is either λ or Λ. Now suppose ψ′ ≤ 0. If ψ′′ ≥ 0, then as before

M+(D2ϕ) =
bΛ
t0 − t

{
ψ′′ +

λ(n− 1)
Λ

· ψ
′

ρ

}
,
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and hence

M+(D2ϕ)− ϕt =
bΛ
t0 − t

{
ψ′′ + ψ′

(
c2
ρ
− ρ

2Λ

)}
,

where c2 = λ(n−1)
Λ , while, if ψ′′ < 0,

M+(D2ϕ) =
bλ

t0 − t

{
ψ′′ + (n− 1)

ψ′

ρ

}
,

thus

M+(D2ϕ)− ϕt =
bλ

t0 − t

{
ψ′′ + ψ′

(
n− 1
ρ
− ρ

2λ

)}
.

Since c2 ≤ n− 1, both cases for ψ′ ≤ 0 yield

M+(D2ϕ(t, x)) − ϕt(t, x) ≤ bK

t0 − t

{
ψ′′ + ψ′

(
c2
ρ
− ρ

2λ

)}
= 0(4)

for

ψ = ψ−(ρ) :=
∫ β

ρ

er
2/4λ

rc2
dr.

Thus in all cases, we have a function ψ(ρ) = ψ(ρ, n, λ,Λ) for whichM+(D2ϕ, λ,Λ)−
ϕt ≤ 0 in Q, which setting v = u− ϕ, gives v ∈ S(0) in Q. We now show v ≤ 0 on
∂′Q. Recall that M(ρ) = max{M1(ρ),M2}, where for ρ1 ≤ ρ ≤ ρ2,

M1(ρ) = max
|x|=ρ

√
t0−t

0≤t≤t′

u(t, x), M2 = max
ρ1
√
t0≤|x|≤ρ2

√
t0
u(0, x).

On |x| = ρ1

√
t0 − t, v = u − ϕ(ρ1) ≤ M1(ρ1) − ϕ(ρ1) ≤ M(ρ1) − ϕ(ρ1) = 0. The

same inequalities show that v ≤ 0 on |x| = ρ2

√
t0 − t. Finally, on {t = 0} ∩Q, we

have v(0, x) = u(0, x) − ϕ(ρ) ≤ M2 − ϕ(ρ) ≤ 0. Thus v ≤ 0 on ∂′Q and hence by
the maximum principle for viscosity subsolutions, v ≤ 0 in Q. That is, u ≤ ϕ in Q.
Hence M(ρ) ≤ ϕ(ρ), which gives us (1).

If u ∈ S(λ,Λ, 0), Theorem 1.1, applied to−u, along with the identity max(−w) =
−minw, immediately yields (1) with the inequality reversed and m(ρ) in place of
M(ρ), where m(ρ) = minQ u. Since S(λ,Λ, 0) = S(λ,Λ, 0) ∩ S(λ,Λ, 0), setting
ω(ρ) = M(ρ) − m(ρ) and adding these inequalities gives the following convexity
inequality for the oscillation of viscosity solutions.

Corollary 1.2. Let u ∈ S(λ,Λ, 0) in a domain Q ⊂ Rn+1 containing two concave
concentric parabaloids of opening 2ρ−2

1 and 2ρ−2
2 and the region between them. If

ω(ρ) denotes the oscillation of u on any concentric concave paraboloid of opening
2ρ−2, with ρ1 < ρ < ρ2, then

ω(ρ) ≤ ω(ρ1)(ψ(ρ2)− ψ(ρ)) + ω(ρ2)(ψ(ρ)− ψ(ρ1))
ψ(ρ2)− ψ(ρ1)

.(5)

In the linear setting, a simplified version of Theorem 1.1 yields a uniqueness
result for slowly increasing solutions of the nonhomogeneous Dirichlet problem{

∆u− ut = f, (t, x) ∈ (0, T )× Rn,
u(0, x) = g(x), x ∈ Rn,

originally due to Tychonov. Our proof is a generalization of an argument which
appears in [PW].
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Theorem 1.3. Let u,w ∈ C(Q) be solutions of ∆u − ut = f in the strip Q =
(0, T )× Rn with u(0, x) = w(0, x) = g(x). If there are constants c1, c2 such that

|u(t, x)|, |w(t, x)| ≤ c1ec2|x|
2

uniformly for t ∈ [0, T ],

then u ≡ w in Q.

Proof. If v satisfies ∆v − vt = 0 in the paraboloid region Q of Theorem 1.1, then
setting ϕ(ρ) = a+ bψ(ρ), an easy calculation using (2) shows

∆ϕ(t, x) − ϕt(t, x) =
b

t0 − t

{
ψ′′ + ψ′

(
n− 1
ρ
− ρ

2

)}
= 0(6)

for

ψ(ρ) =
∫ ρ

α

er
2/4

rn−1
dr,

and thus we obtain convexity inequality (5) for ω(ρ) = oscQ v and ψ(ρ). So for
u,w in our theorem, set v = u − w, put t0 < 1

4c2
and apply inequality (5) to v in

Q1 = [0, t02 ] × Rn, where ∆v − vt = 0 and v(0, x) = 0. Now let ρ2 → ∞ in (5).
From the trivial inequality osc v ≤ 2 max v we have ω(ρ2) ≤ 4c1ec2ρ

2
2(t0−t). Since

ψ′(ρ2) = ρ1−n
2 e

ρ22
4 with c2(t0 − t) − 1

4 < 0, we have lim
ρ2→∞

ω(ρ2)
ψ(ρ2) = 0, which by (5)

yields ω(ρ) ≤ ω(ρ1). Letting ρ1 → 0, we see that the oscillation of v in Q1 occurs
on the hyperplane x = 0, which by the maximum principle implies ω ≡ 0 in Q1.
Hence v is constant in Q1. But v(0, x) = 0 implies this constant must be 0, so
v ≡ 0 in Q1. Repeating this process, now using t = t0

2 as the initial line, we find
that v ≡ 0 in Q2 = [ t02 , t0]× Rn. After a finite number of steps, we get v ≡ 0 in Q
and hence u ≡ w in Q.
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