PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 131, Number 5, Pages 1509—1514 S 0002-9939(02)06664-9 Article electronically published on September 4, 2002

A THREE-CURVES THEOREM FOR VISCOSITY SUBSOLUTIONS OF PARABOLIC EQUATIONS

JAY KOVATS

(Communicated by David S. Tartakoff)

ABSTRACT. We prove a three-curves theorem for viscosity subsolutions of fully nonlinear uniformly parabolic equations $F(D^2u, t, x) - u_t = 0$.

0. Introduction

Three-curves theorems play a central role in the qualitative theory of partial differential equations, starting with Hadamard's classical three-circles theorem for the real part of an analytic function. Briefly stated, this theorem says that if $\Delta u \geq 0$ in a domain $\Omega \subset \mathbb{R}^2$ containing two concentric circles of radii r_1, r_2 and the region between them and if M(r) denotes the maximum of u on any concentric circle of radius r, then M(r) is a convex function of $\log r$. An application of this is Liouville's theorem: functions harmonic in the plane, except possibly at one point and bounded either above or below, are constant. In n dimensions, the three-spheres theorem states that if $\Delta u \geq 0$ in a domain $\Omega \subset \mathbb{R}^n$ containing two concentric spheres of radii r_1, r_2 and the region between them and if M(r) denotes the maximum of u on any concentric sphere of radius r, then M(r) is a convex function of r^{2-n} . A three-cylinders theorem for linear parabolic equations appears in [G].

In this paper we prove the fully nonlinear analogue of a three-curves theorem which appears in [PW] for the 1-dimensional heat equation. Specifically, in Theorem 1.1, we prove the following. Suppose u is a viscosity subsolution of the uniformly parabolic nonlinear equation $F(D^2u,t,x)-u_t=0$ (with $F(0,\cdot)=0$) in any region containing two concentric concave paraboloids of opening $2\rho_1^{-2}$ and $2\rho_2^{-2}$ and the region between them (see below for more details). If $M(\rho)$ denotes the maximum of u on any concentric concave paraboloid of opening $2\rho^{-2}$, with $\rho_1 < \rho < \rho_2$, then there exists an a priori function $\psi(\rho)$, such that $M(\rho)$ is a convex function of $\psi(\rho)$. Let M>0, $x\in\mathbb{R}^n$. We say that P(x) is a paraboloid of opening M if $P(x)=\pm\frac{M}{2}|x|^2+l(x)+l_0$, where l is linear and l_0 is constant. P(x) is convex if + appears and concave if - appears. So for $t_0, \rho>0$, the equation $t=t_0-\frac{|x|^2}{\rho^2}$ denotes the graph of a concave paraboloid of opening $\frac{2}{\rho^2}$ with vertex at $(t_0,0)\in\mathbb{R}^{n+1}$, which we will henceforth write as $\rho=\frac{|x|}{\sqrt{t_0-t}}$. By concentric concave paraboloids of opening $2\rho_1^{-2}$ and $2\rho_2^{-2}$, we mean these paraboloids have common vertex $(t_0,0)$.

Received by the editors December 15, 2001. 2000 Mathematics Subject Classification. Primary 35B05, 35K55. Our region $Q \subset \mathbb{R}^{n+1}$ is described as follows. Q is bounded below by the line t=0 and above by the line t=t', where $t'< t_0$. Q is bounded laterally by the arcs of the paraboloids $\rho_1=\frac{|x|}{\sqrt{t_0-t}}$ and $\rho_2=\frac{|x|}{\sqrt{t_0-t}}$ of openings $2\rho_1^{-2}$ and $2\rho_2^{-2}$ respectively, with $\rho_1<\rho_2$. Geometrically, Q is a concave paraboloid shell, truncated just below the vertex $(t_0,0)$. For $\rho_1\leq\rho\leq\rho_2$, define the functions

$$M_1(\rho) = \max_{\substack{|x| = \rho\sqrt{t_0 - t} \\ 0 \le t \le t'}} u(t, x),$$

$$M_2 = \max_{\substack{\rho_1\sqrt{t_0} \le |x| \le \rho_2\sqrt{t_0}}} u(0, x),$$

$$M(\rho) = \max\{M_1(\rho), M_2\}.$$

Hence $M(\rho) = \max_{Q} u$.

We now make a few brief comments about viscosity subsolutions of parabolic equations. For $f \in C(Q)$ and positive constants $\lambda \leq \Lambda$, $\underline{S}(\lambda, \Lambda, f)$ denotes the class of viscosity subsolutions of the equation $\mathcal{M}^+(D^2u, \lambda, \Lambda) - u_t = f(t, x)$. That is, $u \in C(Q)$ and satisfies $\mathcal{M}^+(D^2u, \lambda, \Lambda) - u_t \geq f(t, x)$ in the viscosity sense, where for any real $n \times n$ symmetric matrix M

$$\mathcal{M}^+(M, \lambda, \Lambda) = \mathcal{M}^+(M) = \Lambda \sum_{e_i > 0} e_i + \lambda \sum_{e_i < 0} e_i,$$

where $e_i = e_i(M)$ are the eigenvalues of M. By diagonalizing M, it can be shown that \mathcal{M}^+ is subadditive. That is, $\mathcal{M}^+(M+N) \leq \mathcal{M}^+(M) + \mathcal{M}^+(N)$ for any symmetric matrices M, N.

In general, a function u, continuous in a bounded domain $Q \subset \mathbb{R}^{n+1}$, is a viscosity subsolution of the fully nonlinear parabolic equation

$$F(D^2u(t,x),t,x) - u_t(t,x) = f(t,x), \quad (t,x) \in Q,$$

if the following condition holds: if $(t_0, x_0) \in Q$, $\psi \in C^2(Q)$ and $u - \psi$ has a local maximum at (t_0, x_0) (i.e., ψ touches u from above at (t_0, x_0)), then

$$F(D^2\psi(t_0,x_0),t_0,x_0) - \psi_t(t_0,x_0) \ge f(t_0,x_0)$$

Finally, it is known (see Proposition 2.13 [CC]) that viscosity subsolutions of $F(D^2u,t,x)-u_t=f(t,x)$ belong to the class $\underline{S}(\frac{\lambda}{n},\Lambda,f(t,x)-F(0,t,x))$. So if u is a viscosity subsolution of the uniformly parabolic nonlinear equation $F(D^2u,t,x)-u_t=0$ and $F(0,\cdot)=0$, then $u\in\underline{S}(\frac{\lambda}{n},\Lambda,0)$. Our Theorem 1.1 applies to this class of functions. See [CC] (Chapter 2) and [W] (Chapter 3) for a complete discussion about viscosity solutions of fully nonlinear equations.

We will need the following lemma, which appears in [CC] for the elliptic case and in [W] for the parabolic case.

Lemma 0.1. Let
$$u \in \underline{S}(\lambda, \Lambda, f)$$
, $\varphi \in C^2(Q)$ and suppose $\mathcal{M}^+(D^2\varphi(z), \lambda, \Lambda) - \varphi_t(z) \leq g(z) \ \forall z = (t, x) \in Q$. Then $u - \varphi \in \underline{S}(\lambda, \Lambda, f - g)$ in Q .

Proof. Let ψ be any $C^2(Q)$ function touching the graph of $u - \varphi$ from above at the point $z_0 = (t_0, x_0) \in Q$. Then $\psi + \varphi \in C^2(Q)$ and touches the graph of u from above at z_0 . Since $u \in \underline{S}(\lambda, \Lambda, f)$, we have $\mathcal{M}^+(D^2(\psi + \varphi)(z_0)) - (\psi + \varphi)_t(z_0) \geq f(z_0)$. By the subadditivity of \mathcal{M}^+ , this gives $\mathcal{M}^+(D^2\psi(z_0)) + \mathcal{M}^+(\varphi(z_0)) - \psi_t(z_0) - \varphi_t(z_0) \geq f(z_0)$, which by assumption on φ yields $\mathcal{M}^+(D^2\psi(z_0)) - \psi_t(z_0) \geq f(z_0) - g(z_0)$. \square

1. Main theorem

Before we state Theorem 1.1, we make some comments concerning the maximum principle which relate to our theorem. For simplicity, we make these remarks for the linear setting, $Lu-u_t\geq 0$, where $L:=a^{ij}(t,x)\frac{\partial}{\partial x^i\partial x^j}$, the $a^{ij}(t,x)$ are measurable and satisfy $\lambda|\xi|^2\leq a^{ij}(t,x)\xi^i\xi^j\leq \Lambda|\xi|^2$, $\forall\,\xi\in\mathbb{R}^n$. The same comments hold true for the class $\underline{S}(\lambda,\Lambda,0)$.

Let $M(\rho)$ be defined as above. If u is nonconstant and satisfies $Lu - u_t \ge 0$ in Q, then by the maximum principle, $M(\rho)$ cannot be constant in any interval, nor have an interior maximum. Moreover, $M(\rho)$ cannot have a relative maximum (since u is a subsolution) and so has at most one minimum. Hence $M(\rho)$ either always increases, always decreases or first decreases and then increases.

Three-curves theorems rely heavily on the maximum principle. In our three-paraboloids theorem, we use the maximum principle in the following way. Suppose $Lu - u_t \geq 0$ in Q. We define a function $\varphi(\rho) = a + b\psi(p)$, where constants a, b (with b > 0) are chosen so that $\varphi(\rho_1) = M(\rho_1)$, $\varphi(\rho_2) = M(\rho_2)$ and $L\varphi - \varphi_t \leq 0$ in Q. This gives $L\varphi - \varphi_t \leq Lu - u_t$ in Q and $u \leq \varphi$ on $\partial'Q$. By the maximum principle, $u \leq \varphi$ in Q and hence $M(\rho) \leq \varphi(\rho)$ for $\rho \in (\rho_1, \rho_2)$.

But to do this, since $L\varphi - \varphi_t = b(L\psi - \psi_t)$ and b > 0, we need ψ to satisfy $L\psi - \psi_t \leq 0$. Yet $b = \frac{M(\rho_2) - M(\rho_1)}{\psi(\rho_2) - \psi(\rho_1)}$ and b > 0 implies that $\psi(\rho)$ is increasing or decreasing with $M(\rho)$. Thus we need to find a function $\psi(\rho)$ which is an increasing supersolution and another function $\psi(\rho)$ which is a decreasing supersolution. We denote the increasing supersolution by $\psi_+(\rho)$ and the decreasing supersolution by $\psi_-(\rho)$. The explicit forms of ψ_+, ψ_- in the fully nonlinear setting are given in equations (3) and (4). Hence in our nonlinear setting, it is not a single function ψ but a pair (ψ_+, ψ_-) which satisfies the conclusion of our Theorem 1.1. This unavoidable feature occurs even in the linear case for subsolutions of uniformly elliptic equations with measurable coefficients $Lu := a^{ij}(x)u_{x^ix^j} = 0$ in the simple case of spheres |x| = r, where $r \in (r_1, r_2)$. See Chapter 2.12 in [PW] for a complete discussion of three-curves theorems for elliptic equations.

Of course, if ψ is a solution to the differential equation, then so is φ (independent of the sign of b) and the single function ψ will satisfy the desired convexity inequality. It is this situation that lends itself most easily to applications. In particular, for the three-spheres theorem for $\Delta u \geq 0$ in a spherical region in \mathbb{R}^n ($n \geq 3$), $\psi(r) = r^{2-n}$, while for the three-paraboloids theorem for $\Delta u - u_t \geq 0$, the single ψ that works is $\psi(\rho) = \int_{\alpha}^{\rho} \frac{e^{r^2/4}}{r^{n-1}} dr$. See equation (6) in our proof of Tychonov's theorem, which is an application of the three-paraboloids theorem for the heat equation.

Theorem 1.1. Let $u \in \underline{S} = \underline{S}(\lambda, \Lambda, 0)$ in a domain $Q \subset \mathbb{R}^{n+1}$ containing two concave concentric parabaloids of opening $2\rho_1^{-2}$ and $2\rho_2^{-2}$ and the region between them. If $M(\rho)$ denotes the maximum of u on any concentric concave paraboloid of opening $2\rho^{-2}$, with $\rho_1 < \rho < \rho_2$, then there exists a differentiable function $\psi(\rho)$, depending only n, λ, Λ and ρ , such that

(1)
$$M(\rho) \le \frac{M(\rho_1)(\psi(\rho_2) - \psi(\rho)) + M(\rho_2)(\psi(\rho) - \psi(\rho_1))}{\psi(\rho_2) - \psi(\rho_1)}.$$

Proof. For $\rho = \frac{|x|}{\sqrt{t_0 - t}}$, define the function $\varphi(\rho) = a + b\psi(\rho)$, where constants a, b (b > 0) are chosen so that $\varphi(\rho_1) = M(\rho_1)$ and $\varphi(\rho_2) = M(\rho_2)$. We will find ψ

such that $v = u - \varphi \in \underline{S}(\lambda, \Lambda, 0)$ and then apply the maximum principle to v on Q. Since $u \in \underline{S}(\lambda, \Lambda, 0)$ and $\varphi \in C^2(Q)$, by Lemma 0.1, we need only show that $\mathcal{M}^+(D^2\varphi(t,x),\lambda,\Lambda) - \varphi_t(t,x) \leq 0$, $\forall (t,x) \in Q$.

From $\varphi_{x_i x_j} = b \left\{ \psi''(\rho) \rho_{x_i} \rho_{x_j} + \psi'(\rho) \rho_{x_i x_j} \right\}$ and $\varphi_t = b \psi'(\rho) \rho_t$, direct calculation gives

(2)

$$\varphi_{x_i x_j}(t,x) = \frac{b}{|x|^2 (t_0 - t)} \left\{ \psi'' x_i x_j + \frac{\psi'}{\rho} \left(\delta_{ij} |x|^2 - x_i x_j \right) \right\}, \quad \varphi_t(t,x) = \frac{b \psi' \cdot \rho}{2 (t_0 - t)}.$$

That is,

$$D^2\varphi(t,x) = \frac{b}{|x|^2(t_0-t)} \left\{ x^T x \left(\psi'' - \frac{\psi'}{\rho} \right) + \frac{\psi'}{\rho} |x|^2 I \right\}$$

and for the matrix inside the braces, $\frac{\psi'}{\rho}|x|^2$ is an eigenvalue of multiplicity n-1, while $|x|^2\psi''$ is an eigenvalue of multiplicity 1. Say $\psi' \geq 0$. Then if $\psi'' \geq 0$,

$$\mathcal{M}^{+}(D^{2}\varphi(t,x)) = \frac{b}{|x|^{2}(t_{0}-t)} \left\{ \Lambda(n-1)\frac{\psi'}{\rho}|x|^{2} + \Lambda|x|^{2}\psi'' \right\}$$
$$= \frac{b\Lambda}{t_{0}-t} \left\{ (n-1)\frac{\psi'}{\rho} + \psi'' \right\},$$

and hence

$$\mathcal{M}^{+}(D^{2}\varphi(t,x)) - \varphi_{t}(t,x) = \frac{b\Lambda}{t_{0} - t} \left\{ (n-1)\frac{\psi'}{\rho} + \psi'' - \frac{\psi'\rho}{2\Lambda} \right\}$$
$$= \frac{b\Lambda}{t_{0} - t} \left\{ \psi'' + \psi' \left(\frac{n-1}{\rho} - \frac{\rho}{2\Lambda} \right) \right\},$$

while, if $\psi'' < 0$,

$$\mathcal{M}^{+}(D^{2}\varphi(t,x)) = \frac{b}{|x|^{2}(t_{0}-t)} \left\{ \Lambda(n-1)\frac{\psi'}{\rho}|x|^{2} + \lambda|x|^{2}\psi'' \right\}$$
$$= \frac{b\lambda}{t_{0}-t} \left\{ \psi'' + \frac{\Lambda(n-1)}{\lambda} \cdot \frac{\psi'}{\rho} \right\},$$

and hence

$$\mathcal{M}^{+}(D^{2}\varphi(t,x)) - \varphi_{t}(t,x) = \frac{b\lambda}{t_{0} - t} \left\{ \psi'' + \frac{\Lambda(n-1)}{\lambda} \cdot \frac{\psi'}{\rho} - \frac{\psi'\rho}{2\lambda} \right\}$$
$$= \frac{b\lambda}{t_{0} - t} \left\{ \psi'' + \psi' \left(\frac{c_{1}}{\rho} - \frac{\rho}{2\lambda} \right) \right\},$$

where $c_1 = \frac{\Lambda(n-1)}{\lambda}$. Since $n-1 \le c_1$, both cases for $\psi' \ge 0$ give

(3)
$$\mathcal{M}^{+}(D^{2}\varphi(t,x)) - \varphi_{t}(t,x) \leq \frac{bK}{t_{0}-t} \left\{ \psi'' + \psi' \left(\frac{c_{1}}{\rho} - \frac{\rho}{2\Lambda} \right) \right\} = 0$$

for

$$\psi = \psi_+(\rho) := \int_{\alpha}^{\rho} \frac{e^{r^2/4\Lambda}}{r^{c_1}} dr$$

and K is either λ or Λ . Now suppose $\psi' \leq 0$. If $\psi'' \geq 0$, then as before

$$\mathcal{M}^+(D^2\varphi) = \frac{b\Lambda}{t_0-t} \left\{ \psi^{\prime\prime} + \frac{\lambda(n-1)}{\Lambda} \cdot \frac{\psi^\prime}{\rho} \right\},\,$$

and hence

$$\mathcal{M}^+(D^2\varphi) - \varphi_t = \frac{b\Lambda}{t_0 - t} \left\{ \psi'' + \psi' \left(\frac{c_2}{\rho} - \frac{\rho}{2\Lambda} \right) \right\},$$

where $c_2 = \frac{\lambda(n-1)}{\Lambda}$, while, if $\psi'' < 0$,

$$\mathcal{M}^{+}(D^{2}\varphi) = \frac{b\lambda}{t_{0} - t} \left\{ \psi'' + (n - 1)\frac{\psi'}{\rho} \right\},\,$$

thus

$$\mathcal{M}^{+}(D^{2}\varphi) - \varphi_{t} = \frac{b\lambda}{t_{0} - t} \left\{ \psi'' + \psi' \left(\frac{n - 1}{\rho} - \frac{\rho}{2\lambda} \right) \right\}.$$

Since $c_2 \leq n-1$, both cases for $\psi' \leq 0$ yield

(4)
$$\mathcal{M}^{+}(D^{2}\varphi(t,x)) - \varphi_{t}(t,x) \leq \frac{bK}{t_{0}-t} \left\{ \psi'' + \psi' \left(\frac{c_{2}}{\rho} - \frac{\rho}{2\lambda} \right) \right\} = 0$$

for

$$\psi = \psi_{-}(\rho) := \int_{\rho}^{\beta} \frac{e^{r^{2}/4\lambda}}{r^{c_{2}}} dr.$$

Thus in all cases, we have a function $\psi(\rho) = \psi(\rho, n, \lambda, \Lambda)$ for which $\mathcal{M}^+(D^2\varphi, \lambda, \Lambda) - \varphi_t \leq 0$ in Q, which setting $v = u - \varphi$, gives $v \in \underline{S}(0)$ in Q. We now show $v \leq 0$ on $\partial' Q$. Recall that $M(\rho) = \max\{M_1(\rho), M_2\}$, where for $\rho_1 \leq \rho \leq \rho_2$,

$$M_1(\rho) = \max_{\substack{|x| = \rho\sqrt{t_0 - t} \\ 0 \le t \le t'}} u(t, x), \qquad M_2 = \max_{\rho_1\sqrt{t_0} \le |x| \le \rho_2\sqrt{t_0}} u(0, x).$$

On $|x| = \rho_1 \sqrt{t_0 - t}$, $v = u - \varphi(\rho_1) \le M_1(\rho_1) - \varphi(\rho_1) \le M(\rho_1) - \varphi(\rho_1) = 0$. The same inequalities show that $v \le 0$ on $|x| = \rho_2 \sqrt{t_0 - t}$. Finally, on $\{t = 0\} \cap Q$, we have $v(0, x) = u(0, x) - \varphi(\rho) \le M_2 - \varphi(\rho) \le 0$. Thus $v \le 0$ on $\partial' Q$ and hence by the maximum principle for viscosity subsolutions, $v \le 0$ in Q. That is, $u \le \varphi$ in Q. Hence $M(\rho) \le \varphi(\rho)$, which gives us (1).

If $u \in \overline{S}(\lambda, \Lambda, 0)$, Theorem 1.1, applied to -u, along with the identity $\max(-w) = -\min w$, immediately yields (1) with the inequality reversed and $m(\rho)$ in place of $M(\rho)$, where $m(\rho) = \min_Q u$. Since $S(\lambda, \Lambda, 0) = \underline{S}(\lambda, \Lambda, 0) \cap \overline{S}(\lambda, \Lambda, 0)$, setting $\omega(\rho) = M(\rho) - m(\rho)$ and adding these inequalities gives the following convexity inequality for the oscillation of viscosity solutions.

Corollary 1.2. Let $u \in S(\lambda, \Lambda, 0)$ in a domain $Q \subset \mathbb{R}^{n+1}$ containing two concave concentric paraboloids of opening $2\rho_1^{-2}$ and $2\rho_2^{-2}$ and the region between them. If $\omega(\rho)$ denotes the oscillation of u on any concentric concave paraboloid of opening $2\rho^{-2}$, with $\rho_1 < \rho < \rho_2$, then

(5)
$$\omega(\rho) \leq \frac{\omega(\rho_1)(\psi(\rho_2) - \psi(\rho)) + \omega(\rho_2)(\psi(\rho) - \psi(\rho_1))}{\psi(\rho_2) - \psi(\rho_1)}.$$

In the linear setting, a simplified version of Theorem 1.1 yields a uniqueness result for *slowly increasing* solutions of the nonhomogeneous Dirichlet problem

$$\begin{cases} \Delta u - u_t = f, & (t, x) \in (0, T) \times \mathbb{R}^n, \\ u(0, x) = g(x), & x \in \mathbb{R}^n, \end{cases}$$

originally due to Tychonov. Our proof is a generalization of an argument which appears in [PW].

Theorem 1.3. Let $u, w \in C(\overline{Q})$ be solutions of $\Delta u - u_t = f$ in the strip $Q = (0,T) \times \mathbb{R}^n$ with u(0,x) = w(0,x) = g(x). If there are constants c_1, c_2 such that

$$|u(t,x)|, |w(t,x)| \le c_1 e^{c_2|x|^2}$$
 uniformly for $t \in [0,T],$

then $u \equiv w$ in Q.

Proof. If v satisfies $\Delta v - v_t = 0$ in the paraboloid region Q of Theorem 1.1, then setting $\varphi(\rho) = a + b\psi(\rho)$, an easy calculation using (2) shows

(6)
$$\Delta \varphi(t,x) - \varphi_t(t,x) = \frac{b}{t_0 - t} \left\{ \psi'' + \psi' \left(\frac{n-1}{\rho} - \frac{\rho}{2} \right) \right\} = 0$$

for

$$\psi(\rho) = \int_{\alpha}^{\rho} \frac{e^{r^2/4}}{r^{n-1}} dr,$$

and thus we obtain convexity inequality (5) for $\omega(\rho) = \operatorname{osc}_Q v$ and $\psi(\rho)$. So for u, w in our theorem, set v = u - w, put $t_0 < \frac{1}{4c_2}$ and apply inequality (5) to v in $Q_1 = [0, \frac{t_0}{2}] \times \mathbb{R}^n$, where $\Delta v - v_t = 0$ and v(0, x) = 0. Now let $\rho_2 \to \infty$ in (5). From the trivial inequality $\operatorname{osc} v \leq 2 \max v$ we have $\omega(\rho_2) \leq 4c_1e^{c_2\rho_2^2(t_0-t)}$. Since $\psi'(\rho_2) = \rho_2^{1-n}e^{\frac{\rho_2^2}{4}}$ with $c_2(t_0-t) - \frac{1}{4} < 0$, we have $\lim_{\rho_2 \to \infty} \frac{\omega(\rho_2)}{\psi(\rho_2)} = 0$, which by (5) yields $\omega(\rho) \leq \omega(\rho_1)$. Letting $\rho_1 \to 0$, we see that the oscillation of v in Q_1 occurs on the hyperplane x = 0, which by the maximum principle implies $\omega \equiv 0$ in Q_1 . Hence v is constant in Q_1 . But v(0,x) = 0 implies this constant must be 0, so $v \equiv 0$ in Q_1 . Repeating this process, now using $t = \frac{t_0}{2}$ as the initial line, we find that $v \equiv 0$ in $Q_2 = [\frac{t_0}{2}, t_0] \times \mathbb{R}^n$. After a finite number of steps, we get $v \equiv 0$ in Q and hence $u \equiv w$ in Q.

References

- [CC] L. Caffarelli and X. Cabre, Fully Nonlinear Elliptic Equations, Amer. Math. Soc., Providence, R.I., 1995. MR 96h:35046
- [G] R.J. Glagelova, The three-cylinder theorem and its applications, vol. 6, Dokl. Akad. Nauka S.S.S.R, Moscow, 1965, pp. 1004-1008, Translated in Soviet Math.
- [L] E.M. Landis, A three-sphere theorem, vol. 4, Dokl. Akad. Nauka S.S.S.R, Moscow, 1963, pp. 76-78, Translated in Soviet Math. MR 27:443
- [M] K. Miller, Three-circle theorems in Partial Differential Equations and Applications to Improperly Posed Problems, vol. 16, Arch. for Rat. Mech. and Anal., 1964, pp. 126-154. MR 29:1435
- [PW] M. Protter and H. Weinberger, Maximum Priciples in Differential Equations, Springer-Verlag, New York, 1984. MR 86f:35034
- [W] Wang L., On the Regularity Theory of Fully Nonlinear Parabolic Equations I, Comm. on Pure and Applied Math. 45 (1992), 27-76. MR 92m:35126

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida 32901

E-mail address: jkovats@zach.fit.edu