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THE WAVELET DIMENSION FUNCTION IS THE TRACE
FUNCTION OF A SHIFT-INVARIANT SYSTEM

AMOS RON AND ZUOWEI SHEN

(Communicated by David R. Larson)

Abstract. In this note, we observe that the dimension function associated
with a wavelet system is the trace of the Gramian fibers of the shift-invariant
system generated by the negative dilations of the mother wavelets. When this
shift-invariant system is a tight frame, each of the Gramian fibers is an orthog-
onal projector, and its trace, then, coincides with its rank. This connection
leads to simple proofs of several results concerning the dimension function,
and the arguments extend to the bi-frame case.

1. Introduction

Let Ψ := {ψi}ri=1 be a finite subset of L2(Rd). The dyadic wavelet system
generated by the mother wavelets Ψ is the union

X(Ψ) =
⋃
j∈Z

Xj(Ψ),

with
Xj(Ψ) := DjE(Ψ).

Here, Dj is the dyadic dilation operator, i.e.,

Djf(t) := 2
jd
2 f(2jt),

and E(Ψ) is the shift-invariant (SI) system generated by Ψ, i.e.,

E(Ψ) = {Ekψ : k ∈ Zd, ψ ∈ Ψ}, Ek : f 7→ f(·+ k).

Given the set Ψ, our interest here is in the dimension function (Weiss’ terminol-
ogy) D associated with Ψ, which is defined as follows:

D(ξ) :=
r∑
i=1

∑
k∈2πZd

∞∑
j=1

|ψ̂i(2j(ξ + k))|2, ξ ∈ Rd.
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The dimension function was introduced in [L1] by Lemarié-Rieusset, who used
it to prove that compactly supported orthonormal wavelet systems can be con-
structed via a multiresolution analysis (MRA). A mild smoothness assumption was
assumed on the mother wavelets in this result. He then generalized the result to
the biorthogonal case as well as to the case of an arbitrary integer dilation, under
the assumption that the mother wavelets are compactly supported or have an ex-
ponential decay (see [L2]). Auscher in [A1] and [A2] extended Lemarié-Rieusset’s
result to the case where each of the mother wavelets has a Fourier transform which
is continuous, has (at least) some mild decay at infinity, and is minimally smooth at
the origin. His results in [A1] and [A2] cover orthonormal wavelet systems as well as
biorthogonal wavelet systems in one or more dimensions. The main observation in
the proofs of [L1], [L2], [A1] and [A2] is that, once the dimension function is proved
to assume the constant value 1, a.e., one can construct an MRA that reproduces
the original wavelet system. The proof was then completed by establishing that
(i) the dimension function is continuous, and (ii) the dimension function attains
only integer values. Later, Gripenberg [G] and Hernández and Weiss [HW] further
extended the above ideas by proving (independently) that an orthonormal wavelet
system can be derived from an MRA if and only if the dimension function of its
mother wavelets is equal to 1 a.e. This was then generalized to the biorthogonal
case by Han [Ha] and Wang [W]. These ideas also work for general dilations in one
or more dimensions (a sketch of the proof for general integer expansive dilations is
found in [Bo]). All these results are based, either explicitly or implicitly, on the key
observation of [L1], [L2], [A1] and [A2] that the values attained by the dimension
function of an orthonormal wavelet system coincide with the dimension of certain
subspaces of `2(Z). More precisely, this dimension is the rank of the range function
of a certain SI space. This latter rank is referred to, by Baggett in [B], by Weber
in [We] and by several other authors, as the multiplicity function.

More recently, Paluszyński, Sikić, Weiss, and Xiao [PSWX2] studied the dimen-
sion function in the context of a special type of tight wavelet frames: those that
are constructed by applying Mallat’s algorithm to a conjugate quadrature filter
(CQF). They showed that, for this case, the dimension function may assume any
nonnegative real value, and characterized the tight wavelet frames for which this
function is integer-valued.

Our interest in this subject arose during the reading of the article [BRS] of
Bownik, Rzeszotnik and Speegle, where we came across the definition of the dimen-
sion function. Our attempt in the present article is to show the intimate relation
between this function and several elements of shift-invariant space theory [BDR2],
[RS1]. The connection with wavelet systems is done, then, via the notion of quasi-
affine systems, [RS2], [RS3]. We hope that the approach presented here, while
similar in many of its hidden core technical details to the existing approaches,
sheds new light on this subject, and helps to clarify some of the mysteries around
it.

The rest of this short article is laid out as follows. In §2 and §3, we treat the
case where the same wavelet system is used for decomposition and reconstruction.
General wavelet systems are discussed in §2, while MRA wavelet systems are ana-
lyzed in §3. In §4, we treat the case where different wavelet systems are used for
decomposition and reconstruction.
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For notational convenience, we assume that the dilation operator D is dyadic.
However, all the results in this article extend verbatim to a general dilation based
on an integer expansive dilation matrix s, i.e., to the dilation D : f 7→

√
det s f(s·).

2. The trace function of a wavelet system

We recall in this section some of the basic notions from the theories of wavelet
frames and of shift-invariant systems. These notions include the Gramian fiberiza-
tion of a shift-invariant system, the quasi-affine system, and the bracket product.
We then interpret the dimension function in these terms, and draw several conclu-
sions from that interpretation.

The Gramian fibers of a shift invariant space, and the trace function. Let
F be a countable (or finite) subset of L2(Rd), and let E(F) be the corresponding
shift-invariant system. The SI space S(F) is defined to be the smallest closed
subspace of L2(Rd) that contains E(F). If {f} is a singleton, we write S(f) instead
of S({f}), and refer to S(f) as principal shift-invariant (PSI).

In [RS1], we analyzed the SI system E(F) via the inspection of the properties of
two sets of “fiber operators”: the Gramian fibers and the dual Gramian fibers. The
Gramian fibers are a family G(ξ), ξ ∈ Rd, with each G(ξ) a nonnegative Hermitian
matrix whose rows and columns are indexed by F, and whose (f, g)-entry is the
bracket product

[f̂ , ĝ](ξ) :=
∑

k∈2πZd
f̂(ξ + k)ĝ(ξ + k).

Each operator G(ξ) is considered as an endomorphism of `2(F). The Gramian fibers
are used in [RS1] for the characterization of many properties of the shift-invariant
system E(F): the Bessel property, the Riesz basis property, the frame property and
more. Our focus here is on the trace T (ξ) of each fiber G(ξ), i.e.,

T (ξ) :=
∑
f∈F

[f̂ , f̂ ](ξ).

We make the following obvious observation:

Observation 2.1. Let X(Ψ) be a wavelet system. Let

FΨ := {2
jd
2 Djψ : ψ ∈ Ψ, j < 0}.

Then the dimension function D associated with Ψ coincides with the trace function
T associated with the SI system E(FΨ).

In view of the above observation, we refer in the sequel to the dimension function
D as the dimension-trace function.

Projectors. As detailed before, there are several results in the literature where
the dimension-trace function is proved to be integer-valued. Our identification
of this function as the trace of the Gramian does not seem, at first, to explain
this phenomenon: the trace of a linear operator cannot be expected to assume, in
general, an integer value. However, if G(ξ) is a projector, then, trivially, its trace
coincides with its rank. In this context, we recall the notion of the multiplicity
function (Baggett’s terminology) of a shift-invariant space

(2.2) M : [−π, π]d → Z+ : ξ 7→ rankG(ξ).
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In order to emphasize the above (i.e., the fact that the multiplicity function com-
putes the rank of the fibers of the SI space), we refer in the sequel to this function
as the multiplicity-rank function. We note that the multiplicity-rank function
depends only on the underlying shift-invariant space, i.e., the multiplicity-rank
function of E(F) coincides with that of E(F′) whenever S(F) = S(F′) (cf. [BDR2];
the observation goes back to Helson, [H]). We also note that Baggett and his
co-authors’ approach of shift-invariant spaces via the tool of the projection-valued
measure implicitly exploits the bracket product, hence is intimately related to the
approach of [BDR2].

In view of the discussion so far, we have:

Observation 2.3. Let E(F) be an SI system associated with a trace function T .
If the fiber G(ξ) is a projector, then the trace function T coincides at ξ with the
multiplicity-rank function

T (ξ) = M(ξ).

Fiberization of SI tight frames. At this point, it is useful to recall the notion
of a tight frame. Let X ⊂ L2(Rd) be countable or finite and H(X) be the smallest
closed subspace of L2(Rd) that contains X . Let

(2.4) SX : L2(Rd)→ L2(Rd) : f 7→
∑
x∈X
〈f, x〉x.

One says that X is a Bessel system if the operator SX is bounded, and that X
is a tight frame for H(X), (or tight frame, for short) if SX is a (-n orthogonal)
projector onto H(X). In particular, X is a tight frame for L2(Rd) whenever SX
is the identity on L2(Rd). The norm ‖SX‖ is sometimes referred to as the Bessel
bound of the system X .

The following are some of the simpler fiberization results of [RS1]:

Result 2.5. Let E(F) be a shift-invariant system associated with Gramian fibers
G(ξ), ξ ∈ Rd. Then:

(i) E(F) is Bessel if and only if the norm function ξ 7→ ‖G(ξ)‖ =: G(ξ) is
essentially bounded. Moreover, the Bessel bound then equals ‖G‖L∞(Rd).

(ii) E(F) is a tight frame for S(F) if and only if almost every fiber G(ξ) is a
projector.

Corollary 2.6. Let X(Ψ) be a wavelet system associated with a dimension-trace
function D. Let M and T be the multiplicity-rank and trace functions of E(FΨ),
respectively.

(i) Assume that the SI system E(FΨ) is Bessel with Bessel bound A, then

D = T ≤MA.

(ii) Assume that E(FΨ) is Bessel with bound 1. Then, E(FΨ) is a tight frame
for S(FΨ) only if

D = T = M.

The converse is also true, provided that M is finite a.e.

Proof. For (i), since the shift invariant system E(FΨ) is Bessel with Bessel bound
A, then Result 2.5 implies that, a.e., G(ξ) ≤ A. Since, trivially, T (ξ) ≤ M(ξ)G(ξ),
we have that, a.e.,

(2.7) T (ξ) ≤M(ξ)G(ξ) ≤M(ξ)A.
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For (ii), assume first that E(FΨ) is a tight frame for S(FΨ). It follows from
Result 2.5 (ii) that almost every fiber G(ξ) is a projector. Hence, the multiplicity-
rank function M and the trace function T are the same, a.e. Invoking Observation
2.1, we obtain D = T = M .

Conversely, since E(FΨ) is Bessel with bound 1, every eigenvalue of almost every
fiber G(ξ) is ≤ 1 (by (i) of Result 2.5). This implies that, a.e., T (ξ) ≤M(ξ). Now,
if, at some ξ, T (ξ) = M(ξ), none of the eigenvalues of G(ξ) can lie in the interval
(0, 1) (this is the place where we need the finiteness of M(ξ)) hence the spectrum
of G(ξ) lies in {0, 1}. Thus, the self-adjoint operator G(ξ) must be a projector.
Invoking (ii) of Result 2.5, we conclude that E(FΨ) is a tight frame. �

In the sequel, given any wavelet system X(Ψ), we refer to the multiplicity-rank
function of E(FΨ) as the multiplicity-rank function of the wavelet system X(Ψ), as
well. This, in general, should not create any confusion, since X(Ψ) is not SI, and,
hence, does not have an intrinsically-defined multiplicity-rank function.

Quasi-affine systems. So far, we have found connections between the dimension
function of the wavelet system X(Ψ) and certain properties of the associated shift-
invariant system E(FΨ). Such observations fall short of our objective: our actual
interest is in the wavelet system X(Ψ), and hence we would like our assumptions
to be stated directly in terms of properties of X(Ψ) (and not in terms of a derived
system E(FΨ)). To this end, we recall from [RS2] the notion of quasi-affine systems:

Definition. Let X(Ψ) be a wavelet system. Let

X+(Ψ) =
⋃
j≥0

Xj(Ψ)

be the union of the nonnegative scales in X(Ψ). (Note that X+(Ψ) is trivially shift-
invariant.) The quasi-affine system Xq(Ψ) associated with X(Ψ) is the following
shift-invariant one:

Xq(Ψ) := E(FΨ) ∪X+(Ψ).

The following is one of the basic results of [RS2]. It was used there to provide
a complete characterization of all wavelet frames in terms of the fiberization of the
shift-invariant Xq(Ψ). (The notion of a “frame” is defined in (4.1).) The result is
proved in [RS2] under a very mild smoothness assumption on the mother wavelets
Ψ. That smoothness assumption was removed in [CSS].

Result 2.8. Let X(Ψ) be a wavelet system, and let Xq(Ψ) be the corresponding
quasi-affine system. Then:

(a) X(Ψ) is a Bessel system if and only if Xq(Ψ) is a Bessel system. The two
systems have the same Bessel bound.

(b) X(Ψ) is a frame for L2(Rd) if and only if Xq(Ψ) is a frame for L2(Rd).
The two systems also have the same upper and lower frame bounds. In
particular, X(Ψ) is a tight frame for L2(Rd) if and only if Xq(Ψ) is a tight
frame for L2(Rd).

In order to apply Result 2.8, we assume that X(Ψ) is a tight frame for L2(Rd).
However, we still cannot invoke Corollary 2.6, because Result 2.8 only implies that
the SI system Xq(Ψ) = E(FΨ) ∪X+(Ψ) is a tight frame for L2(Rd). In contrast,
in order to invoke Corollary 2.6, we need the component E(FΨ) of Xq(Ψ) to be
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a tight frame for S(FΨ). To this end, we adopt the following semi-orthogonality
condition. Let

X−(Ψ) :=
⋃
j<0

Xj(Ψ).

The system X(Ψ) is semi-orthogonal if the following condition holds:

X+(Ψ) ⊥ X−(Ψ).

Lemma 2.9. Assume that X(Ψ) is a tight frame for L2(Rd). Then, the following
statements are equivalent:

(i) E(FΨ) is a tight frame.
(ii) X(Ψ) is semi-orthogonal.
(iii) X−(Ψ) is a tight frame.

Proof. We prove that (i) is equivalent to (ii), the proof of the equivalence between
(ii) and (iii) is similar (and simpler).

Since X(Ψ) is a tight frame for L2(Rd), we obtain from Result 2.8 that Xq(Ψ) is a
tight frame for L2(Rd). Now, if X+(Ψ) ⊥ X−(Ψ), this semi-orthogonality condition
actually implies that the shift-invariant system X+(Ψ) is orthogonal to the SI space
S(X−(Ψ)). The latter space contains the SI system E(FΨ), and consequently the
tight frame Xq(Ψ) is the union of the mutually orthogonal sets X+(Ψ) and E(FΨ).
This trivially implies that each one of these latter sets is a tight frame.

Conversely, suppose that Xq(Ψ) is a tight frame of L2(Rd) and E(FΨ) is a tight
frame for S(FΨ). Then, for an arbitrary f ∈ S(FΨ) with ‖f‖ = 1,

1 =
∑

x∈E(FΨ)

|〈f, x〉|2 =
∑

x∈Xq(Ψ)

|〈f, x〉|2,

which implies that 〈f, x〉 = 0, for all x ∈ X+(Ψ). In particular, X+(Ψ) ⊥ X−(Ψ).
�

We summarize our findings in the following theorem:

Theorem 2.10. Let D and M be the dimension-trace function and the multiplicity-
rank function of X(Ψ), respectively.

(i) Assume that the wavelet system X(Ψ) is Bessel with Bessel bound A. Then,
a.e.,

D ≤MA.

(ii) Assume that X(Ψ) is a tight frame for L2(Rd). Consider the following
conditions:
(1) D = M .
(2) E(FΨ) is a tight frame.
(3) X(Ψ) is semi-orthogonal (i.e. X+(Ψ) ⊥ X−(Ψ)).
(4) X−(Ψ) is a tight frame.

Then (2)⇐⇒(3)⇐⇒(4)=⇒(1). The implication (1)=⇒(2) is valid, also, provided
that M is finite a.e.

In particular, D is integer-valued whenever one of the above four conditions
holds.

Proof. For (i), we apply Result 2.8 to conclude that the quasi-affine system is Bessel
with Bessel bound A, a fortiori its subsystem E(FΨ) is Bessel with Bessel bound
≤ A. The result now follows from part (i) of Corollary 2.6.
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For (ii), the equivalence of (1) and (2) follows from (ii) of Corollary 2.6 while
the equivalence of (2), (3) and (4) is the statement of Lemma 2.9. �

Remark. Let X(Ψ) be a tight frame for L2(Rd). Assume that X+(Ψ) ⊥ X−(Ψ).
Then, Lemma 2.9 shows that V0 := H(X−(Ψ)) is SI, and that E(FΨ) is a tight
frame for this V0. Furthermore, Theorem 2.10 shows that the space S(X−(Ψ)) is
PSI if and only if D = 1 on its support (since an SI space is PSI if and only if
its multiplicity-rank function assumes only the values 0 and 1). This provides an
alternative proof to Theorem 4 of Papadakis in [P]. �

3. The trace function of an MRA wavelet system

We analyse in this section wavelet systems that are constructed by Multiresolu-
tion Analysis (MRA, [M]). For notational convenience, we restrict our attention to
PSI MRAs, i.e., to the case where a single refinable function is used. The results
extend to more general MRAs, as well.

Let V0 be a PSI space and set Vj := DjV0, j ∈ Z. We say that Vj , j ∈ Z
form an MRA if (i) V0 is refinable, i.e., V0 ⊂ V1, and (ii)

⋃
j∈Z Vj = L2(Rd).

A wavelet system X(Ψ) is MRA-based ([RS2]-terminology) if Ψ ⊂ V1 for some
MRA. Also, if the MRA-based wavelet system X(Ψ) is a frame for L2(Rd), we refer
to its elements as framelets.

Note that for an MRA construction, the SI system E(FΨ) lies in the PSI space
V0. This implies that the multiplicity-rank function M of X(Ψ) is bounded by the
multiplicity-rank function of V0. Since the latter assumes only the values 0 and
1, we conclude that M ≤ 1. Combining this with Theorem 2.10, we obtain the
following result:

Corollary 3.1. Let X(Ψ) be an MRA-based wavelet system. Let D be the associ-
ated dimension-trace function. Then,

(i) Assume that X(Ψ) is Bessel with Bessel bound A. Then D ≤ A a.e..
(ii) Assume that X(Ψ) is a tight framelet. Then D ≤ 1 a.e. Furthermore, the

following statements are equivalent:
(1) D = 1 a.e. on its support.
(2) E(FΨ) is a tight frame.
(3) X(Ψ) is semi-orthogonal.
(4) X−(Ψ) is a tight frame.

Note that when X(Ψ) is an orthonormal wavelet system, the semi-orthogonality
condition X+(Ψ) ⊥ X−(Ψ) always holds. At the same time, there are a few tight
framelets X(Ψ) which are not orthonormal, but still satisfy the condition X+(Ψ) ⊥
X−(Ψ); see e.g., the tight frames constructed by Benedetto and Li in [BL]. For
these tight framelets, the dimension-trace function assumes only the values 0 and
1 (by virtue of Corollary 3.1).

However, there are many known constructions of tight framelets that do not
satisfy the semi-orthogonality condition X+(Ψ) ⊥ X−(Ψ). To recall, all the con-
structions of tight framelets are based, either implicitly or explicitly, on one of two
“construction principles”: the first of which is called the Unitary Extension Prin-
ciple (UEP), [RS2], while the second, more general and more recent, one is the
Oblique Extension Principle (OEP), [DHRS]. In all the specific novel constructions
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of compactly supported and other tight framelets (splines, box splines, pseudo-
splines) of [RS2], [RS4] and [DHRS], X+(Ψ) is never orthogonal to X−(Ψ): in all
these constructions, the set Xj(Ψ) lies in closed span of the set Xj+1(Ψ), let alone
that those sets are not orthogonal to each other. Correspondingly, for all these
cases, the dimension-trace function satisfies the inequalities 0 ≤ D ≤ 1, but not the
identity D = 1 (on its support). Let us elaborate a little further.

Let φ be a refinable function that generates the MRA, i.e., V0 := S(φ) ⊂ DV0 =:
V1. Then, φ̂(2·) = τ0φ̂ for some 2π-periodic function τ0, which is usually referred
to as “the refinement mask of φ”. Moreover, since we assume that each mother
wavelet lies in V1, there exists, for each ψi ∈ Ψ, i = 1, . . . , r, a 2π-periodic function
(known as the “wavelet mask”) τi such that ψ̂i(2·) = τiφ̂ (see [BDR1]). The vector
(τi)ri=0 of masks determines completely the wavelet system X(Ψ). Hence, a major
part of the theory is to establish connections between properties of the masks and
properties of the corresponding wavelet system.

The particular property of X(Ψ) that we study is the tight frame property.
It turns out that another 2π-periodic function plays a pivotal role in that study.
That function, which was introduced in [RS2], is termed there the fundamental
function of the MRA. It is defined as

(3.2) Θ :=
∞∑
j=0

r∑
i=1

|τi(2j ·)|2
j−1∏
m=0

|τ0(2m·)|2,

where τ0, τ1, ..., τr are the underlying masks. Then, Theorem 6.5 of [RS2] says that
(assuming that φ̂(0) 6= 0) the wavelet system X(Ψ) is a tight framelet if and only
if Θ(0) = 1 and, for every ν ∈ {0, π}d\0,

(3.3) Θ(2·)τ0τ0(·+ ν) +
r∑
i=1

τiτi(·+ ν) = 0.

Hence, in order to construct a tight framelet from a given MRA, one needs to select
τi, i = 1, . . . , r and Θ that satisfy both (3.3) and (3.2). It turns out that this
characterization leads to simple construction principles. For example, the UEP, in
one variable and dyadic dilation, states that, in essence, the derived wavelet system
X(Ψ) is a tight framelet if the masks τ0, τ1, . . . , τr satisfy a.e. the following two
conditions:

(3.4)
r∑
i=0

|τi|2 = 1,
r∑
i=0

τiτi(·+ π) = 0.

It was also shown in [RS2] that Θ = 1 for every UEP construction. If one makes
the additional assumption that r = 1, then (3.4) simply says that the 2× 2 matrix(

τ0 τ0(·+ π)
τ1 τ1(·+ π)

)
is unitary. Thus, the construction of tight framelets with a single mother wavelet by
the UEP from an MRA that is generated by a univariate dyadic refinable function
φ can succeed only when the refinement mask τ0 of φ satisfies the condition |τ0|2 +
|τ0(· + π)|2 = 1 a.e. (a mask that satisfies this condition is known as a conjugate
quadrature filter (=: CQF)). We note that the UEP implies, thus, that a CQF
construction (i.e., an application of Mallat’s algorithm, [M], to a CQF mask) yields
a tight framelet. Lawton, in [La], was the first to prove the latter fact (for finitely
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supported filters), long before [RS2] obtained this result (for general filters) by
specializing the UEP. We refer to §6 of [RS2] for more details, and in particular to
Theorem 6.5 and Corollary 6.7 there.

The dimension-trace function enters the discussion due to the following identity,
whose verification involves straightforward computations (such as those used in the
proof of Lemma 6.2 of [RS2]):

(3.5) D = Θ [φ̂, φ̂].

This shows that the fundamental function Θ and the underlying refinable function φ
of the MRA completely determine the dimension-trace function of the correspond-
ing framelet system X(Ψ). In particular, we have:

Corollary 3.6. Let X(Ψ) be a framelet that is constructed via the UEP from an
MRA generated by a refinable function φ. Then, D = [φ̂, φ̂]. In particular, if φ is
compactly supported, then D is a trigonometric polynomial.

Proof. Since X(Ψ) is constructed via the UEP, the function Θ must equal 1 on its
support (by Corollary 6.7 of [RS2]). Hence, D = [φ̂, φ̂] by (3.5). If φ is compactly
supported, its autocorrelation function [φ̂, φ̂] is a trigonometric polynomial. �

There are various UEP constructions of smooth compactly supported tight
framelet systems for which [φ̂, φ̂] vanishes at some points (see, e.g., the bivari-
ate boxlets that are derived in [RS4] from the 4-directional box spline φ). Hence,
Corollary 3.6 shows that the corresponding dimension-trace function in each of
these examples is a trigonometric polynomial that assumes all values between 0
and 1.

Remark. The CQF construction was extensively studied recently by Paluszyński,
Sikić, Weiss and Xiao in [PSWX1] and [PSWX2], where a deeper understanding of
conjugate quadrature filters was obtained. In particular, Corollary 3.6 and part of
Corollary 3.1 were proven, for CQF constructions, in Theorem 3.18 and Proposition
3.12 of [PSWX2]. �

We conclude this section with the following final remark:

Remark. Is the dimension-trace function a useful tool for general tight
framelets? We have shown above that one should not expect the dimension-trace
function of a general tight framelet to coincide with its multiplicity-rank function.
There are other useful properties of a tight framelet that are always encoded in the
dimension function. For example, the approximation order of the tight framelet
system, [DHRS], is characterized by the order of the zero of the function 1−Θ [φ̂, φ̂]
at the origin. Of course, in view of (3.5), such results can be rewritten in terms of
the dimension-trace function D. �

4. The mixed trace function of dual systems

Our focus so far was primarily on the case of tight frames (including orthonormal
systems). The results can be easily modified to cover the case of bi-frames. We forgo
generalizing all the tight frame results, and concentrate, instead, on the bi-frame
counterpart of Theorem 2.10.
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We start with some necessary definitions. A Bessel system X is a frame for
H(X), the closed span of X , if the operator SX (cf. (2.4)) has a closed range. An
alternative definition is that

(4.1) C1‖f‖2L2(Rd) ≤ ‖SXf‖2L2(Rd) ≤ C2‖f‖2L2(Rd),

for every f in H(X) and for some f -independent positive constants C1 and C2.
Now, let R : X → L2(Rd) be some assignment, and assume that both X and

R(X) are Bessel systems. Let

(4.2) Sf :=
∑
x∈X
〈f,Rx〉x, f ∈ L2(Rd).

If the perfect reconstruction property Sf = f holds for every f ∈ H(X), then X
is a frame for H(X), and RX is referred to as a dual system of X . The (ordered)
pair (X,RX) is then called a representation pair. If, in addition, kerS coincides
with the orthogonal complement of H(RX), then RX is also a frame (for H(RX)),
and the pair (RX,X) becomes a representation system, too. In this case, we refer
to the (unordered) pair (X,RX) as a bi-frame. We note that a representation
system (X,RX) is automatically a bi-frame, whenever H(X) = H(RX). As one
expects, it is far easier to answer questions of the form “is (X,RX) a bi-frame?”,
as compared to the question “is X a frame?”. To a large degree, the analysis of the
bi-frame property of (X,RX) is parallel to the analysis of tight frames, while the
intrinsic analysis of a frame X poses a much greater challenge.

Let (E(F), E(RF)) be two SI systems. (Note that, formally, the map R is de-
fined only on F, but, its extension to a map on E(F) should be self-understood.)
The mixed Gramian fiber G(ξ), ξ ∈ Rd, associated with these systems is
a matrix whose rows and columns are indexed by F, and whose (f, g) entry is
[ĝ, R̂f ](ξ). Then, the fiberization analysis of [RS1] can be applied to conclude that
if (E(F), E(RF)) is a representation pair, then almost every fiberG(ξ) is a projector.

Let X(Ψ) and X(RΨ) be two wavelet Bessel systems (corresponding to the
same dilation operator, which, as before, we assume to be dyadic). Let E(FΨ) and
E(FRΨ) be the two SI systems associated with X(Ψ) and X(RΨ) as given in §2. De-
note by GΨ,RΨ(ξ), ξ ∈ Rd the mixed Gramian fiber operators of (E(FΨ), E(FRΨ)).
The mixed rank function of (X(Ψ), X(RΨ)) is

MΨ,RΨ : [−π, π]d → Z+ : ξ 7→ rank GΨ,RΨ(ξ).

Let DΨ and DRΨ be the dimension-trace functions of the wavelet systems X(Ψ)
and X(RΨ) respectively. The mixed trace function DΨ,RΨ(ξ) of (X(Ψ), X(RΨ))
is defined, at a point ξ ∈ Rd that satisfies max{DΨ(ξ), DRΨ(ξ)} <∞, as

DΨ,RΨ(ξ) :=
∑
ψ∈Ψ

∑
j>0

[ψ̂(2j ·), R̂ψ(2j·)](ξ).

Since max{DΨ(ξ), DRΨ(ξ)} < ∞, the sum that defines DΨ,RΨ(ξ) converges abso-
lutely, hence can be used to define the trace of the operatorGΨ,RΨ(ξ). Furthermore,
the following observation follows from the basic facts on trace-class operators (see
e.g. Appendix 2 of [F]).

Observation 4.3. Let X(Ψ) and X(RΨ) be two given wavelet systems. Assume
that max{DΨ(ξ), DRΨ(ξ)} <∞ and assume that GΨ,RΨ(ξ) is a projector, then

DΨ,RΨ(ξ) = MΨ,RΨ(ξ).
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The following three results are analogous to Theorem 2.10. These results require
a very mild smoothness condition on the wavelet systems X(Ψ) and X(RΨ) (viz.
condition (4.6) of [RS2]; that condition is used in the proof of Theorem 1 of [RS3],
and the latter is invoked in the proof below). The condition is so mild (even the
Haar system, in all dimensions, satisfies it), that we forgo mentioning it in the
formal statement.

Proposition 4.4. Let (X(Ψ), X(RΨ)) be a pair of bi-frames for L2(Rd). Assume
that the following semi-bi-orthogonality condition holds:

(4.5) X−(Ψ) ⊥ X+(RΨ).

Then the equality

(4.6) DΨ,RΨ = MΨ,RΨ

holds at the points ξ ∈ Rd where max{DΨ(ξ), DRΨ(ξ)} <∞. In particular, DΨ,RΨ

assumes integer values at those points.

Proof. Since (X(Ψ), X(RΨ)) is a pair of bi-frames, their quasi-affine counterparts
(Xq(Ψ), Xq(RΨ)) is a pair of bi-frames by Theorem 1 of [RS3]. Condition (4.5)
implies that E(FΨ) is orthogonal to X+(RΨ). This, together with the fact that
(Xq(Ψ), Xq(RΨ)) is a bi-frame, implies that (E(FΨ), E(FRΨ)) is a representation
pair. Hence, almost every fiber GΨ,RΨ(ξ), ξ ∈ Rd is a projector. It follows from
Observation 4.3 that DΨ,RΨ(ξ) = MΨ,RΨ(ξ) whenever max{DΨ(ξ), DRΨ(ξ)} <
∞. �

Next, we will attempt to establish a converse to the above proposition, i.e.,
we will show that (under some additional assumptions) condition (4.6) on the
dimension-trace function implies the semi-bi-orthogonality condition (4.5) (com-
pare with part (ii) of Theorem 2.10).

First we need the following lemma.

Lemma 4.7. Let A be a bounded linear operator from a Hilbert space H to another
Hilbert space H ′. Let B : H ′ → H be bounded and linear, too. If AB is a projector,
and, if A is injective on ranB, then BA is the identity on ranB.

Proof. By assumption, ABAB = AB. Since A is injective on ranB, it follows that
BAB = B. Thus, BA, indeed, is the identity on ranB. �

Theorem 4.8. Let (X(Ψ), X(RΨ)) be a bi-frame for L2(Rd). Assume that, a.e.,
max{DΨ, DRΨ} <∞ Then, the semi-bi-orthogonality conditions

(4.9) X−(Ψ) ⊥ X+(RΨ) and X−(RΨ) ⊥ X+(Ψ)

are equivalent to the following three conditions:

DΨ,RΨ = MΨ,RΨ a.e.,(4.10)

S(FΨ) ∩ S(FRΨ)⊥ = 0,(4.11)

and

(4.12) 〈x,Ry〉 = 〈Rx, y〉, ∀x ∈ X−(Ψ), y ∈ X+(Ψ).

Proof. The fact that the condition X−(Ψ) ⊥ X+(RΨ) implies (4.10) was proved
in Proposition 4.4. Since 0 is the only element orthogonal to all the elements of
X(RΨ), (4.11) follows from the first condition in (4.9). It is clear that (4.9) implies
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that 〈x,Ry〉 = 0 = 〈Rx, y〉 for all x ∈ X−(Ψ) and y ∈ X+(Ψ), and, therefore, (4.12)
is valid.

We now prove the converse implication. First, let us note that, since the wavelet
system pair (X(Ψ), X(RΨ)) is a bi-frame for L2(Rd), Theorem 1 of [RS3] implies
that the quasi-affine pair (Xq(Ψ), Xq(RΨ)) is a bi-frame for L2(Rd), too.

Now, as we explained previously, equality (4.10) implies that almost every fiber
of the mixed Gramian GΨ,RΨ is a projector. The fiberization techniques in §4 of
[RS1] then apply to show that the operator AB is a projector, with A the analysis
map

A : L2(Rd)→ `2(X) : f 7→ (〈f,Rx〉)x∈X ,
and B is the synthesis map

B : `2(X)→ L2(Rd) : c 7→
∑
x∈X

c(x)x,

and where
X := E(FΨ).

Assumption (4.11) exactly says that A does not vanish on the range of B, and thus
we can invoke Lemma 4.7 to conclude that BA is the identity on the range of B,
i.e., on the space S(FΨ). Writing BA explicitly, one sees that we have just proved
that the pair (E(FΨ), E(FRψ)) is a representation pair for S(FΨ).

We can now complete the proof by following the argument in the proof of Lemma
2.9: let y ∈ X−(Ψ). Then, with S as in (4.2), we have, for the choice X :=
Xq(Ψ) there, that Sy = y (since (Xq(Ψ), Xq(RΨ)) is a bi-frame for L2(Rd)). Thus,
invoking (4.12), we have

〈y,Ry〉 = 〈Sy,Ry〉 =
∑

x∈Xq(Ψ)

〈y,Rx〉〈x,Ry〉

=
∑

x∈E(FΨ)

〈y,Rx〉〈x,Ry〉+
∑

x∈X+(Ψ)

|〈y,Rx〉|2.

On the other hand, if we choose X := E(FΨ) in (4.2), we still have that Sy = y
(since we proved before that (E(FΨ), E(FRΨ)) is a representation pair), and hence
by the same argument

〈y,Ry〉 =
∑

x∈E(FΨ)

〈y,Rx〉〈x,Ry〉.

Hence, we conclude that y ⊥ X+(RΨ) for all y ∈ X−(Ψ), i.e. X−(Ψ) ⊥ X+(RΨ).
This, together with (4.12), also implies X−(RΨ) ⊥ X+(Ψ). �

We note that the above result covers the case of a minimal bi-frame. Recall that
a bi-frame (X,RX) is minimal if the projector AB (with A,B as in the proof of
the last theorem) is self-adjoint. In this case, one can prove that the map R is
the restriction to X of the operator (SX)−1 (cf. (2.4)). We find it convenient to
extend R in this case, i.e., to define R := (SX)−1. We also note that the notion of
minimality is symmetric, i.e., given a bi-frame (X,RX), RX is the minimal dual
frame of X if and only if X is the minimal dual system of RX .

Corollary 4.13. Let (X(Ψ), X(RΨ)) be a minimal wavelet bi-frame. Assume that,
a.e., max{DΨ, DRΨ} <∞. Then the following three conditions are equivalent:

(1) DΨ,RΨ = MΨ,RΨ a.e.
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(2) X−(Ψ) ⊥ X+(RΨ).
(3) X−(RΨ) ⊥ X+(Ψ).

Proof. The equivalence between (2) and (3) is immediate, since, thanks to the
minimality, R can be identified with the self-adjoint operator S−1

X(Ψ).
The equivalence between (2) and (1) will follow from Theorem 4.8, once we

verify that conditions (4.11) and (4.12) hold, whenever (X(Ψ), X(RΨ)) is a minimal
wavelet bi-frame. Condition (4.12) follows, indeed, from the self-adjointness of R.
As for condition (4.11), we first invoke Theorem 1 of [RS3] to conclude that the
quasi-affine pair (Xq(Ψ), Xq(RΨ)) is a minimal bi-frame. Using the positivity of
R := S−1

Xq(Ψ), it is easy to verify that (4.11) holds (based on the fact that E(FΨ) is
a subset of Xq(Ψ)). �
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