LINEAR PERTURBATIONS OF A NONOSCILLATORY SECOND ORDER DIFFERENTIAL EQUATION II

WILLIAM F. TRENCH
(Communicated by Carmen C. Chicone)

Abstract

Let y_{1} and y_{2} be principal and nonprincipal solutions of the nonoscillatory differential equation $\left(r(t) y^{\prime}\right)^{\prime}+f(t) y=0$. In an earlier paper we showed that if $\int^{\infty}(f-g) y_{1} y_{2} d t$ converges (perhaps conditionally), and a related improper integral converges absolutely and sufficently rapidly, then the differential equation $\left(r(t) x^{\prime}\right)^{\prime}+g(t) x=0$ has solutions x_{1} and x_{2} that behave asymptotically like y_{1} and y_{2}. Here we consider the case where $\int^{\infty}(f-g) y_{2}^{2} d t$ converges (perhaps conditionally) without any additional assumption requiring absolute convergence.

1. Introduction

We consider the differential equation

$$
\begin{equation*}
\left(r(t) x^{\prime}\right)^{\prime}+g(t) x=0 \tag{1}
\end{equation*}
$$

as a perturbation of

$$
\begin{equation*}
\left(r(t) y^{\prime}\right)^{\prime}+f(t) y=0 \tag{2}
\end{equation*}
$$

under the following standing assumption.
Assumption A. Let r and f be real-valued and continuous, with $r>0$, on $[a, \infty)$. Suppose that (2) is nonoscillatory at infinity. Let g be continuous and possibly complex-valued on $[a, \infty)$.

It is known [4, p. 355] that since (22) is nonoscillatory at infinity, it has solutions y_{1} and y_{2} which are positive on $[b, \infty)$ for some $b \geq a$ and satisfy the following conditions:

$$
\begin{gather*}
r\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)=1, \quad t \geq a \tag{3}\\
\lim _{t \rightarrow \infty} \frac{y_{2}(t)}{y_{1}(t)}=\infty \tag{4}
\end{gather*}
$$

Without loss of generality we let $b=a$. Henceforth $t \geq a$. It is convenient to define

$$
\begin{equation*}
\rho=y_{2} / y_{1} \tag{5}
\end{equation*}
$$

[^0]From (3) and (4),

$$
\begin{equation*}
\rho^{\prime}=1 / r y_{1}^{2}>0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \rho(t)=\infty \tag{6}
\end{equation*}
$$

We use the Landau symbols " o " and " O " in the standard way to denote behavior as $t \rightarrow \infty$. In [6] we proved the following theorem.
Theorem 1. Suppose that $\int^{\infty}(f-g) y_{1} y_{2} d t$ converges (perhaps conditionally) and

$$
\begin{equation*}
\sup _{\tau \geq t}\left|\int_{\tau}^{\infty}(f-g) y_{1} y_{2} d s\right| \leq \phi(t) \tag{7}
\end{equation*}
$$

where $\phi(t) \rightarrow 0$ monotonically as $t \rightarrow \infty$. Define

$$
\begin{equation*}
G(t)=\int_{t}^{\infty}(f-g) y_{1}^{2} d s \tag{8}
\end{equation*}
$$

and suppose that

$$
\int^{\infty}|G| \phi \rho^{\prime} d t<\infty
$$

and

$$
\begin{equation*}
\limsup _{t \rightarrow \infty}(\phi(t))^{-1} \int_{t}^{\infty}|G| \phi \rho^{\prime} d s=A<1 / 3 \tag{9}
\end{equation*}
$$

Then (1) has a solution x_{1} such that

$$
x_{1}=y_{1}(1+O(\phi))
$$

and

$$
\left(x_{1} / y_{1}\right)^{\prime}=O\left(\phi \rho^{\prime} / \rho\right)
$$

and a solution x_{2} such that

$$
x_{2}=y_{2}\left(1+O\left(\phi_{m}\right)\right)
$$

and

$$
\left(x_{2} / y_{2}\right)^{\prime}=O\left(\phi_{m} \rho^{\prime} / \rho\right)
$$

where

$$
\phi_{m}=\max \{\phi, \hat{\phi}\}
$$

with

$$
\hat{\phi}(t)=\frac{1}{\rho(t)} \int_{a}^{t} \rho^{\prime} \phi d s
$$

This result was an improvement on a theorem of Hartman and Wintner 44 p. 379], and it was subsequently improved by Chen [1] and Šimša [5]. (For more on the Hartman-Wintner problem, see [2] and 3].) In this continuation of 6] we consider the case where $\int^{\infty}(f-g) y_{2}^{2} d t$ converges, perhaps conditionally. To motivate the present work, we first apply Theorem 1 under this assumption.

Let

$$
\begin{equation*}
H(t)=\int_{t}^{\infty}(f-g) y_{1} y_{2} d s \tag{10}
\end{equation*}
$$

and recall from (7) that

$$
\sup _{\tau \geq t}\{|H(\tau)|\} \leq \phi(t)
$$

Let

$$
\begin{equation*}
I(t)=\int_{t}^{\infty}(f-g) y_{2}^{2} d s \tag{11}
\end{equation*}
$$

and suppose that

$$
\begin{equation*}
\sup _{\tau \geq t}\{|I(\tau)|\} \leq \sigma(t) \tag{12}
\end{equation*}
$$

where $\sigma(t) \rightarrow 0$ monotonically as $t \rightarrow \infty$. From (8), (10), and (11),

$$
\begin{equation*}
H(t)=-\int_{t}^{\infty} \frac{I^{\prime}}{\rho} d s=\frac{I(t)}{\rho(t)}+\int_{t}^{\infty} I\left(\frac{1}{\rho}\right)^{\prime} d s \tag{13}
\end{equation*}
$$

and

$$
G(t)=-\int_{t}^{\infty} \frac{I^{\prime}}{\rho^{2}} d s=\frac{I(t)}{\rho^{2}(t)}+\int_{t}^{\infty} I\left(\frac{1}{\rho^{2}}\right)^{\prime} d s
$$

so

$$
\begin{equation*}
|H(t)| \leq 2 \sigma(t) / \rho(t) \quad \text { and } \quad|G(t)| \leq 2 \sigma(t) / \rho^{2}(t) \tag{14}
\end{equation*}
$$

It is straightforward to verify that (9) holds with $\phi=\sigma / \rho$ and $A=0$. Therefore Theorem 1 implies that (1) has solutions x_{1} and x_{2} such that

$$
\begin{gather*}
x_{1}=y_{1}(1+O(\sigma / \rho)) \tag{15}\\
\left(x_{1} / y_{1}\right)^{\prime}=O\left(\sigma \rho^{\prime} / \rho^{2}\right) \tag{16}\\
x_{2}=y_{2}(1+O(\hat{\phi})) \tag{17}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(x_{2} / y_{2}\right)^{\prime}=O\left(\hat{\phi} \rho^{\prime} / \rho\right) \tag{18}
\end{equation*}
$$

with

$$
\hat{\phi}(t)=\frac{1}{\rho(t)} \int_{a}^{t} \frac{\sigma \rho^{\prime}}{\rho} d s
$$

At best, (17) and (18) imply that

$$
x_{2}=y_{2}(1+O(1 / \rho))
$$

and

$$
\left(x_{2} / y_{2}\right)^{\prime}=O\left(\rho^{\prime} / \rho^{2}\right)
$$

if $\int_{a}^{\infty} \sigma \rho^{\prime} / \rho d s<\infty$, which may be false. Among other things, we will show that (17) and (18) can be replaced by

$$
\begin{equation*}
x_{2}=y_{2}(1+O(\sigma / \rho)) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x_{2} / y_{2}\right)^{\prime}=O\left(\sigma \rho^{\prime} / \rho^{2}\right) \tag{20}
\end{equation*}
$$

These two equations are improvements over (17) and (18), since $\lim _{t \rightarrow \infty} \rho(t) \hat{\phi}(t) / \sigma(t)$ $=\infty$ in any case. In fact, it can be seen from (15), (16), (19), and (20) that $\left(x_{i} / y_{i}\right)-1, i=1,2$, approach zero at the same rate as $t \rightarrow \infty$, as do $\left(x_{i} / y_{i}\right)^{\prime}, i=1$, 2. We also note that the results of these four equations can be written as

$$
x_{i} / y_{i}=1+O\left(\sigma y_{1} / y_{2}\right) \quad \text { and } \quad\left(x_{i} / y_{i}\right)^{\prime}=O\left(\sigma / r y_{2}^{2}\right), \quad i=1,2 .
$$

2. Main Results

Theorem 2. Suppose that $\int^{\infty}(f-g) y_{2}^{2} d t$ converges. Let I and σ be as in (11) and (12). Then (11) has a solution x_{1} that satisfies (15) and (16), and a solution x_{2} such that

$$
\begin{equation*}
\frac{x_{2}-y_{2}}{y_{1}}=O(\sigma) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{x_{2}-y_{2}}{y_{1}}\right)^{\prime}=O\left(\frac{\sigma \rho^{\prime}}{\rho}\right) \tag{22}
\end{equation*}
$$

Proof. We have already proved the assertion concerning x_{1}. For the assertion concerning x_{2}, we use the contraction mapping theorem. If

$$
\begin{equation*}
x_{2}(t)=y_{2}(t)+\int_{t}^{\infty}\left(y_{2}(s) y_{1}(t)-y_{1}(s) y_{2}(t)\right)(f(s)-g(s)) x_{2}(s) d s \tag{23}
\end{equation*}
$$

then x_{2} satisfies (1). Although this suggests a transformation to work with, it is better to use a transformation with the fixed point ζ, where

$$
\zeta=\left(x_{2}-y_{2}\right) / y_{1} .
$$

Rewriting (23) in terms of ζ yields

$$
\begin{aligned}
\zeta(t)= & \int_{t}^{\infty}\left(y_{2}(s)-y_{1}(s) \rho(t)\right)(f(s)-g(s)) y_{2}(s) d s \\
& +\int_{t}^{\infty}\left(y_{2}(s)-y_{1}(s) \rho(t)\right)(f(s)-g(s)) y_{1}(s) \zeta(s) d s
\end{aligned}
$$

We use the transformation $\mathcal{T} z=Q+\mathcal{L} z$, where

$$
Q(t)=\int_{t}^{\infty}\left(y_{2}(s)-y_{1}(s) \rho(t)\right)(f(s)-g(s)) y_{2}(s) d s
$$

and

$$
(\mathcal{L} z)(t)=\int_{t}^{\infty}\left(y_{2}(s)-y_{1}(s) \rho(t)\right)(f(s)-g(s)) y_{1}(s) z(s) d s
$$

From (10), (11), and (13),

$$
Q(t)=I(t)-\rho(t) H(t)=-\rho(t) \int_{t}^{\infty} I(1 / \rho)^{\prime} d s
$$

so $|Q(t)| \leq \sigma(t)$, from (12). Moreover,

$$
Q^{\prime}=I^{\prime}-\rho H^{\prime}-H \rho^{\prime}=-H \rho^{\prime}
$$

so

$$
\left|Q^{\prime}(t)\right| \leq 2 \sigma(t) \rho^{\prime}(t) / \rho(t)
$$

from (14). Therefore we let \mathcal{T} act on the Banach space \mathcal{B} of functions z on $\left[t_{0}, \infty\right)$ such that

$$
z=O(\sigma) \quad \text { and } \quad z^{\prime}=O\left(\sigma \rho^{\prime} / \rho\right)
$$

with norm

$$
\begin{equation*}
\|z\|=\sup _{t \geq t_{0}}\left\{\max \left\{\frac{|z|}{\sigma}, \frac{\rho\left|z^{\prime}\right|}{\sigma \rho^{\prime}}\right\}\right\} \tag{24}
\end{equation*}
$$

We will show that \mathcal{T} maps \mathcal{B} into \mathcal{B}, and is a contraction if t_{0} is sufficiently large. Since $Q \in \mathcal{B}$, it suffices to show that \mathcal{L} is a contraction of \mathcal{B} if t_{0} is sufficiently large. To this end, suppose $z \in \mathcal{B}$ and $t_{0} \leq t<T$, and consider the finite integral

$$
w_{T}(t ; z)=\int_{t}^{T}\left(y_{2}(s)-y_{1}(s) \rho(t)\right)(f(s)-g(s)) y_{1}(s) z(s) d s
$$

From (5) and (8),

$$
\begin{align*}
w_{T}(t ; z)= & -\int_{t}^{T}(\rho(s)-\rho(t)) z(s) G^{\prime}(s) d s \\
= & -(\rho(T)-\rho(t)) z(T) G(T) \\
& +\int_{t}^{T}(\rho(s)-\rho(t)) G(s) z^{\prime}(s) d s \tag{25}\\
& +\int_{t}^{T} z(s) G(s) \rho^{\prime}(s) d s
\end{align*}
$$

From (14) and (24),

$$
\begin{aligned}
& |(\rho(T)-\rho(t)) z(T) G(T)|<2\|z\| \sigma^{2}(T) / \rho(T) \rightarrow 0 \text { as } T \rightarrow \infty \\
& \quad\left|(\rho(s)-\rho(t)) G(s) z^{\prime}(s)\right| \leq 2\|z\| \sigma^{2}(s) \rho^{\prime}(s) / \rho^{2}(s), \quad s \geq t
\end{aligned}
$$

and

$$
\left|z(s) G(s) \rho^{\prime}(s)\right| \leq 2\|z\| \sigma^{2}(s) \rho^{\prime}(s) / \rho^{2}(s)
$$

Therefore we can let $T \rightarrow \infty$ in (25) and conclude that

$$
\begin{equation*}
(\mathcal{L} z)(t)=-\int_{t}^{\infty}(\rho(s)-\rho(t)) z(s) G^{\prime}(s) d s \tag{26}
\end{equation*}
$$

exists and satisfies the inequality

$$
\begin{equation*}
|(\mathcal{L} z)(t)|<4\|z\| \int_{t}^{\infty} \frac{\sigma^{2} \rho^{\prime}}{\rho^{2}} d s<4\|z\| \frac{\sigma^{2}(t)}{\rho(t)} \tag{27}
\end{equation*}
$$

From (26),

$$
(\mathcal{L} z)^{\prime}(t)=\rho^{\prime}(t) \int_{t}^{\infty} z G^{\prime} d s=-\rho^{\prime}(t)\left(z(t) G(t)+\int_{t}^{\infty} G z^{\prime} d s\right)
$$

From (14) and (24), the last integral converges absolutely and

$$
\left|(\mathcal{L} z)^{\prime}(t)\right| \leq 2\|z\| \rho^{\prime}(t)\left(\frac{\sigma^{2}(t)}{\rho^{2}(t)}+\int_{t}^{\infty} \frac{\sigma^{2} \rho^{\prime}}{\rho^{3}} d s\right)<4\|z\| \frac{\sigma^{2}(t) \rho^{\prime}(t)}{\rho^{2}(t)}
$$

From this and (27),

$$
\|(\mathcal{L} z)\|<4\|z\| \sigma(t) / \rho(t)
$$

Hence \mathcal{L} (and consequently \mathcal{T}) is a contraction of \mathcal{B} if $\sigma\left(t_{0}\right) / \rho\left(t_{0}\right)<1 / 4$. Therefore there is a (unique) $\zeta \in \mathcal{B}$ such that $\mathcal{T} \zeta=\zeta$, and the function x_{2} defined by $x_{2}=y_{2}+y_{1} \zeta\left(t \geq t_{0}\right)$ is a solution of (1) that satisfies (21) and (22). We can extend the definition of x_{2} back to $t=a$.

Corollary 1. Under the assumptions of Theorem [2, x_{2} satisfies (19) and (20).

Proof. Since $y_{2} / y_{1}=\rho$, (21) implies that y_{2} satisfies (19) and

$$
x_{2} / y_{1}=\rho+O(\sigma)
$$

From (22),

$$
\left(x_{2} / y_{1}\right)^{\prime}=\rho^{\prime}(1+O(\sigma / \rho))
$$

Therefore

$$
\begin{aligned}
\left(\frac{x_{2}}{y_{2}}\right)^{\prime} & =\left(\frac{x_{2}}{y_{1} \rho}\right)^{\prime}=\left(\frac{x_{2}}{y_{1}}\right)^{\prime} \frac{1}{\rho}-\frac{x_{2}}{y_{1}} \frac{\rho^{\prime}}{\rho^{2}} \\
& =\frac{\rho^{\prime}}{\rho}(1+O(\sigma / \rho))-\frac{\rho^{\prime}}{\rho^{2}}(\rho+O(\sigma))=O\left(\frac{\sigma \rho^{\prime}}{\rho^{2}}\right)
\end{aligned}
$$

It is natural to ask whether the convergence of $\int^{\infty}(f-g) y_{2}^{2} d t$ is necessary for the existence of a solution x_{2} of (1) such that

$$
x_{2}=y_{2}(1+o(1 / \rho)) \quad \text { and } \quad\left(x_{2} / y_{2}\right)^{\prime}=o\left(\rho^{\prime} / \rho^{2}\right)
$$

Although we do not know the answer to this question, we offer the following related theorem.

Theorem 3. If (1) has a solution x_{2} that satisfies (19) and (20) for some positive monotonic function σ such that $\lim _{t \rightarrow \infty} \sigma(t)=0$, then

$$
\begin{equation*}
\int_{t}^{\infty}(f-g) y_{1} y_{2} d t=O(\sigma / \rho) \tag{28}
\end{equation*}
$$

Moreover, if

$$
\begin{equation*}
\int^{\infty} \frac{\sigma \rho^{\prime}}{\rho} d t<\infty \tag{29}
\end{equation*}
$$

then $\int^{\infty}(f-g) y_{2}^{2} d t$ converges.
Proof. From (20), $R(t)=\int_{t}^{\infty}\left(x_{2} / y_{2}\right)^{\prime} d t$ converges absolutely and

$$
\begin{equation*}
R=O(\sigma / \rho) \tag{30}
\end{equation*}
$$

If $t>T$, define

$$
R_{T}(t)=\int_{t}^{T}\left(\frac{x_{2}}{y_{2}}\right)^{\prime} d s
$$

From (5) and (6),

$$
\begin{equation*}
\left(\frac{x_{2}}{y_{2}}\right)^{\prime}=\frac{y_{2} x_{2}^{\prime}-x_{2} y_{2}^{\prime}}{y_{2}^{2}}=u \frac{\rho^{\prime}}{\rho^{2}} \tag{31}
\end{equation*}
$$

where

$$
u=r\left(y_{2} x_{2}^{\prime}-x_{2} y_{2}^{\prime}\right)
$$

From (1) and (2),

$$
u^{\prime}=(f-g) y_{2} x_{2}
$$

Therefore

$$
R_{T}(t)=\frac{u(t)}{\rho(t)}-\frac{u(T)}{\rho(T)}+\int_{t}^{T}(f-g) y_{1} x_{2} d s
$$

From (20) and (31), $u=o(\sigma)$, so we can let $T \rightarrow \infty$ and invoke (30) to conclude that

$$
\begin{equation*}
\hat{R}(t) \stackrel{\mathrm{df}}{=} \int_{t}^{\infty}(f-g) y_{1} x_{2} d s=O(\sigma / \rho) . \tag{32}
\end{equation*}
$$

Now let

$$
\begin{align*}
S_{T}(t) & =\int_{t}^{T}(f-g) y_{1} y_{2} d s=-\int_{t}^{T} \frac{y_{2}}{x_{2}} \hat{R}^{\prime} d s \tag{33}\\
& =\frac{y_{2}(t)}{x_{2}(t)} \hat{R}(t)-\frac{y_{2}(T)}{x_{2}(T)} \hat{R}(T)+\int_{t}^{T} \hat{R}\left(\frac{y_{2}}{x_{2}}\right)^{\prime} d s
\end{align*}
$$

But

$$
\left(\frac{y_{2}}{x_{2}}\right)^{\prime}=-\frac{y_{2}^{2}}{x_{2}^{2}}\left(\frac{x_{2}}{y_{2}}\right)^{\prime}=O\left(\frac{\sigma \rho^{\prime}}{\rho^{2}}\right)
$$

from (19) and (20). From this and (32), we can let $T \rightarrow \infty$ in (33) to conclude that

$$
\begin{equation*}
S(t) \stackrel{\mathrm{df}}{=} \int_{t}^{\infty}(f-g) y_{1} y_{2}=O(\sigma / \rho) \tag{34}
\end{equation*}
$$

This verifies (28). If (29) holds and $T>a$, then

$$
\begin{equation*}
\int_{a}^{T}(f-g) y_{2}^{2} d t=-\int_{a}^{T} \rho S^{\prime} d t=\rho(a) S(a)-\rho(T) S(T)+\int_{a}^{T} S \rho^{\prime} d t \tag{35}
\end{equation*}
$$

Since (34) implies that $\lim _{T \rightarrow \infty} \rho(T) S(T)=0$ and (29) and (34) together imply that $\int^{\infty} S \rho^{\prime} d t$ converges, (35) implies that $\int^{\infty}(f-g) y_{2}^{2} d t$ converges.

3. Examples

Examples illustrating our results can be constructed by letting

$$
g(t)=f(t)+\frac{u(t) S(t)}{y_{2}^{2}(t)}, \quad t \geq a
$$

where u and S are continuously differentiable and S has a bounded antiderivative C on $[a, \infty)$, while $\lim _{t \rightarrow \infty} u(t)=0$ and $\int^{\infty}\left|u^{\prime}(t)\right| d t<\infty$. Then

$$
\int_{t}^{\infty}(f(s)-g(s)) y_{2}^{2}(s) d s=-\int_{t}^{\infty} u(s) S(s) d s=-\left.u(s) C(s)\right|_{t} ^{\infty}+\int_{t}^{\infty} u^{\prime}(s) C(s) d s
$$

converges, and the convergence may be conditional. Here we may take

$$
\sigma(t)=M \sup _{\tau \geq t}\left(|u(\tau)|+\int_{\tau}^{\infty}\left|u^{\prime}(s)\right| d s\right)
$$

where M is an upper bound for C on $[a, \infty)$.
For a specific example, consider the equation

$$
\begin{equation*}
x^{\prime \prime}+\frac{\sin t}{t^{2}(\log t)^{\alpha}} x=0, \quad t \geq a>0 \quad(\alpha>0) \tag{36}
\end{equation*}
$$

as a perturbation of $y^{\prime \prime}=0$. Our results imply that (36) has solutions x_{1} and x_{2} such that

$$
x_{1}(t)=1+O\left(t^{-1}(\log t)^{-\alpha}\right), \quad x_{1}^{\prime}(t)=O\left(t^{-2}(\log t)^{-\alpha}\right)
$$

and

$$
x_{2}(t)=t+O\left((\log t)^{-\alpha}\right), \quad x_{2}^{\prime}(t)=1+O\left(t^{-1}(\log t)^{-\alpha}\right)
$$

References

[1] S. Chen, Asymptotic integration of nonoscillatory second order differential equations, Trans. Amer. Math. Soc. 327 (1991), 853-866. MR 92a:34057
[2] N. Chernyavskaya and L. Shuster, Necessary and sufficient conditions for the solvability of a problem of Hartman and Wintner, Proc. Amer. Math. Soc. 125 (1997), 3213-3228. MR 98f:34045
[3] N. Chernyavskaya, On a problem of Hartman and Wintner, Proc. Roy. Soc. Edinburgh Sect A128 (1998), 1007-1022. MR 99h:34077
[4] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964. MR 30:1270
[5] J. Šimša, Asymptotic integration of a second order ordinary differential equation, Proc. Amer. Math. Soc. 101 (1987), 96-100. MR 89b:34129
[6] W. F. Trench, Linear perturbations of a nonoscillatory second order equation, Proc. Amer. Math. Soc. 97 (1986), 423-428. MR 87g:34036

95 Pine Lane, Woodland Park, Colorado 80863
E-mail address: wtrench@trinity.edu

[^0]: Received by the editors July 10, 2001 and, in revised form, December 6, 2001.
 2000 Mathematics Subject Classification. Primary 34A30.
 Key words and phrases. Asymptotic, nonoscillatory, principal, nonprincipal.

