POSITIVE SOLUTIONS FOR A FOURTH ORDER EQUATION INVARIANT UNDER ISOMETRIES

FRÉDÉRIC ROBERT

(Communicated by Bennett Chow)

Abstract. Let (M, g) be a smooth compact Riemannian manifold of dimen$\operatorname{sion} n \geq 5$. We consider the problem

$$
\Delta_{g}^{2} u+\alpha \Delta_{g} u+a u=f u^{\frac{n+4}{n-4}}
$$

where $\Delta_{g}=-\operatorname{div}_{g}(\nabla), \alpha, a \in \mathbb{R}, u, f \in C^{\infty}(M)$. We require u to be positive and invariant under isometries. We prove existence results for (\star) on arbitrary compact manifolds. This includes the case of the geometric Paneitz-Branson operator on the sphere.

In 1983, Paneitz [Pan] introduced a fourth order operator defined on 4dimensional Riemannian manifolds. Branson [Bra] generalized the definition to n-dimensional Riemannian manifolds. Given $\left(M^{n}, g\right), n \geq 5$, a compact Riemannian manifold, and $u \in C^{\infty}\left(M^{n}\right)$, we let

$$
P_{g}^{n} u=\Delta_{g}^{2} u-\operatorname{div}_{g}\left(a_{n} S_{g} g+b_{n} R i c_{g}\right) d u+\frac{n-4}{2} Q_{g}^{n} u
$$

In this expression, $\Delta_{g} u=-\operatorname{div}_{g}(\nabla u), S_{g}$ is the scalar curvature of $g, R i c_{g}$ its Ricci curvature, $a_{n}=\frac{(n-2)^{2}+4}{2(n-1)(n-2)}, b_{n}=-\frac{4}{n-2}$, and

$$
Q_{g}^{n}=\frac{1}{2(n-1)} \Delta_{g} S_{g}+\frac{n^{3}-4 n^{2}+16 n-16}{8(n-1)^{2}(n-2)^{2}} S_{g}^{2}-\frac{2}{(n-2)^{2}}\left|R i c_{g}\right|_{g}^{2}
$$

If $\tilde{g}=\varphi^{4 /(n-4)} g$ is a conformal metric to g, then (see Branson Bra])

$$
P_{g}^{n}(u \varphi)=\varphi^{\frac{n+4}{n-4}} P_{\tilde{g}}^{n}(u) \text { and } P_{g}^{n} \varphi=\frac{n-4}{2} Q_{\tilde{g}}^{n} \varphi^{\frac{n+4}{n-4}}
$$

where the first of these two equations holds for all smooth functions u on M^{n}. Let $\left(\mathbb{S}^{n}, h\right)$ be the unit n-sphere. Then

$$
P_{h}^{n} u=\Delta_{h}^{2} u+c_{n} \Delta_{h} u+d_{n} u
$$

where $c_{n}=\frac{n^{2}-2 n-4}{2}$ and $d_{n}=\frac{(n-4) n\left(n^{2}-4\right)}{16}$. We still refer to P_{g}^{n} as the Paneitz operator. Given $\alpha, a \in \mathbb{R}$, let P_{g} be the constant coefficient Paneitz type operator whose expression is $P_{g} u=\Delta_{g}^{2} u+\alpha \Delta_{g} u+a u$, where $u \in C^{\infty}\left(M^{n}\right)$. If G is a group of isometries of $\left(M^{n}, g\right)$ and $f \in C^{\infty}(M)$ is invariant under the action of G, then

[^0]we are interested in this paper in finding smooth positive G-invariant solutions of the fourth order equation
\[

$$
\begin{equation*}
P_{g} u=f u^{2^{\sharp}-1} \tag{1}
\end{equation*}
$$

\]

where $2^{\sharp}=\frac{2 n}{n-4}$ is the critical Sobolev exponent for the embeddings of $H_{2}^{2}(M)$ in L^{p}-spaces. When $\left(M^{n}, g\right)$ is the unit n-sphere $\left(\mathbb{S}^{n}, h\right), \alpha=c_{n}$, and $a=d_{n}$, (1) reads as

$$
\begin{equation*}
\Delta_{h}^{2} u+c_{n} \Delta_{h} u+d_{n} u=f u^{2^{\sharp}-1} \tag{2}
\end{equation*}
$$

Then it follows from the above transformation laws that the existence of a smooth positive solution to (2) is equivalent to the existence of a conformal metric g to h such that $Q_{g}^{n}=f$. Equation (2) has its exact analogue when passing from the Paneitz operator to the conformal Laplacian on $\mathbb{S}^{n}, n \geq 3$. The equation associated to the conformal Laplacian reads as

$$
\begin{equation*}
\Delta_{h} u+\frac{n(n-2)}{4} u=f u^{2^{\star}-1} \tag{3}
\end{equation*}
$$

where $2^{\star}=\frac{2 n}{n-2}$ and $f \in C^{\infty}(M)$, and we refer to the problem of finding smooth positive solutions to this equation as the Kazdan-Warner or the Nirenberg problem. Extending a result of Moser [Mos, from \mathbb{S}^{2} to \mathbb{S}^{3}, Escobar and Schoen [EsSc] proved that if f is a smooth positive function on \mathbb{S}^{3}, invariant under the action of a nontrivial group G of isometries of $\left(\mathbb{S}^{3}, h\right)$ acting freely, then (3) possesses a smooth positive G-invariant solution. This result of Escobar and Schoen EsSc was then generalized by Hebey [Heb], where he proved that (3) still possesses a smooth positive G-invariant solution if we only require that the action of G is without fixed points. A nontrivial group G of isometries of a manifold $\left(M^{n}, g\right)$ is said to act freely if M^{n} / G is still a manifold. We say that G acts without fixed points if for any x, the G-orbit $O_{G}(x)$ of x has at least two elements. A nontrivial group acting freely acts without fixed points. Returning to (22), it was proved in Djadli-Hebey-Ledoux [DHL that if f is a smooth positive function on \mathbb{S}^{5}, invariant under the action of a nontrivial group G of isometries of $\left(\mathbb{S}^{5}, h\right)$ acting freely, then (2) possesses a smooth positive G-invariant solution. Hebey put to our attention the question of whether or not such a result holds when the condition that G acts freely is replaced by the less restrictive condition that G acts without fixed points. We answer this question by the affirmative, and prove the following theorem:

Theorem 1. Let G be a compact subgroup of isometries of the standard sphere $\left(\mathbb{S}^{5}, h\right), f \in C^{\infty}\left(\mathbb{S}^{5}\right)$ positive and G-invariant. Assume that G acts without fixed points. Then (2) possesses a smooth positive G-invariant solution, and there exists a conformal G-invariant metric g to h such that $Q_{g}^{5}=f$.

References where (11) and (2) are studied are Djadli-Hebey-Ledoux [DHL], HebeyRobert HeRo, and Jourdain Jou.

1. The case of an arbitrary Riemannian manifold

Let $\left(M^{n}, g\right)$ be a compact Riemannian manifold of dimension $n \geq 5$. Not to carry heavy notations, we note M instead of M^{n}. If $\operatorname{Isom}_{g}(M)$ is the isometry group of (M, g), we let G be a compact subgroup of $\operatorname{Isom}_{g}(M)$. Given $f \in C^{\infty}(M)$, positive
and G-invariant, and given $a, \alpha>0$, we let

$$
\lambda^{G}(f)=\inf _{u \in \mathcal{H}_{f}^{G}} \int_{M}\left(\left(\Delta_{g} u\right)^{2}+\alpha|\nabla u|_{g}^{2}+a u^{2}\right) d v_{g}
$$

where $d v_{g}$ is the Riemannian volume element for g, and \mathcal{H}_{f}^{G} is the set consisting of G-invariant functions in $H_{2}^{2}(M)$ which are such that $\int_{M} f|u|^{2^{\sharp}} d v_{g}=1$. It can be checked that whatever (M, g) is, whatever f is, and whatever a and α are,

$$
\begin{equation*}
\lambda^{G}(f) \leq \frac{\left|O_{G}(x)\right|^{\frac{4}{n}}}{K_{0} f(x)^{\frac{2}{2 \sharp}}} \tag{4}
\end{equation*}
$$

for all $x \in M$, where $\left|O_{G}(x)\right|$ is the cardinality of the orbit $O_{G}(x)$ and K_{0} is the best constant for the optimal Sobolev Euclidean inequality

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}|u|^{2^{\sharp}} d v_{\xi}\right)^{\frac{2}{2^{\sharp}}} \leq K_{0} \int_{\mathbb{R}^{n}}\left(\Delta_{\xi} u\right)^{2} d v_{\xi} \tag{5}
\end{equation*}
$$

where $d v_{\xi}$ is the volume element in \mathbb{R}^{n} and Δ_{ξ} is the usual Laplacian with the minus sign convention. The first objective of this section is to prove the following theorem:

Theorem 2. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 5$, G a compact subgroup of $\operatorname{Isom}_{g}(M), f \in C^{\infty}(M)$, positive and G-invariant, and $a, \alpha>0$. If $a \leq \frac{\alpha^{2}}{4}$, and if for all $x \in M$,

$$
\begin{equation*}
\lambda^{G}(f)<\frac{\left|O_{G}(x)\right|^{\frac{4}{n}}}{K_{0} f(x)^{\frac{2}{2 \sharp}}} \tag{6}
\end{equation*}
$$

then (1) possesses a smooth positive G-invariant solution.
We prove this theorem in what follows. For $0<\epsilon<2^{\sharp}-2$, we define

$$
\lambda_{\epsilon}^{G}(f)=\inf _{u \in \mathcal{H}_{f, \epsilon}^{G}}\left(\int_{M}\left(\left(\Delta_{g} u\right)^{2}+\alpha|\nabla u|_{g}^{2}+a u^{2}\right) d v_{g}\right)
$$

where $\mathcal{H}_{f, \epsilon}^{G}$ is the set consisting of G-invariant functions in $H_{2}^{2}(M)$ which are such that $\int_{M} f|u|^{2^{\sharp}-\epsilon} d v_{g}=1$. The following lemma easily follows from what has been achieved in [DHL].

Lemma 1. Let (M, g) be a compact Riemannian manifold of dimension $n \geq 5$. Let G be a subgroup of $\operatorname{Isom}_{g}(M), f \in C^{\infty}(M)$ a positive G-invariant function, and $a, \alpha>0$ such that $a \leq \frac{\alpha^{2}}{4}$. Then $\lambda_{\epsilon}^{G}(f)$ is attained by a smooth positive G-invariant function u_{ϵ} which satisfies

$$
\begin{equation*}
\Delta_{g}^{2} u_{\epsilon}+\alpha \Delta_{g} u_{\epsilon}+a u_{\epsilon}=\lambda_{\epsilon}^{G}(f) f u_{\epsilon}^{2^{\sharp}-1-\epsilon} \tag{7}
\end{equation*}
$$

and $\int_{M} f u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}=1$. Moreover, up to a subsequence, $\left(u_{\epsilon}\right)$ converges weakly in $H_{2}^{2}(M)$ to a function u. If $u \not \equiv 0$, then u is a positive smooth G-invariant function which realizes $\lambda^{G}(f)$, and, up to a positive constant scale factor, u is a solution of (1) .

We proceed with the proof of Theorem 2. We assume that (6) is true. We let $\left(u_{\epsilon}\right)$ be the sequence of Lemma (1) Also let $\lambda=\lim \sup \lambda_{\epsilon}^{G}(f)$. Then $\lambda \leq \lambda^{G}(f)$, and with Hölder and Sobolev inequalities we get that $\lambda>0$. Assume now that there is no positive G-invariant solution $u \in C^{\infty}(M)$ to (1). Then $u_{\epsilon} \rightarrow 0$ almost everywhere.

Let $x_{\epsilon} \in M$ be such that $u_{\epsilon}\left(x_{\epsilon}\right)=\sup _{M} u_{\epsilon}$. If $u_{\epsilon}\left(x_{\epsilon}\right)$ is bounded, it follows from classical regularity theory (see for instance [GT]) that $\left(u_{\epsilon}\right)$ is bounded in $C^{4, \beta}(M)$, $0<\beta<1$. Then $u_{\epsilon} \rightarrow 0$ in $C^{4}(M)$, a contradiction since $\int_{M} f u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}=1$. Hence, $u_{\epsilon}\left(x_{\epsilon}\right) \rightarrow+\infty$. Let $x_{1} \in M$ be such that $x_{\epsilon} \rightarrow x_{1}$. We define $\mu_{\epsilon}=u_{\epsilon}\left(x_{\epsilon}\right)^{-\frac{2}{n-4}}$ and $k_{\epsilon}=\mu_{\epsilon}^{1-\epsilon \frac{n-4}{8}}$. For $|x|<\frac{i_{g}(M)}{k_{\epsilon}}$, where $i_{g}(M)>0$ is the injectivity radius of M, we let

$$
v_{\epsilon}(x)=\mu_{\epsilon}^{\frac{n-4}{2}} u_{\epsilon}\left(\exp _{x_{\epsilon}}\left(k_{\epsilon} x\right)\right) \text { and } g_{\epsilon}=\left(\exp _{x_{\epsilon}}^{\star} g\right)\left(k_{\epsilon} x\right)
$$

where $\exp _{x_{\epsilon}}$ denotes the exponential map at x_{ϵ}. Then v_{ϵ} verifies

$$
\Delta_{g_{\epsilon}}^{2} v_{\epsilon}+\alpha k_{\epsilon}^{2} \Delta_{g_{\epsilon}} v_{\epsilon}+a k_{\epsilon}^{4} v_{\epsilon}=\lambda_{\epsilon}^{G}(f) f\left(\exp _{x_{\epsilon}}\left(k_{\epsilon} x\right)\right) v_{\epsilon}^{2^{\sharp}-1-\epsilon},
$$

an equation which can also be read as

$$
\left(\Delta_{g_{\epsilon}}+\frac{\alpha k_{\epsilon}^{2}}{2}\right)^{2} v_{\epsilon}=\lambda_{\epsilon}^{G}(f) f\left(\exp _{x_{\epsilon}}\left(k_{\epsilon} x\right)\right) v_{\epsilon}^{2^{\sharp}-1-\epsilon}+\left(\frac{\alpha^{2}}{4}-a\right) k_{\epsilon}^{4} v_{\epsilon} .
$$

We have $0 \leq v_{\epsilon} \leq 1$ and $k_{\epsilon} \rightarrow 0$. By classical regularity theorems (see for instance (GT]), $\left(v_{\epsilon}\right)$ is bounded in $C^{4, \beta}(K)$ for $0<\beta<1$ and all compact subsets $K \subset \mathbb{R}^{n}$. Then, up to a subsequence, there exists $v \in C^{4}\left(\mathbb{R}^{n}\right)$ such that v_{ϵ} goes to v in $C_{l o c}^{4}\left(\mathbb{R}^{n}\right)$. In particular $v \geq 0, v(0)=1$, and

$$
\begin{equation*}
\Delta_{\xi}^{2} v=\lambda f\left(x_{1}\right) v^{2^{\sharp}-1} \tag{8}
\end{equation*}
$$

Then (see HeRo) we know precisely what v is. Given $x \in M$ and $r>0$, we let $B_{g}(x, r)$ be the geodesic ball of center x and radius r in M, and for $p \in \mathbb{R}^{n}$, we let $B_{\xi}(p, r)$ be the Euclidean ball in \mathbb{R}^{n} of center p and radius r. For $R>0$, we have

$$
\begin{aligned}
\int_{B_{g}\left(x_{\epsilon}, R k_{\epsilon}\right)} f u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} & =\left(\mu_{\epsilon}^{-1}\right)^{\epsilon \frac{(n-4)^{2}}{8}} \int_{B_{\xi}(0, R)} f\left(\exp _{x_{\epsilon}}\left(k_{\epsilon} x\right)\right) v_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g_{\epsilon}} \\
& \geq f\left(x_{1}\right) \int_{B_{\xi}(0, R)} v^{2^{\sharp}} d v_{\xi}+o(1)
\end{aligned}
$$

since $\mu_{\epsilon} \rightarrow 0$ and $v_{\epsilon} \rightarrow v$ in $C^{4}\left(B_{\xi}(0, R)\right)$. Now, since we also have that $x_{\epsilon} \rightarrow x_{1}$, $k_{\epsilon} \rightarrow 0$ and $f \geq 0$, we obtain that for any $\delta>0$,

$$
\begin{equation*}
\int_{B_{g}\left(x_{1}, \delta\right)} f u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \geq f\left(x_{1}\right) \int_{\mathbb{R}^{n}} v^{2^{\sharp}} d v_{\xi}+o(1) . \tag{9}
\end{equation*}
$$

Let $O_{G}\left(x_{1}\right)=\left\{x_{1}, \ldots, x_{m}\right\}$. Since f is G-invariant and G is a group of isometries,

$$
\int_{B_{g}\left(x_{i}, \delta\right)} f u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}=\int_{B_{g}\left(x_{1}, \delta\right)} f u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \geq f\left(x_{1}\right) \int_{\mathbb{R}^{n}} v^{2^{\sharp}} d v_{\xi}+o(1)
$$

for all $i=1, \ldots, m$. Taking $\delta>0$ sufficiently small, we obtain

$$
1=\int_{M} f u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \geq m f\left(x_{1}\right) \int_{\mathbb{R}^{n}} v^{2^{\sharp}} d v_{\xi}+o(1) .
$$

Multiplying by v the equation satisfied by v, and integrating, it follows with (5), (4), and the inequality $\lambda \leq \lambda^{G}(f)$, that v is minimizing for (5) and that

$$
\begin{equation*}
\lambda^{G}(f)=\lambda=\frac{\left|O_{G}\left(x_{1}\right)\right|^{\frac{4}{n}}}{f\left(x_{1}\right)^{\frac{2}{2 \sharp}} K_{0}} \tag{10}
\end{equation*}
$$

A contradiction with (6). This proves Theorem 2.

We proceed in what follows with the study of the behaviour of the u_{ϵ} 's. We assume as in the proof of Theorem 2 that $u_{\epsilon} \rightarrow 0$ almost everywhere. It follows from the proof of Theorem 2 that equality holds in (9). Then, for any δ small,

$$
\begin{equation*}
\int_{B_{g}\left(x_{1}, \delta\right)} f u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}=\frac{1}{\left|O_{G}\left(x_{1}\right)\right|}+o(1) \tag{11}
\end{equation*}
$$

We also get that $\mu_{\epsilon}^{\epsilon} \rightarrow 1$ and that for any $\Omega \subset \subset M \backslash O_{G}\left(x_{1}\right)$,

$$
\begin{equation*}
\int_{\Omega} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}=o(1) . \tag{12}
\end{equation*}
$$

We now give a more precise description of the convergence of $\left(u_{\epsilon}\right)$ outside the orbit $O_{G}\left(x_{1}\right)$. Let $\sigma_{1}=I d_{M}, \sigma_{2}, \ldots, \sigma_{m} \in G$ be such that $x_{i}=\sigma_{i}\left(x_{1}\right)$ where $O_{G}\left(x_{1}\right)=\left\{x_{1}, \ldots, x_{m}\right\}$. Define $x_{\epsilon, i}=\sigma_{i}\left(x_{\epsilon}\right)$. First, we want to prove that there exists $C>0$ such that for any $x \in M$,

$$
\begin{equation*}
\inf _{i=1, \ldots, p} d_{g}\left(x, x_{\epsilon, i}\right)^{\frac{4(n-4)}{8-\epsilon(n-4)}} u_{\epsilon}(x) \leq C \tag{13}
\end{equation*}
$$

We follow an idea of Druet Dru]. Assume that there exists $y_{\epsilon} \in M$ such that

$$
\begin{equation*}
\sup _{x \in M} \inf _{i=1, \ldots, p} d_{g}\left(x, x_{\epsilon, i}\right)^{s_{\epsilon}} u_{\epsilon}(x)=\inf _{i=1, \ldots, p} d_{g}\left(y_{\epsilon}, x_{\epsilon, i}\right)^{s_{\epsilon}} u_{\epsilon}\left(y_{\epsilon}\right) \rightarrow+\infty \tag{14}
\end{equation*}
$$

where $s_{\epsilon}=\frac{4(n-4)}{8-\epsilon(n-4)}$. Define $\hat{\mu}_{\epsilon}=u_{\epsilon}\left(y_{\epsilon}\right)^{-\frac{2}{n-4}}, \hat{k}_{\epsilon}=\hat{\mu}_{\epsilon}^{1-\epsilon \frac{n-4}{8}}$, and set

$$
\hat{v}_{\epsilon}(x)=\hat{\mu}_{\epsilon}^{\frac{n-4}{2}} u_{\epsilon}\left(\exp _{y_{\epsilon}}\left(\hat{k}_{\epsilon} x\right)\right)
$$

For $|x|<\frac{i_{g}(M)}{\hat{k}_{\epsilon}}$ and $\hat{g}_{\epsilon}(x)=\exp _{y_{\epsilon}}^{\star} g\left(\hat{k}_{\epsilon} x\right)$, we have

$$
\begin{equation*}
\Delta_{\hat{g}_{\epsilon}}^{2} \hat{v}_{\epsilon}+\alpha k_{\epsilon}^{2} \Delta_{\hat{g}_{\epsilon}} \hat{v}_{\epsilon}+a k_{\epsilon}^{4} \hat{v}_{\epsilon}=f\left(\exp _{y_{\epsilon}}\left(\hat{k}_{\epsilon} x\right)\right) \hat{v}_{\epsilon}^{2^{\sharp}-1-\epsilon} . \tag{15}
\end{equation*}
$$

Let $R>0$. With (14) and $|x| \leq R$, we obtain

$$
\hat{v}_{\epsilon}(x)=\frac{u_{\epsilon}\left(\exp _{y_{\epsilon}}\left(\hat{k}_{\epsilon} x\right)\right)}{u_{\epsilon}\left(y_{\epsilon}\right)} \leq\left(\frac{\inf _{i=1, \ldots, p} d_{g}\left(y_{\epsilon}, x_{\epsilon, i}\right)}{\inf _{i=1, \ldots, p} d_{g}\left(\exp _{y_{\epsilon}}\left(\hat{k}_{\epsilon} x\right), x_{\epsilon, i}\right)}\right)^{\frac{4(n-4)}{8-\epsilon(n-4)}}
$$

Since $\inf _{i=1, \ldots, p} d_{g}\left(\exp _{y_{\epsilon}}\left(\hat{k}_{\epsilon} x\right), x_{\epsilon, i}\right) \geq \inf _{i=1, \ldots, p} d_{g}\left(y_{\epsilon}, x_{\epsilon, i}\right)-\hat{k}_{\epsilon} R$,

$$
\hat{v}_{\epsilon}(x) \leq\left(1-R \frac{\hat{k}_{\epsilon}}{\inf _{i=1, \ldots, p} d_{g}\left(y_{\epsilon}, x_{\epsilon, i}\right)}\right)^{-\frac{4(n-4)}{8-\epsilon(n-4)}}
$$

for all $|x| \leq R$. Now, with (14), we obtain that

$$
\begin{equation*}
\frac{\inf _{i=1, \ldots, p} d_{g}\left(y_{\epsilon}, x_{\epsilon, i}\right)}{\hat{k}_{\epsilon}} \rightarrow+\infty \tag{16}
\end{equation*}
$$

Then \hat{v}_{ϵ} is uniformly bounded on every compact set. Writing that

$$
\left(\Delta_{\hat{g}_{\epsilon}}+\frac{\alpha \hat{k}_{\epsilon}^{2}}{2}\right)^{2} \hat{v}_{\epsilon}=f\left(\exp _{y_{\epsilon}}\left(\hat{k}_{\epsilon} x\right)\right) \hat{v}_{\epsilon}^{2^{\sharp}-1-\epsilon}+\left(\frac{\alpha^{2}}{4}-a\right) \hat{k}_{\epsilon}^{4} \hat{v}_{\epsilon}
$$

and using classical regularity results (see for instance GT]), there exists $\hat{v} \in C^{4}\left(\mathbb{R}^{n}\right)$ such that, up to a subsequence, $\hat{v}_{\epsilon} \rightarrow \hat{v}$ in $C_{l o c}^{4}\left(\mathbb{R}^{n}\right)$, and $\hat{v}(0)=1$. Now, as is easily checked,

$$
\int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right)} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}=\hat{\mu}_{\epsilon}^{-\epsilon \frac{(n-4)^{2}}{8}} \int_{B_{\xi}(0,1)} \hat{v}_{\epsilon}^{2^{\sharp}-\epsilon} d v_{\hat{g}_{\epsilon}} .
$$

Since $\hat{\mu}_{\epsilon} \leq 1$, when $\epsilon \rightarrow 0$, then

$$
\int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right)} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \geq \int_{B_{\xi}(0,1)} \hat{v}^{2^{\sharp}} d v_{\xi}+o(1) .
$$

Now, up to a subsequence, we can assume that $y_{\epsilon} \rightarrow y_{0} \in M$. If $y_{0} \notin O_{G}\left(x_{1}\right)$, then, with (12), we get that $\int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right)} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \rightarrow 0$. Then $\int_{B_{\xi}(0,1)} \hat{v}^{2^{\sharp}} d v_{\xi}=0$, a contradiction. Hence, up to an isometry of G, we can assume that $y_{0}=x_{1}$. Taking $\delta>0$ small enough,

$$
\int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right)} u_{\epsilon}^{2_{\epsilon}^{\sharp}-\epsilon} d v_{g}=\int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right) \cap B_{g}\left(x_{1}, \delta\right)} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} .
$$

For any $R^{\prime}>0$, we have

$$
\int_{B_{g}\left(x_{1}, \delta\right) \backslash B_{g}\left(x_{\epsilon}, R^{\prime} k_{\epsilon}\right)} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \leq \epsilon\left(R^{\prime}\right)+o(1)
$$

where $\lim _{R^{\prime} \rightarrow+\infty} \epsilon\left(R^{\prime}\right)=0$. It follows that

$$
\int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right)} u_{\epsilon}^{2_{\epsilon}^{\sharp}-\epsilon} d v_{g} \leq \int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right) \cap B_{g}\left(x_{\epsilon}, R^{\prime} k_{\epsilon}\right)} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}+\epsilon\left(R^{\prime}\right)+o(1) .
$$

If $B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right) \cap B_{g}\left(x_{\epsilon}, R^{\prime} k_{\epsilon}\right) \neq \emptyset$, then

$$
\begin{equation*}
\inf _{i=1, \ldots, p} d_{g}\left(y_{\epsilon}, x_{\epsilon, i}\right) \leq \hat{k}_{\epsilon}+R^{\prime} k_{\epsilon} \tag{17}
\end{equation*}
$$

With (16) and (17), we then obtain that $\hat{k}_{\epsilon}=o\left(k_{\epsilon}\right)$ and $\frac{d_{g}\left(y_{\epsilon}, x_{\epsilon}\right)}{k_{\epsilon}}$ is bounded. Now we write $y_{\epsilon}=\exp _{x_{\epsilon}}\left(k_{\epsilon} \hat{y}_{\epsilon}\right)$ where \hat{y}_{ϵ} is bounded. There exists $C_{0}>0$ such that

$$
\frac{1}{k_{\epsilon}} \exp _{x_{\epsilon}}^{-1}\left(B_{g}\left(\exp _{x_{\epsilon}}\left(k_{\epsilon} \hat{y}_{\epsilon}\right), \hat{k}_{\epsilon}\right)\right) \subset B_{\xi}\left(\hat{y}_{\epsilon}, C_{0} \frac{\hat{k}_{\epsilon}}{k_{\epsilon}}\right)
$$

We thus obtain that

$$
\int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right) \cap B_{g}\left(x_{\epsilon}, R^{\prime} k_{\epsilon}\right)} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \leq \mu_{\epsilon}^{-\epsilon \frac{(n-4)^{2}}{8}} \int_{B_{\xi}\left(\hat{y}_{\epsilon}, C_{0} \frac{\hat{k}_{\epsilon}}{k_{\epsilon}}\right)} v_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g_{\epsilon}}=o(1)
$$

since $\hat{k}_{\epsilon}=o\left(k_{\epsilon}\right)$ and $\left(v_{\epsilon}\right)$ is bounded. As a consequence,

$$
\int_{B_{g}\left(y_{\epsilon}, \hat{k}_{\epsilon}\right)} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \leq \epsilon\left(R^{\prime}\right)+o(1)
$$

for all $R^{\prime}>0$. We then get that $\int_{B_{\xi}(0,1)} \hat{v}^{2^{\sharp}} d v_{\xi}=0$, a contradiction since $\hat{v}(0)=1$. This proves (13). Given an open subset $\Omega \subset \subset M \backslash O_{G}\left(x_{1}\right)$, we now get by classical regularity theorems (see for instance [GT]) that $\left(u_{\epsilon}\right)$ is bounded in $C^{4, \beta}(\Omega)$. Since u_{ϵ} goes to 0 almost everywhere, it follows that

$$
\begin{equation*}
u_{\epsilon} \rightarrow 0 \text { in } C^{4}(\Omega) \tag{18}
\end{equation*}
$$

as $\epsilon \rightarrow 0$, a relation we use in the following section.
2. The case of the sphere

Let $x_{0} \in \mathbb{S}^{n}$. For $\beta>1$, define

$$
u_{x_{0}, \beta}(x)=(\beta-\cos r)^{-\frac{n-4}{2}} \text { and } \tilde{u}_{x_{0}, \beta}=\left(\beta^{2}-1\right)^{\frac{n-4}{4}} u_{x_{0}, \beta}
$$

where $r=d_{h}\left(x_{0}, x\right)$. Then,

$$
P_{h}^{n}\left(\tilde{u}_{x_{0}, \beta}\right)=d_{n} \tilde{u}_{x_{0}, \beta}^{2^{\sharp}-1} \text { and } \int_{\mathbb{S}^{n}} \tilde{u}_{x_{0}, \beta}^{2^{\sharp}} d v_{h}=\omega_{n}
$$

where ω_{n} is the volume of the unit n-sphere. We now make these functions G-invariant. Let $x_{1} \in M$ be a point of finite orbit $O_{G}\left(x_{1}\right)=\left\{x_{1}, \ldots, x_{m}\right\}$. We define $u_{i \beta}=u_{x_{i}, \beta}, \tilde{u}_{i \beta}=\tilde{u}_{x_{i}, \beta}$ and $\tilde{u}_{\beta}=\sum_{i=1}^{m} \tilde{u}_{i \beta}$ (this function is G-invariant). Computing $\int_{\mathbb{S}^{n}} P_{h}^{n} \tilde{u}_{\beta} \tilde{u}_{\beta} d v_{h}$ and $\int_{\mathbb{S}^{n}} f\left|\tilde{u}_{\beta}\right|^{2^{\sharp}} d v_{h}$ we find that

$$
\int_{\mathbb{S}^{n}} P_{h}^{n} \tilde{u}_{\beta} \tilde{u}_{\beta} d v_{h}=m d_{n} \omega_{n}+d_{n} \alpha(\beta-1)^{\frac{n-4}{2}}+o\left((\beta-1)^{\frac{n-4}{2}}\right)
$$

where

$$
\alpha=\sum_{i \neq j}\left(1-\cos d_{h}\left(x_{i}, x_{j}\right)\right)^{-\frac{n-4}{2}} \omega_{n-1} \int_{0}^{+\infty} \frac{2^{n} r^{n-1}}{\left(1+r^{2}\right)^{\frac{n+4}{2}}} d r>0
$$

since $\left|O_{G}\left(x_{1}\right)\right| \geq 2$, and

$$
\begin{aligned}
&\left(\int_{\mathbb{S}^{n}} f(x) \tilde{u}_{\beta}^{2^{\sharp}} d v_{h}\right)^{\frac{2}{2 \sharp}} \geq f\left(x_{1}\right)^{\frac{2}{2 \sharp}}\left(m \omega_{n}\right)^{\frac{2}{2^{\sharp}}(1}++\frac{2 \alpha}{m \omega_{n}}(\beta-1)^{\frac{n-4}{2}} \\
&\left.+o\left((\beta-1)^{\frac{n-4}{2}}\right)\right)
\end{aligned}
$$

provided that $\nabla^{k} f\left(x_{1}\right)=0$, for all $k=1, \ldots, n-4$. We now write that

$$
\frac{\int_{\mathbb{S}^{n}} P_{h}^{n} \tilde{u}_{\beta} \tilde{u}_{\beta} d v_{h}}{\left(\int_{\mathbb{S}^{n}} f(x) \tilde{u}_{\beta}^{2^{\sharp}} d v_{h}\right)^{\frac{2}{2 \sharp}}} \leq \frac{m^{\frac{4}{n}} d_{n} \omega_{n}^{\frac{4}{n}}}{f\left(x_{1}\right)^{\frac{2}{2 \sharp}}}\left(1-\frac{\alpha}{m \omega_{n}}(\beta-1)^{\frac{n-4}{2}}+o\left((\beta-1)^{\frac{n-4}{2}}\right)\right)
$$

Since $d_{n} \omega_{n}^{\frac{4}{n}}=1 / K_{0}$ (see EFJ]), it follows that

$$
\frac{\int_{\mathbb{S}^{n}} P_{h}^{n} \tilde{u}_{\beta} \tilde{u}_{\beta} d v_{h}}{\left(\int_{\mathbb{S}^{n}} f(x) \tilde{u}_{\beta}^{2^{\sharp}} d v_{h}\right)^{\frac{2}{2 \sharp}}} \leq \frac{\left|O_{G}\left(x_{1}\right)\right|^{\frac{4}{n}}}{f\left(x_{1}\right)^{\frac{2}{2 \sharp}} K_{0}}\left(1-\frac{\alpha}{m \omega_{n}}(\beta-1)^{\frac{n-4}{2}}+o\left((\beta-1)^{\frac{n-4}{2}}\right)\right) .
$$

Noting that $\alpha>0$, we get that

$$
\begin{equation*}
\lambda^{G}(f)<\frac{\left|O_{G}\left(x_{1}\right)\right|^{\frac{4}{n}}}{f\left(x_{1}\right)^{\frac{2}{2 \sharp}} K_{0}} \tag{19}
\end{equation*}
$$

for all $x_{1} \in \mathbb{S}^{n}$ such that $\nabla^{k} f\left(x_{1}\right)=0$ for all $k=1, \ldots, n-4$. It then follows from Theorem 2 that the following theorem holds:

Theorem 3. Let G be a compact subgroup of $\operatorname{Isom}_{g}\left(\mathbb{S}^{n}\right)$, $n \geq 5$, acting without fixed point. Let $f \in C^{\infty}\left(\mathbb{S}^{n}\right)$ be a positive G-invariant function, and let $x_{0} \in \mathbb{S}^{n}$ be such that for any $x \in \mathbb{S}^{n}$,

$$
\frac{f\left(x_{0}\right)}{\left|O_{G}\left(x_{0}\right)\right|^{\frac{4}{n-4}}} \geq \frac{f(x)}{\left|O_{G}(x)\right|^{\frac{4}{n-4}}} .
$$

Assume that $\nabla^{q} f\left(x_{0}\right)=0$ for all $q=1, \ldots, n-4$. Then there exists $u \in C^{\infty}\left(\mathbb{S}^{n}\right)$, positive and G-invariant, such that

$$
P_{h}^{n} u=f u^{2^{\sharp}-1}
$$

and there exists a G-invariant conformal metric g to h such that $Q_{g}^{n}=f$.
We now prove Theorem 1. If there is no solution for (2), then we have (10) with a point $x_{1} \in \mathbb{S}^{n}$ such that (11) and (18) are true. Assume that we have proved that x_{1} is a critical point for f. Since $n=5$, then (19) is true for x_{1}. A contradiction, and this proves the theorem. Then the proof of Theorem 1 reduces to the proof that x_{1} is a critical point for f. We adapt an argument from Aubin. Given (M, g) a compact manifold of dimension n, let $\left(u_{\epsilon}\right)$ be as in Lemma 1 We suppose that $\left(u_{\epsilon}\right)$ converges weakly to 0 and let $x_{1} \in M$ be such that (11) and (18) are true. With (7) we have

$$
\Delta_{g}^{2} u_{\epsilon}+\alpha \Delta_{g} u_{\epsilon}+a u_{\epsilon}=\lambda_{\epsilon}^{G}(f) f u_{\epsilon}^{2^{\sharp}-1-\epsilon} .
$$

Let $0<\delta<\min _{\substack{x, y \in O_{G}\left(x_{1}\right) \\ x \neq y}} d_{g}(x, y)$. We get with (11) that for all $z \in C^{0}(M)$,

$$
\begin{equation*}
\int_{B_{g}\left(x_{1}, \delta\right)} z u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}=\frac{z\left(x_{1}\right)}{f\left(x_{1}\right)\left|O_{G}\left(x_{1}\right)\right|}+o(1) . \tag{20}
\end{equation*}
$$

Now we choose $\psi \in C^{\infty}(M)$ such that $\operatorname{Supp} \psi \subset B_{g}\left(x_{1}, \delta\right), \nabla \psi\left(x_{1}\right)=\nabla f\left(x_{1}\right)$ and $\nabla_{g}^{2} \psi\left(x_{1}\right)=0$. We then have

$$
\int_{M}(\nabla f, \nabla \psi)_{g} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g}=\frac{|\nabla f|_{g}^{2}\left(x_{1}\right)}{f\left(x_{1}\right)\left|O_{G}\left(x_{1}\right)\right|}+o(1) .
$$

On the other hand, since $\Delta_{g} \psi\left(x_{1}\right)=0, u_{\epsilon} \rightarrow 0$ strongly in $H_{1}^{2}(M)$ and is bounded in $H_{2}^{2}(M)$, we have

$$
\begin{aligned}
& \int_{M}(\nabla f, \nabla \psi)_{g} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} \\
&= \int_{M}\left(\nabla\left(f u_{\epsilon}^{2^{\sharp}-\epsilon}\right), \nabla \psi\right) d v_{g} \\
&-\left(2^{\sharp}-\epsilon\right) \int_{M} f u_{\epsilon}^{2^{\sharp}-1-\epsilon}\left(\nabla u_{\epsilon}, \nabla \psi\right)_{g} d v_{g} \\
&= \int_{M} f u_{\epsilon}^{2^{\sharp}-\epsilon} \Delta_{g} \psi d v_{g} \\
&-\frac{2^{\sharp}-\epsilon}{\lambda_{\epsilon}^{G}(f)} \int_{M}\left(\Delta_{g}^{2} u_{\epsilon}+\alpha \Delta_{g} u_{\epsilon}+a u_{\epsilon}\right)\left(\nabla u_{\epsilon}, \nabla \psi\right)_{g} d v_{g} \\
&=-\frac{2^{\sharp}-\epsilon}{\lambda_{\epsilon}^{G}(f)} \int_{M} \Delta_{g}^{2} u_{\epsilon}\left(\nabla u_{\epsilon}, \nabla \psi\right)_{g} d v_{g}+o(1) \\
&=-\frac{2^{\sharp}-\epsilon}{\lambda_{\epsilon}^{G}(f)} \int_{M} \Delta_{g} u_{\epsilon} \Delta_{g}\left(\nabla u_{\epsilon}, \nabla \psi\right)_{g} d v_{g}+o(1)
\end{aligned}
$$

where we have used (20). We have

$$
\begin{aligned}
& \Delta_{g}\left(\nabla u_{\epsilon}, \nabla \psi\right)_{g}=\left(\nabla \Delta_{g} u_{\epsilon}, \nabla \psi\right)_{g} \\
& \quad+O\left(\left|\nabla u_{\epsilon}\right|_{g}\right)+O\left(|x|\left|\nabla_{g}^{2} u_{\epsilon}\right|_{g}|\nabla \psi|_{g}\right)+O\left(\left|\nabla_{g}^{2} u_{\epsilon}\right|_{g}\left|\nabla_{g}^{2} \psi\right|_{g}\right)
\end{aligned}
$$

Then, with (18), (20) and since $\left(u_{\epsilon}\right)$ is bounded in $H_{2}^{2}(M)$, we get that

$$
\begin{aligned}
\int_{M}(\nabla f, \nabla \psi)_{g} u_{\epsilon}^{2^{\sharp}-\epsilon} d v_{g} & =-\frac{2^{\sharp}-\epsilon}{\lambda_{\epsilon}^{G}(f)} \int_{M} \Delta_{g} u_{\epsilon}\left(\nabla \Delta_{g} u_{\epsilon}, \nabla \psi\right)_{g} d v_{g}+o(1) \\
& =-\frac{2^{\sharp}-\epsilon}{2 \lambda_{\epsilon}^{G}(f)} \int_{M}\left(\nabla\left(\Delta_{g} u_{\epsilon}\right)^{2}, \nabla \psi\right)_{g} d v_{g}+o(1) \\
& =-\frac{2^{\sharp}-\epsilon}{2 \lambda_{\epsilon}^{G}(f)} \int_{M}\left(\Delta_{g} u_{\epsilon}\right)^{2} \Delta_{g} \psi d v_{g}+o(1)=o(1)
\end{aligned}
$$

since $\Delta_{g} \psi\left(x_{1}\right)=0$. Hence $\nabla f\left(x_{1}\right)=0$. Taking $M=\mathbb{S}^{n}$, this ends the proof of Theorem 1 .

Acknowledgements

The author thanks Olivier Druet, Emmanuel Hebey, and Antoinette Jourdain for their useful remarks on the manuscript.

References

[Bra] Branson, T.P. Group representations arising from Lorentz conformal geometry, J. Funct. Anal., 1987, 74, 199-291. MR 90b:22016
[DHL] Djadli, Z.; Hebey, E.; Ledoux, M. Paneitz type operators and applications, Duke Math. J., 2000, 104, 129-169. MR 2002f:58061
[Dru] Druet, O. The best constants problem in Sobolev inequalities, Math. Ann., 1999, 314, 327-346. MR 2000d:58033
[EFJ] Edmunds, D.E.; Fortunato, F.; Janelli, E. Critical exponents, critical dimensions, and the biharmonic operator. Arch. Ration. Mech. Anal. 1990, 112, 269-289. MR 91k:35191
[EsSc] Escobar, J. F.; Schoen, R. M. Conformal metrics with prescribed scalar curvature, Invent. Math., 1986, 86, 243-254. MR 88b:58030
[GT] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, 2nd Ed., Grundlehren der Mathematischen Wissenschaften, Springer-Verlag: Berlin, 1983, Vol. 224, 513 pp. MR 86c:35035
[Heb] Hebey, E. Changements de métriques conformes sur la sphère. Le problème de Nirenberg, Bull. Sci. Math., 1990, 114, 215-242. MR 91h:53017
[HeRo] Hebey, E.; Robert, F. Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differ. Equ., 2001, 13, 491-517.
[Jou] Jourdain, A. Paneitz type operator and first spherical harmonics, Preprint 2000.
[Mos] Moser, J. On a nonlinear problem in differential geometry, Dyn. Syst. (Academic Press, New York, 1973). MR 49:4018
[Pan] Paneitz, S. A quartic conformally covariant differential operator for arbitrary pseudoRiemannian manifolds, Preprint 1983.

Département de Mathématiques-Site Saint-Martin, Université de Cergy-Pontoise, 2, Avenue Adolphe Chauvin, F 95302 Cergy-Pontoise Cedex, France

E-mail address: Frederic.Robert@math.u-cergy.fr

[^0]: Received by the editors December 12, 2000 and, in revised form, December 7, 2001.
 2000 Mathematics Subject Classification. Primary 35J35, 58J99.

