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POSITIVE SOLUTIONS FOR A FOURTH ORDER EQUATION
INVARIANT UNDER ISOMETRIES

FRÉDÉRIC ROBERT

(Communicated by Bennett Chow)

Abstract. Let (M, g) be a smooth compact Riemannian manifold of dimen-
sion n ≥ 5. We consider the problem

(?) ∆2
gu+ α∆gu+ au = fu

n+4
n−4 ,

where ∆g = −divg(∇), α, a ∈ R, u, f ∈ C∞(M). We require u to be positive
and invariant under isometries. We prove existence results for (?) on arbitrary
compact manifolds. This includes the case of the geometric Paneitz-Branson
operator on the sphere.

In 1983, Paneitz [Pan] introduced a fourth order operator defined on 4-
dimensional Riemannian manifolds. Branson [Bra] generalized the definition to
n-dimensional Riemannian manifolds. Given (Mn, g), n ≥ 5, a compact Riemann-
ian manifold, and u ∈ C∞(Mn), we let

Png u = ∆2
gu− divg(anSgg + bnRicg)du+

n− 4
2

Qngu.

In this expression, ∆gu = −divg(∇u), Sg is the scalar curvature of g, Ricg its Ricci
curvature, an = (n−2)2+4

2(n−1)(n−2) , bn = − 4
n−2 , and

Qng =
1

2(n− 1)
∆gSg +

n3 − 4n2 + 16n− 16
8(n− 1)2(n− 2)2

S2
g −

2
(n− 2)2

|Ricg|2g.

If g̃ = ϕ4/(n−4)g is a conformal metric to g, then (see Branson [Bra])

Png (uϕ) = ϕ
n+4
n−4Png̃ (u) and Png ϕ =

n− 4
2

Qng̃ϕ
n+4
n−4

where the first of these two equations holds for all smooth functions u on Mn. Let
(Sn, h) be the unit n-sphere. Then

Pnh u = ∆2
hu+ cn∆hu+ dnu,

where cn = n2−2n−4
2 and dn = (n−4)n(n2−4)

16 . We still refer to Png as the Paneitz
operator. Given α, a ∈ R, let Pg be the constant coefficient Paneitz type operator
whose expression is Pgu = ∆2

gu+ α∆gu+ au, where u ∈ C∞(Mn). If G is a group
of isometries of (Mn, g) and f ∈ C∞(M) is invariant under the action of G, then
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we are interested in this paper in finding smooth positive G-invariant solutions of
the fourth order equation

Pgu = fu2]−1(1)

where 2] = 2n
n−4 is the critical Sobolev exponent for the embeddings of H2

2 (M) in
Lp-spaces. When (Mn, g) is the unit n-sphere (Sn, h), α = cn, and a = dn, (1)
reads as

∆2
hu+ cn∆hu+ dnu = fu2]−1.(2)

Then it follows from the above transformation laws that the existence of a smooth
positive solution to (2) is equivalent to the existence of a conformal metric g to
h such that Qng = f . Equation (2) has its exact analogue when passing from the
Paneitz operator to the conformal Laplacian on Sn, n ≥ 3. The equation associated
to the conformal Laplacian reads as

∆hu+
n(n− 2)

4
u = fu2?−1,(3)

where 2? = 2n
n−2 and f ∈ C∞(M), and we refer to the problem of finding smooth

positive solutions to this equation as the Kazdan-Warner or the Nirenberg prob-
lem. Extending a result of Moser [Mos] from S2 to S3, Escobar and Schoen [EsSc]
proved that if f is a smooth positive function on S3, invariant under the action
of a nontrivial group G of isometries of (S3, h) acting freely, then (3) possesses a
smooth positive G-invariant solution. This result of Escobar and Schoen [EsSc] was
then generalized by Hebey [Heb], where he proved that (3) still possesses a smooth
positive G-invariant solution if we only require that the action of G is without fixed
points. A nontrivial group G of isometries of a manifold (Mn, g) is said to act freely
if Mn/G is still a manifold. We say that G acts without fixed points if for any x,
the G-orbit OG(x) of x has at least two elements. A nontrivial group acting freely
acts without fixed points. Returning to (2), it was proved in Djadli-Hebey-Ledoux
[DHL] that if f is a smooth positive function on S5, invariant under the action of a
nontrivial group G of isometries of (S5, h) acting freely, then (2) possesses a smooth
positive G-invariant solution. Hebey put to our attention the question of whether
or not such a result holds when the condition that G acts freely is replaced by the
less restrictive condition that G acts without fixed points. We answer this question
by the affirmative, and prove the following theorem:

Theorem 1. Let G be a compact subgroup of isometries of the standard sphere
(S5, h), f ∈ C∞(S5) positive and G−invariant. Assume that G acts without fixed
points. Then (2) possesses a smooth positive G−invariant solution, and there exists
a conformal G-invariant metric g to h such that Q5

g = f .

References where (1) and (2) are studied are Djadli-Hebey-Ledoux [DHL], Hebey-
Robert [HeRo], and Jourdain [Jou].

1. The case of an arbitrary Riemannian manifold

Let (Mn, g) be a compact Riemannian manifold of dimension n ≥ 5. Not to carry
heavy notations, we note M instead of Mn. If Isomg(M) is the isometry group of
(M, g), we let G be a compact subgroup of Isomg(M). Given f ∈ C∞(M), positive
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and G−invariant, and given a, α > 0, we let

λG(f) = inf
u∈HGf

∫
M

(
(∆gu)2 + α|∇u|2g + au2

)
dvg,

where dvg is the Riemannian volume element for g, and HGf is the set consisting of

G-invariant functions in H2
2 (M) which are such that

∫
M
f |u|2]dvg = 1. It can be

checked that whatever (M, g) is, whatever f is, and whatever a and α are,

λG(f) ≤ |OG(x)| 4n
K0f(x)

2
2]
,(4)

for all x ∈ M , where |OG(x)| is the cardinality of the orbit OG(x) and K0 is the
best constant for the optimal Sobolev Euclidean inequality(∫

Rn
|u|2] dvξ

) 2
2]

≤ K0

∫
Rn

(∆ξu)2 dvξ(5)

where dvξ is the volume element in Rn and ∆ξ is the usual Laplacian with the
minus sign convention. The first objective of this section is to prove the following
theorem:

Theorem 2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5,
G a compact subgroup of Isomg(M), f ∈ C∞(M), positive and G−invariant, and
a, α > 0. If a ≤ α2

4 , and if for all x ∈M ,

λG(f) <
|OG(x)| 4n
K0f(x)

2
2]
,(6)

then (1) possesses a smooth positive G−invariant solution.

We prove this theorem in what follows. For 0 < ε < 2] − 2, we define

λGε (f) = inf
u∈HGf,ε

(∫
M

(
(∆gu)2 + α|∇u|2g + au2

)
dvg

)
where HGf,ε is the set consisting of G-invariant functions in H2

2 (M) which are such

that
∫
M
f |u|2]−ε dvg = 1. The following lemma easily follows from what has been

achieved in [DHL].

Lemma 1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 5.
Let G be a subgroup of Isomg(M), f ∈ C∞(M) a positive G−invariant function,
and a, α > 0 such that a ≤ α2

4 . Then λGε (f) is attained by a smooth positive
G−invariant function uε which satisfies

∆2
guε + α∆guε + auε = λGε (f)fu2]−1−ε

ε(7)

and
∫
M fu2]−ε

ε dvg = 1. Moreover, up to a subsequence, (uε) converges weakly in
H2

2 (M) to a function u. If u 6≡ 0, then u is a positive smooth G−invariant function
which realizes λG(f), and, up to a positive constant scale factor, u is a solution of
(1).

We proceed with the proof of Theorem 2. We assume that (6) is true. We let (uε)
be the sequence of Lemma 1. Also let λ = lim supλGε (f). Then λ ≤ λG(f), and with
Hölder and Sobolev inequalities we get that λ > 0. Assume now that there is no
positive G−invariant solution u ∈ C∞(M) to (1). Then uε → 0 almost everywhere.
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Let xε ∈ M be such that uε(xε) = supM uε. If uε(xε) is bounded, it follows from
classical regularity theory (see for instance [GT]) that (uε) is bounded in C4,β(M),
0 < β < 1. Then uε → 0 in C4(M), a contradiction since

∫
M fu2]−ε

ε dvg = 1. Hence,
uε(xε)→ +∞. Let x1 ∈M be such that xε → x1. We define µε = uε(xε)−

2
n−4 and

kε = µ
1−εn−4

8
ε . For |x| < ig(M)

kε
, where ig(M) > 0 is the injectivity radius of M , we

let

vε(x) = µ
n−4

2
ε uε(expxε(kεx)) and gε = (exp?xεg)(kεx),

where expxε denotes the exponential map at xε. Then vε verifies

∆2
gεvε + αk2

ε∆gεvε + ak4
ε vε = λGε (f)f(expxε(kεx))v2]−1−ε

ε ,

an equation which can also be read as(
∆gε +

αk2
ε

2

)2

vε = λGε (f)f(expxε(kεx))v2]−1−ε
ε +

(
α2

4
− a
)
k4
ε vε.

We have 0 ≤ vε ≤ 1 and kε → 0. By classical regularity theorems (see for instance
[GT]), (vε) is bounded in C4,β(K) for 0 < β < 1 and all compact subsets K ⊂ Rn.
Then, up to a subsequence, there exists v ∈ C4(Rn) such that vε goes to v in
C4
loc(Rn). In particular v ≥ 0, v(0) = 1, and

∆2
ξv = λf(x1)v2]−1.(8)

Then (see [HeRo]) we know precisely what v is. Given x ∈ M and r > 0, we let
Bg(x, r) be the geodesic ball of center x and radius r in M , and for p ∈ Rn, we let
Bξ(p, r) be the Euclidean ball in Rn of center p and radius r. For R > 0, we have∫

Bg(xε,Rkε)

fu2]−ε
ε dvg =

(
µ−1
ε

)ε (n−4)2

8

∫
Bξ(0,R)

f(expxε(kεx))v2]−ε
ε dvgε

≥ f(x1)
∫
Bξ(0,R)

v2] dvξ + o(1)

since µε → 0 and vε → v in C4(Bξ(0, R)). Now, since we also have that xε → x1,
kε → 0 and f ≥ 0, we obtain that for any δ > 0,∫

Bg(x1,δ)

fu2]−ε
ε dvg ≥ f(x1)

∫
Rn
v2] dvξ + o(1).(9)

Let OG(x1) = {x1, ..., xm}. Since f is G−invariant and G is a group of isometries,∫
Bg(xi,δ)

fu2]−ε
ε dvg =

∫
Bg(x1,δ)

fu2]−ε
ε dvg ≥ f(x1)

∫
Rn
v2] dvξ + o(1)

for all i = 1, ...,m. Taking δ > 0 sufficiently small, we obtain

1 =
∫
M

fu2]−ε
ε dvg ≥ mf(x1)

∫
Rn
v2] dvξ + o(1).

Multiplying by v the equation satisfied by v, and integrating, it follows with (5),
(4), and the inequality λ ≤ λG(f), that v is minimizing for (5) and that

λG(f) = λ =
|OG(x1)| 4n
f(x1)

2
2]K0

.(10)

A contradiction with (6). This proves Theorem 2.
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We proceed in what follows with the study of the behaviour of the uε’s. We
assume as in the proof of Theorem 2 that uε → 0 almost everywhere. It follows
from the proof of Theorem 2 that equality holds in (9). Then, for any δ small,∫

Bg(x1,δ)

fu2]−ε
ε dvg =

1
|OG(x1)| + o(1).(11)

We also get that µεε → 1 and that for any Ω ⊂⊂M\OG(x1),∫
Ω

u2]−ε
ε dvg = o(1).(12)

We now give a more precise description of the convergence of (uε) outside the
orbit OG(x1). Let σ1 = IdM , σ2, ..., σm ∈ G be such that xi = σi(x1) where
OG(x1) = {x1, ..., xm}. Define xε,i = σi(xε). First, we want to prove that there
exists C > 0 such that for any x ∈M ,

inf
i=1,...,p

dg(x, xε,i)
4(n−4)

8−ε(n−4) uε(x) ≤ C.(13)

We follow an idea of Druet [Dru]. Assume that there exists yε ∈M such that

sup
x∈M

inf
i=1,...,p

dg(x, xε,i)sεuε(x) = inf
i=1,...,p

dg(yε, xε,i)sεuε(yε)→ +∞(14)

where sε = 4(n−4)
8−ε(n−4) . Define µ̂ε = uε(yε)−

2
n−4 , k̂ε = µ̂

1−εn−4
8

ε , and set

v̂ε(x) = µ̂
n−4

2
ε uε

(
expyε(k̂εx)

)
.

For |x| < ig(M)

k̂ε
and ĝε(x) = exp?yεg(k̂εx), we have

∆2
ĝε v̂ε + αk2

ε∆ĝε v̂ε + ak4
ε v̂ε = f(expyε(k̂εx))v̂2]−1−ε

ε .(15)

Let R > 0. With (14) and |x| ≤ R, we obtain

v̂ε(x) =
uε

(
expyε(k̂εx)

)
uε(yε)

≤

 inf
i=1,...,p

dg(yε, xε,i)

inf
i=1,...,p

dg(expyε(k̂εx), xε,i)


4(n−4)

8−ε(n−4)

.

Since inf
i=1,...,p

dg(expyε(k̂εx), xε,i) ≥ inf
i=1,...,p

dg(yε, xε,i)− k̂εR,

v̂ε(x) ≤

1−R k̂ε
inf

i=1,...,p
dg(yε, xε,i)

−
4(n−4)

8−ε(n−4)

for all |x| ≤ R. Now, with (14), we obtain that

inf
i=1,...,p

dg(yε, xε,i)

k̂ε
→ +∞.(16)

Then v̂ε is uniformly bounded on every compact set. Writing that(
∆ĝε +

αk̂2
ε

2

)2

v̂ε = f(expyε(k̂εx))v̂2]−1−ε
ε +

(
α2

4
− a
)
k̂4
ε v̂ε
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and using classical regularity results (see for instance [GT]), there exists v̂ ∈ C4(Rn)
such that, up to a subsequence, v̂ε → v̂ in C4

loc(Rn), and v̂(0) = 1. Now, as is easily
checked, ∫

Bg(yε,k̂ε)

u2]−ε
ε dvg = µ̂

−ε (n−4)2

8
ε

∫
Bξ(0,1)

v̂2]−ε
ε dvĝε .

Since µ̂ε ≤ 1, when ε→ 0, then∫
Bg(yε,k̂ε)

u2]−ε
ε dvg ≥

∫
Bξ(0,1)

v̂2] dvξ + o(1).

Now, up to a subsequence, we can assume that yε → y0 ∈ M . If y0 6∈ OG(x1),
then, with (12), we get that

∫
Bg(yε,k̂ε)

u2]−ε
ε dvg → 0. Then

∫
Bξ(0,1)

v̂2] dvξ = 0, a
contradiction. Hence, up to an isometry of G, we can assume that y0 = x1. Taking
δ > 0 small enough,∫

Bg(yε,k̂ε)

u2]−ε
ε dvg =

∫
Bg(yε,k̂ε)∩Bg(x1,δ)

u2]−ε
ε dvg .

For any R′ > 0, we have∫
Bg(x1,δ)\Bg(xε,R′kε)

u2]−ε
ε dvg ≤ ε(R′) + o(1)

where limR′→+∞ ε(R′) = 0. It follows that∫
Bg(yε,k̂ε)

u2]−ε
ε dvg ≤

∫
Bg(yε,k̂ε)∩Bg(xε,R′kε)

u2]−ε
ε dvg + ε(R′) + o(1).

If Bg(yε, k̂ε) ∩Bg(xε, R′kε) 6= ∅, then

inf
i=1,...,p

dg(yε, xε,i) ≤ k̂ε +R′kε.(17)

With (16) and (17), we then obtain that k̂ε = o(kε) and dg(yε,xε)
kε

is bounded. Now
we write yε = expxε(kεŷε) where ŷε is bounded. There exists C0 > 0 such that

1
kε
exp−1

xε

(
Bg(expxε(kεŷε), k̂ε)

)
⊂ Bξ

(
ŷε, C0

k̂ε
kε

)
.

We thus obtain that∫
Bg(yε,k̂ε)∩Bg(xε,R′kε,)

u2]−ε
ε dvg ≤ µ

−ε (n−4)2

8
ε

∫
Bξ

(
ŷε,C0

k̂ε
kε

) v2]−ε
ε dvgε = o(1)

since k̂ε = o(kε) and (vε) is bounded. As a consequence,∫
Bg(yε,k̂ε)

u2]−ε
ε dvg ≤ ε(R′) + o(1)

for all R′ > 0. We then get that
∫
Bξ(0,1)

v̂2] dvξ = 0, a contradiction since v̂(0) = 1.
This proves (13). Given an open subset Ω ⊂⊂M\OG(x1), we now get by classical
regularity theorems (see for instance [GT]) that (uε) is bounded in C4,β(Ω). Since
uε goes to 0 almost everywhere, it follows that

uε → 0 in C4(Ω)(18)

as ε→ 0, a relation we use in the following section.
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2. The case of the sphere

Let x0 ∈ Sn. For β > 1, define

ux0,β(x) = (β − cos r)−
n−4

2 and ũx0,β = (β2 − 1)
n−4

4 ux0,β

where r = dh(x0, x). Then,

Pnh (ũx0,β) = dnũ
2]−1
x0,β

and
∫
Sn
ũ2]

x0,β dvh = ωn

where ωn is the volume of the unit n−sphere. We now make these functions
G−invariant. Let x1 ∈ M be a point of finite orbit OG(x1) = {x1, ..., xm}. We
define uiβ = uxi,β, ũiβ = ũxi,β and ũβ =

∑m
i=1 ũiβ (this function is G−invariant).

Computing
∫
Sn P

n
h ũβ ũβ dvh and

∫
Sn f |ũβ|2

]

dvh we find that∫
Sn
Pnh ũβũβ dvh = mdnωn + dnα(β − 1)

n−4
2 + o

(
(β − 1)

n−4
2

)
where

α =
∑
i6=j

(1− cos dh(xi, xj))−
n−4

2 ωn−1

∫ +∞

0

2nrn−1

(1 + r2)
n+4

2

dr > 0

since |OG(x1)| ≥ 2, and(∫
Sn
f(x)ũ2]

β dvh

) 2
2]

≥ f(x1)
2
2] (mωn)

2
2]

(
1 +

2α
mωn

(β − 1)
n−4

2

+o
(

(β − 1)
n−4

2

))
provided that ∇kf(x1) = 0, for all k = 1, ..., n− 4. We now write that∫

Sn P
n
h ũβũβ dvh(∫

Sn f(x)ũ2]
β dvh

) 2
2]
≤ m

4
n dnω

4
n
n

f(x1)
2
2]

(
1− α

mωn
(β − 1)

n−4
2 + o

(
(β − 1)

n−4
2

))
.

Since dnω
4
n
n = 1/K0 (see [EFJ]), it follows that∫

Sn P
n
h ũβ ũβ dvh(∫

Sn f(x)ũ2]
β dvh

) 2
2]
≤ |OG(x1)| 4n
f(x1)

2
2]K0

(
1− α

mωn
(β − 1)

n−4
2 + o

(
(β − 1)

n−4
2

))
.

Noting that α > 0, we get that

λG(f) <
|OG(x1)| 4n
f(x1)

2
2]K0

(19)

for all x1 ∈ Sn such that ∇kf(x1) = 0 for all k = 1, ..., n− 4. It then follows from
Theorem 2 that the following theorem holds:

Theorem 3. Let G be a compact subgroup of Isomg(Sn), n ≥ 5, acting without
fixed point. Let f ∈ C∞(Sn) be a positive G−invariant function, and let x0 ∈ Sn
be such that for any x ∈ Sn,

f(x0)

|OG(x0)| 4
n−4
≥ f(x)

|OG(x)| 4
n−4

.
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Assume that ∇qf(x0) = 0 for all q = 1, ..., n − 4. Then there exists u ∈ C∞(Sn),
positive and G−invariant, such that

Pnh u = fu2]−1

and there exists a G-invariant conformal metric g to h such that Qng = f .

We now prove Theorem 1. If there is no solution for (2), then we have (10) with
a point x1 ∈ Sn such that (11) and (18) are true. Assume that we have proved that
x1 is a critical point for f . Since n = 5, then (19) is true for x1. A contradiction,
and this proves the theorem. Then the proof of Theorem 1 reduces to the proof
that x1 is a critical point for f . We adapt an argument from Aubin. Given (M, g)
a compact manifold of dimension n, let (uε) be as in Lemma 1. We suppose that
(uε) converges weakly to 0 and let x1 ∈ M be such that (11) and (18) are true.
With (7) we have

∆2
guε + α∆guε + auε = λGε (f)fu2]−1−ε

ε .

Let 0 < δ < min
x,y∈OG(x1)

x 6=y

dg(x, y). We get with (11) that for all z ∈ C0(M),

∫
Bg(x1,δ)

zu2]−ε
ε dvg =

z(x1)
f(x1)|OG(x1)| + o(1).(20)

Now we choose ψ ∈ C∞(M) such that Suppψ ⊂ Bg(x1, δ), ∇ψ(x1) = ∇f(x1) and
∇2
gψ(x1) = 0. We then have∫

M

(∇f,∇ψ)gu2]−ε
ε dvg =

|∇f |2g(x1)
f(x1)|OG(x1)| + o(1).

On the other hand, since ∆gψ(x1) = 0, uε → 0 strongly in H2
1 (M) and is bounded

in H2
2 (M), we have∫

M

(∇f,∇ψ)gu2]−ε
ε dvg

=
∫
M

(∇(fu2]−ε
ε ),∇ψ) dvg

−(2] − ε)
∫
M

fu2]−1−ε
ε (∇uε,∇ψ)g dvg

=
∫
M

fu2]−ε
ε ∆gψ dvg

− 2] − ε
λGε (f)

∫
M

(
∆2
guε + α∆guε + auε

)
(∇uε,∇ψ)g dvg

= − 2] − ε
λGε (f)

∫
M

∆2
guε(∇uε,∇ψ)g dvg + o(1)

= − 2] − ε
λGε (f)

∫
M

∆guε∆g(∇uε,∇ψ)g dvg + o(1)

where we have used (20). We have

∆g(∇uε,∇ψ)g = (∇∆guε,∇ψ)g
+O(|∇uε|g) +O(|x||∇2

guε|g|∇ψ|g) +O(|∇2
guε|g|∇2

gψ|g).
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Then, with (18), (20) and since (uε) is bounded in H2
2 (M), we get that∫

M

(∇f,∇ψ)gu2]−ε
ε dvg = − 2] − ε

λGε (f)

∫
M

∆guε(∇∆guε,∇ψ)g dvg + o(1)

= − 2] − ε
2λGε (f)

∫
M

(∇(∆guε)2,∇ψ)g dvg + o(1)

= − 2] − ε
2λGε (f)

∫
M

(∆guε)2∆gψ dvg + o(1) = o(1)

since ∆gψ(x1) = 0. Hence ∇f(x1) = 0. Taking M = Sn, this ends the proof of
Theorem 1.

Acknowledgements

The author thanks Olivier Druet, Emmanuel Hebey, and Antoinette Jourdain
for their useful remarks on the manuscript.

References

[Bra] Branson, T.P. Group representations arising from Lorentz conformal geometry, J. Funct.
Anal., 1987, 74, 199-291. MR 90b:22016

[DHL] Djadli, Z.; Hebey, E.; Ledoux, M. Paneitz type operators and applications, Duke Math.
J., 2000, 104, 129-169. MR 2002f:58061

[Dru] Druet, O. The best constants problem in Sobolev inequalities, Math. Ann., 1999, 314,
327-346. MR 2000d:58033

[EFJ] Edmunds, D.E.; Fortunato, F.; Janelli, E. Critical exponents, critical dimensions, and the
biharmonic operator. Arch. Ration. Mech. Anal. 1990, 112, 269-289. MR 91k:35191

[EsSc] Escobar, J. F.; Schoen, R. M. Conformal metrics with prescribed scalar curvature, Invent.

Math., 1986, 86, 243-254. MR 88b:58030
[GT] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, 2nd

Ed., Grundlehren der Mathematischen Wissenschaften, Springer-Verlag: Berlin, 1983, Vol.
224, 513 pp. MR 86c:35035

[Heb] Hebey, E. Changements de métriques conformes sur la sphère. Le problème de Nirenberg,
Bull. Sci. Math., 1990, 114, 215-242. MR 91h:53017

[HeRo] Hebey, E.; Robert, F. Coercivity and Struwe’s compactness for Paneitz type operators
with constant coefficients, Calc. Var. Partial Differ. Equ., 2001, 13, 491–517.

[Jou] Jourdain, A. Paneitz type operator and first spherical harmonics, Preprint 2000.
[Mos] Moser, J. On a nonlinear problem in differential geometry, Dyn. Syst. (Academic Press,

New York, 1973). MR 49:4018
[Pan] Paneitz, S. A quartic conformally covariant differential operator for arbitrary pseudo-

Riemannian manifolds, Preprint 1983.
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