A THREE-CURVES THEOREM FOR VISCOSITY SUBSOLUTIONS OF PARABOLIC EQUATIONS

JAY KOVATS

(Communicated by David S. Tartakoff)

Abstract

We prove a three-curves theorem for viscosity subsolutions of fully nonlinear uniformly parabolic equations $F\left(D^{2} u, t, x\right)-u_{t}=0$.

0. Introduction

Three-curves theorems play a central role in the qualitative theory of partial differential equations, starting with Hadamard's classical three-circles theorem for the real part of an analytic function. Briefly stated, this theorem says that if $\Delta u \geq 0$ in a domain $\Omega \subset \mathbb{R}^{2}$ containing two concentric circles of radii r_{1}, r_{2} and the region between them and if $M(r)$ denotes the maximum of u on any concentric circle of radius r, then $M(r)$ is a convex function of $\log r$. An application of this is Liouville's theorem: functions harmonic in the plane, except possibly at one point and bounded either above or below, are constant. In n dimensions, the three-spheres theorem states that if $\Delta u \geq 0$ in a domain $\Omega \subset \mathbb{R}^{n}$ containing two concentric spheres of radii r_{1}, r_{2} and the region between them and if $M(r)$ denotes the maximum of u on any concentric sphere of radius r, then $M(r)$ is a convex function of r^{2-n}. A three-cylinders theorem for linear parabolic equations appears in G.

In this paper we prove the fully nonlinear analogue of a three-curves theorem which appears in $\overline{\mathrm{PW}}$ for the 1-dimensional heat equation. Specifically, in Theorem 1.1, we prove the following. Suppose u is a viscosity subsolution of the uniformly parabolic nonlinear equation $F\left(D^{2} u, t, x\right)-u_{t}=0$ (with $F(0, \cdot)=0$) in any region containing two concentric concave paraboloids of opening $2 \rho_{1}^{-2}$ and $2 \rho_{2}^{-2}$ and the region between them (see below for more details). If $M(\rho)$ denotes the maximum of u on any concentric concave paraboloid of opening $2 \rho^{-2}$, with $\rho_{1}<\rho<\rho_{2}$, then there exists an a priori function $\psi(\rho)$, such that $M(\rho)$ is a convex function of $\psi(\rho)$.

Let $M>0, x \in \mathbb{R}^{n}$. We say that $P(x)$ is a paraboloid of opening M if $P(x)=$ $\pm \frac{M}{2}|x|^{2}+l(x)+l_{0}$, where l is linear and l_{0} is constant. $P(x)$ is convex if + appears and concave if - appears. So for $t_{0}, \rho>0$, the equation $t=t_{0}-\frac{|x|^{2}}{\rho^{2}}$ denotes the graph of a concave paraboloid of opening $\frac{2}{\rho^{2}}$ with vertex at $\left(t_{0}, 0\right) \in \mathbb{R}^{n+1}$, which we will henceforth write as $\rho=\frac{|x|}{\sqrt{t_{0}-t}}$. By concentric concave paraboloids of opening $2 \rho_{1}^{-2}$ and $2 \rho_{2}^{-2}$, we mean these paraboloids have common vertex $\left(t_{0}, 0\right)$.

[^0]Our region $Q \subset \mathbb{R}^{n+1}$ is described as follows. Q is bounded below by the line $t=0$ and above by the line $t=t^{\prime}$, where $t^{\prime}<t_{0} . Q$ is bounded laterally by the arcs of the paraboloids $\rho_{1}=\frac{|x|}{\sqrt{t_{0}-t}}$ and $\rho_{2}=\frac{|x|}{\sqrt{t_{0}-t}}$ of openings $2 \rho_{1}^{-2}$ and $2 \rho_{2}^{-2}$ respectively, with $\rho_{1}<\rho_{2}$. Geometrically, Q is a concave paraboloid shell, truncated just below the vertex $\left(t_{0}, 0\right)$. For $\rho_{1} \leq \rho \leq \rho_{2}$, define the functions

$$
\begin{aligned}
& M_{1}(\rho)=\max _{\substack{|x|=\rho \sqrt{t_{0}-t} \\
0 \leq t \leq t^{\prime}}} u(t, x) \\
& M_{2}=\max _{\rho_{1} \sqrt{t_{0} \leq|x| \leq \rho_{2} \sqrt{t_{0}}} u(0, x)} u(\rho) \\
& M\left(\max \left\{M_{1}(\rho), M_{2}\right\}\right.
\end{aligned}
$$

Hence $M(\rho)=\max _{Q} u$.
We now make a few brief comments about viscosity subsolutions of parabolic equations. For $f \in C(Q)$ and positive constants $\lambda \leq \Lambda, \underline{S}(\lambda, \Lambda, f)$ denotes the class of viscosity subsolutions of the equation $\mathcal{M}^{+}\left(D^{2} u, \lambda, \Lambda\right)-u_{t}=f(t, x)$. That is, $u \in C(Q)$ and satisfies $\mathcal{M}^{+}\left(D^{2} u, \lambda, \Lambda\right)-u_{t} \geq f(t, x)$ in the viscosity sense, where for any real $n \times n$ symmetric matrix M

$$
\mathcal{M}^{+}(M, \lambda, \Lambda)=\mathcal{M}^{+}(M)=\Lambda \sum_{e_{i}>0} e_{i}+\lambda \sum_{e_{i}<0} e_{i}
$$

where $e_{i}=e_{i}(M)$ are the eigenvalues of M. By diagonalizing M, it can be shown that \mathcal{M}^{+}is subadditive. That is, $\mathcal{M}^{+}(M+N) \leq \mathcal{M}^{+}(M)+\mathcal{M}^{+}(N)$ for any symmetric matrices M, N.

In general, a function u, continuous in a bounded domain $Q \subset \mathbb{R}^{n+1}$, is a viscosity subsolution of the fully nonlinear parabolic equation

$$
F\left(D^{2} u(t, x), t, x\right)-u_{t}(t, x)=f(t, x), \quad(t, x) \in Q
$$

if the following condition holds: if $\left(t_{0}, x_{0}\right) \in Q, \psi \in C^{2}(Q)$ and $u-\psi$ has a local maximum at $\left(t_{0}, x_{0}\right)$ (i.e., ψ touches u from above at $\left(t_{0}, x_{0}\right)$), then

$$
F\left(D^{2} \psi\left(t_{0}, x_{0}\right), t_{0}, x_{0}\right)-\psi_{t}\left(t_{0}, x_{0}\right) \geq f\left(t_{0}, x_{0}\right)
$$

Finally, it is known (see Proposition 2.13 CC) that viscosity subsolutions of $F\left(D^{2} u, t, x\right)-u_{t}=f(t, x)$ belong to the class $\underline{S}\left(\frac{\lambda}{n}, \Lambda, f(t, x)-F(0, t, x)\right)$. So if u is a viscosity subsolution of the uniformly parabolic nonlinear equation $F\left(D^{2} u, t, x\right)$ $u_{t}=0$ and $F(0, \cdot)=0$, then $u \in \underline{S}\left(\frac{\lambda}{n}, \Lambda, 0\right)$. Our Theorem 1.1 applies to this class of functions. See [CC] (Chapter 2) and [W] (Chapter 3) for a complete discussion about viscosity solutions of fully nonlinear equations.

We will need the following lemma, which appears in [CC] for the elliptic case and in W] for the parabolic case.

Lemma 0.1. Let $u \in \underline{S}(\lambda, \Lambda, f), \varphi \in C^{2}(Q)$ and suppose $\mathcal{M}^{+}\left(D^{2} \varphi(z), \lambda, \Lambda\right)-$ $\varphi_{t}(z) \leq g(z) \forall z=(t, x) \in Q$. Then $u-\varphi \in \underline{S}(\lambda, \Lambda, f-g)$ in Q.

Proof. Let ψ be any $C^{2}(Q)$ function touching the graph of $u-\varphi$ from above at the point $z_{0}=\left(t_{0}, x_{0}\right) \in Q$. Then $\psi+\varphi \in C^{2}(Q)$ and touches the graph of u from above at z_{0}. Since $u \in \underline{S}(\lambda, \Lambda, f)$, we have $\mathcal{M}^{+}\left(D^{2}(\psi+\varphi)\left(z_{0}\right)\right)-(\psi+\varphi)_{t}\left(z_{0}\right) \geq f\left(z_{0}\right)$. By the subadditivity of \mathcal{M}^{+}, this gives $\mathcal{M}^{+}\left(D^{2} \psi\left(z_{0}\right)\right)+\mathcal{M}^{+}\left(\varphi\left(z_{0}\right)\right)-\psi_{t}\left(z_{0}\right)-\varphi_{t}\left(z_{0}\right) \geq$ $f\left(z_{0}\right)$, which by assumption on φ yields $\mathcal{M}^{+}\left(D^{2} \psi\left(z_{0}\right)\right)-\psi_{t}\left(z_{0}\right) \geq f\left(z_{0}\right)-g\left(z_{0}\right)$.

1. Main theorem

Before we state Theorem 1.1, we make some comments concerning the maximum principle which relate to our theorem. For simplicity, we make these remarks for the linear setting, $L u-u_{t} \geq 0$, where $L:=a^{i j}(t, x) \frac{\partial}{\partial x^{i} \partial x^{j}}$, the $a^{i j}(t, x)$ are measurable and satisfy $\lambda|\xi|^{2} \leq a^{i j}(t, x) \xi^{i} \xi^{j} \leq \Lambda|\xi|^{2}, \forall \xi \in \mathbb{R}^{n}$. The same comments hold true for the class $\underline{S}(\lambda, \Lambda, 0)$.

Let $M(\rho)$ be defined as above. If u is nonconstant and satisfies $L u-u_{t} \geq 0$ in Q, then by the maximum principle, $M(\rho)$ cannot be constant in any interval, nor have an interior maximum. Moreover, $M(\rho)$ cannot have a relative maximum (since u is a subsolution) and so has at most one minimum. Hence $M(\rho)$ either always increases, always decreases or first decreases and then increases.

Three-curves theorems rely heavily on the maximum principle. In our threeparaboloids theorem, we use the maximum principle in the following way. Suppose $L u-u_{t} \geq 0$ in Q. We define a function $\varphi(\rho)=a+b \psi(p)$, where constants a, b (with $b>0$) are chosen so that $\varphi\left(\rho_{1}\right)=M\left(\rho_{1}\right), \varphi\left(\rho_{2}\right)=M\left(\rho_{2}\right)$ and $L \varphi-\varphi_{t} \leq 0$ in Q. This gives $L \varphi-\varphi_{t} \leq L u-u_{t}$ in Q and $u \leq \varphi$ on $\partial^{\prime} Q$. By the maximum principle, $u \leq \varphi$ in Q and hence $M(\rho) \leq \varphi(\rho)$ for $\rho \in\left(\rho_{1}, \rho_{2}\right)$.

But to do this, since $L \varphi-\varphi_{t}=b\left(L \psi-\psi_{t}\right)$ and $b>0$, we need ψ to satisfy $L \psi-\psi_{t} \leq 0$. Yet $b=\frac{M\left(\rho_{2}\right)-M\left(\rho_{1}\right)}{\psi\left(\rho_{2}\right)-\psi\left(\rho_{1}\right)}$ and $b>0$ implies that $\psi(\rho)$ is increasing or decreasing with $M(\rho)$. Thus we need to find a function $\psi(\rho)$ which is an increasing supersolution and another function $\psi(\rho)$ which is a decreasing supersolution. We denote the increasing supersolution by $\psi_{+}(\rho)$ and the decreasing supersolution by $\psi_{-}(\rho)$. The explicit forms of ψ_{+}, ψ_{-}in the fully nonlinear setting are given in equations (3) and (4). Hence in our nonlinear setting, it is not a single function ψ but a pair $\left(\psi_{+}, \psi_{-}\right)$which satisfies the conclusion of our Theorem 1.1. This unavoidable feature occurs even in the linear case for subsolutions of uniformly elliptic equations with measurable coefficients $L u:=a^{i j}(x) u_{x^{i} x^{j}}=0$ in the simple case of spheres $|x|=r$, where $r \in\left(r_{1}, r_{2}\right)$. See Chapter 2.12 in PW for a complete discussion of three-curves theorems for elliptic equations.

Of course, if ψ is a solution to the differential equation, then so is φ (independent of the sign of b) and the single function ψ will satisfy the desired convexity inequality. It is this situation that lends itself most easily to applications. In particular, for the three-spheres theorem for $\Delta u \geq 0$ in a spherical region in $\mathbb{R}^{n}(n \geq 3)$, $\psi(r)=r^{2-n}$, while for the three-paraboloids theorem for $\Delta u-u_{t} \geq 0$, the single ψ that works is $\psi(\rho)=\int_{\alpha}^{\rho} \frac{e^{r^{2} / 4}}{r^{n-1}} d r$. See equation (6) in our proof of Tychonov's theorem, which is an application of the three-paraboloids theorem for the heat equation.
Theorem 1.1. Let $u \in \underline{S}=\underline{S}(\lambda, \Lambda, 0)$ in a domain $Q \subset \mathbb{R}^{n+1}$ containing two concave concentric parabaloids of opening $2 \rho_{1}^{-2}$ and $2 \rho_{2}^{-2}$ and the region between them. If $M(\rho)$ denotes the maximum of u on any concentric concave paraboloid of opening $2 \rho^{-2}$, with $\rho_{1}<\rho<\rho_{2}$, then there exists a differentiable function $\psi(\rho)$, depending only n, λ, Λ and ρ, such that

$$
\begin{equation*}
M(\rho) \leq \frac{M\left(\rho_{1}\right)\left(\psi\left(\rho_{2}\right)-\psi(\rho)\right)+M\left(\rho_{2}\right)\left(\psi(\rho)-\psi\left(\rho_{1}\right)\right)}{\psi\left(\rho_{2}\right)-\psi\left(\rho_{1}\right)} \tag{1}
\end{equation*}
$$

Proof. For $\rho=\frac{|x|}{\sqrt{t_{0}-t}}$, define the function $\varphi(\rho)=a+b \psi(\rho)$, where constants a, b $(b>0)$ are chosen so that $\varphi\left(\rho_{1}\right)=M\left(\rho_{1}\right)$ and $\varphi\left(\rho_{2}\right)=M\left(\rho_{2}\right)$. We will find ψ
such that $v=u-\varphi \in \underline{S}(\lambda, \Lambda, 0)$ and then apply the maximum principle to v on Q. Since $u \in \underline{S}(\lambda, \Lambda, 0)$ and $\varphi \in C^{2}(Q)$, by Lemma 0.1 , we need only show that $\mathcal{M}^{+}\left(D^{2} \varphi(t, x), \lambda, \Lambda\right)-\varphi_{t}(t, x) \leq 0, \forall(t, x) \in Q$.

From $\varphi_{x_{i} x_{j}}=b\left\{\psi^{\prime \prime}(\rho) \rho_{x_{i}} \rho_{x_{j}}+\psi^{\prime}(\rho) \rho_{x_{i} x_{j}}\right\}$ and $\varphi_{t}=b \psi^{\prime}(\rho) \rho_{t}$, direct calculation gives

$$
\begin{equation*}
\varphi_{x_{i} x_{j}}(t, x)=\frac{b}{|x|^{2}\left(t_{0}-t\right)}\left\{\psi^{\prime \prime} x_{i} x_{j}+\frac{\psi^{\prime}}{\rho}\left(\delta_{i j}|x|^{2}-x_{i} x_{j}\right)\right\}, \quad \varphi_{t}(t, x)=\frac{b \psi^{\prime} \cdot \rho}{2\left(t_{0}-t\right)} \tag{2}
\end{equation*}
$$

That is,

$$
D^{2} \varphi(t, x)=\frac{b}{|x|^{2}\left(t_{0}-t\right)}\left\{x^{T} x\left(\psi^{\prime \prime}-\frac{\psi^{\prime}}{\rho}\right)+\frac{\psi^{\prime}}{\rho}|x|^{2} I\right\}
$$

and for the matrix inside the braces, $\frac{\psi^{\prime}}{\rho}|x|^{2}$ is an eigenvalue of multiplicity $n-1$, while $|x|^{2} \psi^{\prime \prime}$ is an eigenvalue of multiplicity 1 . Say $\psi^{\prime} \geq 0$. Then if $\psi^{\prime \prime} \geq 0$,

$$
\begin{aligned}
\mathcal{M}^{+}\left(D^{2} \varphi(t, x)\right) & =\frac{b}{|x|^{2}\left(t_{0}-t\right)}\left\{\Lambda(n-1) \frac{\psi^{\prime}}{\rho}|x|^{2}+\Lambda|x|^{2} \psi^{\prime \prime}\right\} \\
& =\frac{b \Lambda}{t_{0}-t}\left\{(n-1) \frac{\psi^{\prime}}{\rho}+\psi^{\prime \prime}\right\}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\mathcal{M}^{+}\left(D^{2} \varphi(t, x)\right)-\varphi_{t}(t, x) & =\frac{b \Lambda}{t_{0}-t}\left\{(n-1) \frac{\psi^{\prime}}{\rho}+\psi^{\prime \prime}-\frac{\psi^{\prime} \rho}{2 \Lambda}\right\} \\
& =\frac{b \Lambda}{t_{0}-t}\left\{\psi^{\prime \prime}+\psi^{\prime}\left(\frac{n-1}{\rho}-\frac{\rho}{2 \Lambda}\right)\right\}
\end{aligned}
$$

while, if $\psi^{\prime \prime}<0$,

$$
\begin{aligned}
\mathcal{M}^{+}\left(D^{2} \varphi(t, x)\right) & =\frac{b}{|x|^{2}\left(t_{0}-t\right)}\left\{\Lambda(n-1) \frac{\psi^{\prime}}{\rho}|x|^{2}+\lambda|x|^{2} \psi^{\prime \prime}\right\} \\
& =\frac{b \lambda}{t_{0}-t}\left\{\psi^{\prime \prime}+\frac{\Lambda(n-1)}{\lambda} \cdot \frac{\psi^{\prime}}{\rho}\right\}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\mathcal{M}^{+}\left(D^{2} \varphi(t, x)\right)-\varphi_{t}(t, x) & =\frac{b \lambda}{t_{0}-t}\left\{\psi^{\prime \prime}+\frac{\Lambda(n-1)}{\lambda} \cdot \frac{\psi^{\prime}}{\rho}-\frac{\psi^{\prime} \rho}{2 \lambda}\right\} \\
& =\frac{b \lambda}{t_{0}-t}\left\{\psi^{\prime \prime}+\psi^{\prime}\left(\frac{c_{1}}{\rho}-\frac{\rho}{2 \lambda}\right)\right\}
\end{aligned}
$$

where $c_{1}=\frac{\Lambda(n-1)}{\lambda}$. Since $n-1 \leq c_{1}$, both cases for $\psi^{\prime} \geq 0$ give

$$
\begin{equation*}
\mathcal{M}^{+}\left(D^{2} \varphi(t, x)\right)-\varphi_{t}(t, x) \leq \frac{b K}{t_{0}-t}\left\{\psi^{\prime \prime}+\psi^{\prime}\left(\frac{c_{1}}{\rho}-\frac{\rho}{2 \Lambda}\right)\right\}=0 \tag{3}
\end{equation*}
$$

for

$$
\psi=\psi_{+}(\rho):=\int_{\alpha}^{\rho} \frac{e^{r^{2} / 4 \Lambda}}{r^{c_{1}}} d r
$$

and K is either λ or Λ. Now suppose $\psi^{\prime} \leq 0$. If $\psi^{\prime \prime} \geq 0$, then as before

$$
\mathcal{M}^{+}\left(D^{2} \varphi\right)=\frac{b \Lambda}{t_{0}-t}\left\{\psi^{\prime \prime}+\frac{\lambda(n-1)}{\Lambda} \cdot \frac{\psi^{\prime}}{\rho}\right\}
$$

and hence

$$
\mathcal{M}^{+}\left(D^{2} \varphi\right)-\varphi_{t}=\frac{b \Lambda}{t_{0}-t}\left\{\psi^{\prime \prime}+\psi^{\prime}\left(\frac{c_{2}}{\rho}-\frac{\rho}{2 \Lambda}\right)\right\}
$$

where $c_{2}=\frac{\lambda(n-1)}{\Lambda}$, while, if $\psi^{\prime \prime}<0$,

$$
\mathcal{M}^{+}\left(D^{2} \varphi\right)=\frac{b \lambda}{t_{0}-t}\left\{\psi^{\prime \prime}+(n-1) \frac{\psi^{\prime}}{\rho}\right\}
$$

thus

$$
\mathcal{M}^{+}\left(D^{2} \varphi\right)-\varphi_{t}=\frac{b \lambda}{t_{0}-t}\left\{\psi^{\prime \prime}+\psi^{\prime}\left(\frac{n-1}{\rho}-\frac{\rho}{2 \lambda}\right)\right\}
$$

Since $c_{2} \leq n-1$, both cases for $\psi^{\prime} \leq 0$ yield

$$
\begin{equation*}
\mathcal{M}^{+}\left(D^{2} \varphi(t, x)\right)-\varphi_{t}(t, x) \leq \frac{b K}{t_{0}-t}\left\{\psi^{\prime \prime}+\psi^{\prime}\left(\frac{c_{2}}{\rho}-\frac{\rho}{2 \lambda}\right)\right\}=0 \tag{4}
\end{equation*}
$$

for

$$
\psi=\psi_{-}(\rho):=\int_{\rho}^{\beta} \frac{e^{r^{2} / 4 \lambda}}{r^{c_{2}}} d r
$$

Thus in all cases, we have a function $\psi(\rho)=\psi(\rho, n, \lambda, \Lambda)$ for which $\mathcal{M}^{+}\left(D^{2} \varphi, \lambda, \Lambda\right)-$ $\varphi_{t} \leq 0$ in Q, which setting $v=u-\varphi$, gives $v \in \underline{S}(0)$ in Q. We now show $v \leq 0$ on $\partial^{\prime} Q$. Recall that $M(\rho)=\max \left\{M_{1}(\rho), M_{2}\right\}$, where for $\rho_{1} \leq \rho \leq \rho_{2}$,

$$
M_{1}(\rho)=\max _{\substack{|x|=\rho \sqrt{t_{0}-t} \\ 0 \leq t \leq t^{\prime}}} u(t, x), \quad M_{2}=\max _{\rho_{1} \sqrt{t_{0} \leq|x| \leq \rho_{2} \sqrt{t_{0}}}} u(0, x)
$$

On $|x|=\rho_{1} \sqrt{t_{0}-t}, v=u-\varphi\left(\rho_{1}\right) \leq M_{1}\left(\rho_{1}\right)-\varphi\left(\rho_{1}\right) \leq M\left(\rho_{1}\right)-\varphi\left(\rho_{1}\right)=0$. The same inequalities show that $v \leq 0$ on $|x|=\rho_{2} \sqrt{t_{0}-t}$. Finally, on $\{t=0\} \cap Q$, we have $v(0, x)=u(0, x)-\varphi(\rho) \leq M_{2}-\varphi(\rho) \leq 0$. Thus $v \leq 0$ on $\partial^{\prime} Q$ and hence by the maximum principle for viscosity subsolutions, $v \leq 0$ in Q. That is, $u \leq \varphi$ in Q. Hence $M(\rho) \leq \varphi(\rho)$, which gives us (1).

If $u \in \bar{S}(\lambda, \Lambda, 0)$, Theorem 1.1, applied to $-u$, along with the identity $\max (-w)=$ $-\min w$, immediately yields (1) with the inequality reversed and $m(\rho)$ in place of $M(\rho)$, where $m(\rho)=\min _{Q} u$. Since $S(\lambda, \Lambda, 0)=\underline{S}(\lambda, \Lambda, 0) \cap \bar{S}(\lambda, \Lambda, 0)$, setting $\omega(\rho)=M(\rho)-m(\rho)$ and adding these inequalities gives the following convexity inequality for the oscillation of viscosity solutions.

Corollary 1.2. Let $u \in S(\lambda, \Lambda, 0)$ in a domain $Q \subset \mathbb{R}^{n+1}$ containing two concave concentric parabaloids of opening $2 \rho_{1}^{-2}$ and $2 \rho_{2}^{-2}$ and the region between them. If $\omega(\rho)$ denotes the oscillation of u on any concentric concave paraboloid of opening $2 \rho^{-2}$, with $\rho_{1}<\rho<\rho_{2}$, then

$$
\begin{equation*}
\omega(\rho) \leq \frac{\omega\left(\rho_{1}\right)\left(\psi\left(\rho_{2}\right)-\psi(\rho)\right)+\omega\left(\rho_{2}\right)\left(\psi(\rho)-\psi\left(\rho_{1}\right)\right)}{\psi\left(\rho_{2}\right)-\psi\left(\rho_{1}\right)} \tag{5}
\end{equation*}
$$

In the linear setting, a simplified version of Theorem 1.1 yields a uniqueness result for slowly increasing solutions of the nonhomogeneous Dirichlet problem

$$
\begin{cases}\Delta u-u_{t}=f, & (t, x) \in(0, T) \times \mathbb{R}^{n} \\ u(0, x)=g(x), & x \in \mathbb{R}^{n}\end{cases}
$$

originally due to Tychonov. Our proof is a generalization of an argument which appears in PW.

Theorem 1.3. Let $u, w \in C(\bar{Q})$ be solutions of $\Delta u-u_{t}=f$ in the strip $Q=$ $(0, T) \times \mathbb{R}^{n}$ with $u(0, x)=w(0, x)=g(x)$. If there are constants c_{1}, c_{2} such that

$$
|u(t, x)|,|w(t, x)| \leq c_{1} e^{c_{2}|x|^{2}} \quad \text { uniformly for } t \in[0, T]
$$

then $u \equiv w$ in Q.
Proof. If v satisfies $\Delta v-v_{t}=0$ in the paraboloid region Q of Theorem 1.1, then setting $\varphi(\rho)=a+b \psi(\rho)$, an easy calculation using (2) shows

$$
\begin{equation*}
\Delta \varphi(t, x)-\varphi_{t}(t, x)=\frac{b}{t_{0}-t}\left\{\psi^{\prime \prime}+\psi^{\prime}\left(\frac{n-1}{\rho}-\frac{\rho}{2}\right)\right\}=0 \tag{6}
\end{equation*}
$$

for

$$
\psi(\rho)=\int_{\alpha}^{\rho} \frac{e^{r^{2} / 4}}{r^{n-1}} d r
$$

and thus we obtain convexity inequality (5) for $\omega(\rho)=\operatorname{osc}_{Q} v$ and $\psi(\rho)$. So for u, w in our theorem, set $v=u-w$, put $t_{0}<\frac{1}{4 c_{2}}$ and apply inequality (5) to v in $Q_{1}=\left[0, \frac{t_{0}}{2}\right] \times \mathbb{R}^{n}$, where $\Delta v-v_{t}=0$ and $v(0, x)=0$. Now let $\rho_{2} \rightarrow \infty$ in (5). From the trivial inequality osc $v \leq 2 \max v$ we have $\omega\left(\rho_{2}\right) \leq 4 c_{1} e^{c_{2} \rho_{2}^{2}\left(t_{0}-t\right)}$. Since $\psi^{\prime}\left(\rho_{2}\right)=\rho_{2}^{1-n} e^{\frac{\rho_{2}^{2}}{4}}$ with $c_{2}\left(t_{0}-t\right)-\frac{1}{4}<0$, we have $\lim _{\rho_{2} \rightarrow \infty} \frac{\omega\left(\rho_{2}\right)}{\psi\left(\rho_{2}\right)}=0$, which by (5) yields $\omega(\rho) \leq \omega\left(\rho_{1}\right)$. Letting $\rho_{1} \rightarrow 0$, we see that the oscillation of v in Q_{1} occurs on the hyperplane $x=0$, which by the maximum principle implies $\omega \equiv 0$ in Q_{1}. Hence v is constant in Q_{1}. But $v(0, x)=0$ implies this constant must be 0 , so $v \equiv 0$ in Q_{1}. Repeating this process, now using $t=\frac{t_{0}}{2}$ as the initial line, we find that $v \equiv 0$ in $Q_{2}=\left[\frac{t_{0}}{2}, t_{0}\right] \times \mathbb{R}^{n}$. After a finite number of steps, we get $v \equiv 0$ in Q and hence $u \equiv w$ in Q.

References

[CC] L. Caffarelli and X. Cabre, Fully Nonlinear Elliptic Equations, Amer. Math. Soc., Providence, R.I., 1995. MR 96h:35046
[G] R.J. Glagelova, The three-cylinder theorem and its applications, vol. 6, Dokl. Akad. Nauka S.S.S.R, Moscow, 1965, pp. 1004-1008, Translated in Soviet Math.
[L] E.M. Landis, A three-sphere theorem, vol. 4, Dokl. Akad. Nauka S.S.S.R, Moscow, 1963, pp. 76-78, Translated in Soviet Math. MR 27:443
[M] K. Miller, Three-circle theorems in Partial Differential Equations and Applications to Improperly Posed Problems, vol. 16, Arch. for Rat. Mech. and Anal., 1964, pp. 126-154. MR 29:1435
[PW] M. Protter and H. Weinberger, Maximum Priciples in Differential Equations, SpringerVerlag, New York, 1984. MR 86f:35034
[W] Wang L., On the Regularity Theory of Fully Nonlinear Parabolic Equations I, Comm. on Pure and Applied Math. 45 (1992), 27-76. MR 92m:35126

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida 32901

E-mail address: jkovats@zach.fit.edu

[^0]: Received by the editors December 15, 2001.
 2000 Mathematics Subject Classification. Primary 35B05, 35K55.

