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Abstract. Let y1 and y2 be principal and nonprincipal solutions of the non-
oscillatory differential equation (r(t)y′)′ + f(t)y = 0. In an earlier paper
we showed that if

∫∞(f − g)y1y2 dt converges (perhaps conditionally), and a
related improper integral converges absolutely and sufficently rapidly, then the
differential equation (r(t)x′)′ + g(t)x = 0 has solutions x1 and x2 that behave
asymptotically like y1 and y2. Here we consider the case where

∫∞(f−g)y2
2 dt

converges (perhaps conditionally) without any additional assumption requiring
absolute convergence.

1. Introduction

We consider the differential equation

(r(t)x′)′ + g(t)x = 0(1)

as a perturbation of

(r(t)y′)′ + f(t)y = 0,(2)

under the following standing assumption.

Assumption A. Let r and f be real-valued and continuous, with r > 0, on [a,∞).
Suppose that (2) is nonoscillatory at infinity. Let g be continuous and possibly
complex-valued on [a,∞).

It is known [4, p. 355] that since (2) is nonoscillatory at infinity, it has solutions
y1 and y2 which are positive on [b,∞) for some b ≥ a and satisfy the following
conditions:

r(y1y
′
2 − y′1y2) = 1, t ≥ a,(3)

lim
t→∞

y2(t)
y1(t)

=∞.(4)

Without loss of generality we let b = a. Henceforth t ≥ a. It is convenient to
define

ρ = y2/y1.(5)
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From (3) and (4),

ρ′ = 1/ry2
1 > 0 and lim

t→∞
ρ(t) =∞.(6)

We use the Landau symbols “o” and “O” in the standard way to denote behavior
as t→∞. In [6] we proved the following theorem.

Theorem 1. Suppose that
∫∞(f −g)y1y2 dt converges (perhaps conditionally) and

sup
τ≥t

∣∣∣∣∫ ∞
τ

(f − g)y1y2 ds

∣∣∣∣ ≤ φ(t),(7)

where φ(t)→ 0 monotonically as t→∞. Define

G(t) =
∫ ∞
t

(f − g)y2
1 ds,(8)

and suppose that ∫ ∞
|G|φρ′ dt <∞

and

lim sup
t→∞

(φ(t))−1

∫ ∞
t

|G|φρ′ ds = A < 1/3.(9)

Then (1) has a solution x1 such that

x1 = y1(1 +O(φ))

and

(x1/y1)′ = O(φρ′/ρ),

and a solution x2 such that

x2 = y2(1 +O(φm))

and

(x2/y2)′ = O(φmρ′/ρ),

where

φm = max{φ, φ̂}
with

φ̂(t) =
1
ρ(t)

∫ t

a

ρ′φds.

This result was an improvement on a theorem of Hartman and Wintner [4,
p. 379], and it was subsequently improved by Chen [1] and Šimša [5]. (For more
on the Hartman-Wintner problem, see [2] and [3].) In this continuation of [6]
we consider the case where

∫∞(f − g)y2
2 dt converges, perhaps conditionally. To

motivate the present work, we first apply Theorem 1 under this assumption.
Let

H(t) =
∫ ∞
t

(f − g)y1y2 ds,(10)

and recall from (7) that

sup
τ≥t
{|H(τ)|} ≤ φ(t).
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Let

I(t) =
∫ ∞
t

(f − g)y2
2 ds,(11)

and suppose that

sup
τ≥t
{|I(τ)|} ≤ σ(t),(12)

where σ(t)→ 0 monotonically as t→∞. From (8), (10), and (11),

H(t) = −
∫ ∞
t

I ′

ρ
ds =

I(t)
ρ(t)

+
∫ ∞
t

I

(
1
ρ

)′
ds(13)

and

G(t) = −
∫ ∞
t

I ′

ρ2
ds =

I(t)
ρ2(t)

+
∫ ∞
t

I

(
1
ρ2

)′
ds,

so

|H(t)| ≤ 2σ(t)/ρ(t) and |G(t)| ≤ 2σ(t)/ρ2(t).(14)

It is straightforward to verify that (9) holds with φ = σ/ρ and A = 0. Therefore
Theorem 1 implies that (1) has solutions x1 and x2 such that

x1 = y1(1 +O(σ/ρ)),(15)

(x1/y1)′ = O(σρ′/ρ2),(16)

x2 = y2(1 +O(φ̂)),(17)

and

(x2/y2)′ = O(φ̂ρ′/ρ),(18)

with

φ̂(t) =
1
ρ(t)

∫ t

a

σρ′

ρ
ds.

At best, (17) and (18) imply that

x2 = y2(1 +O(1/ρ))

and

(x2/y2)′ = O(ρ′/ρ2)

if
∫∞
a
σρ′/ρ ds < ∞, which may be false. Among other things, we will show that

(17) and (18) can be replaced by

x2 = y2(1 +O(σ/ρ))(19)

and

(x2/y2)′ = O(σρ′/ρ2).(20)

These two equations are improvements over (17) and (18), since limt→∞ ρ(t)φ̂(t)/σ(t)
= ∞ in any case. In fact, it can be seen from (15), (16), (19), and (20) that
(xi/yi)−1, i = 1, 2, approach zero at the same rate as t→∞, as do (xi/yi)′, i = 1,
2. We also note that the results of these four equations can be written as

xi/yi = 1 +O(σy1/y2) and (xi/yi)′ = O(σ/ry2
2), i = 1, 2.
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2. Main results

Theorem 2. Suppose that
∫∞(f − g)y2

2 dt converges. Let I and σ be as in (11)
and (12). Then (1) has a solution x1 that satisfies (15) and (16), and a solution
x2 such that

x2 − y2

y1
= O(σ)(21)

and (
x2 − y2

y1

)′
= O

(
σρ′

ρ

)
.(22)

Proof. We have already proved the assertion concerning x1. For the assertion con-
cerning x2, we use the contraction mapping theorem. If

x2(t) = y2(t) +
∫ ∞
t

(y2(s)y1(t)− y1(s)y2(t))(f(s)− g(s))x2(s) ds,(23)

then x2 satisfies (1). Although this suggests a transformation to work with, it is
better to use a transformation with the fixed point ζ, where

ζ = (x2 − y2)/y1.

Rewriting (23) in terms of ζ yields

ζ(t) =
∫ ∞
t

(y2(s)− y1(s)ρ(t))(f(s) − g(s))y2(s) ds

+
∫ ∞
t

(y2(s)− y1(s)ρ(t))(f(s) − g(s))y1(s)ζ(s) ds.

We use the transformation T z = Q+ Lz, where

Q(t) =
∫ ∞
t

(y2(s)− y1(s)ρ(t))(f(s) − g(s))y2(s) ds

and

(Lz)(t) =
∫ ∞
t

(y2(s)− y1(s)ρ(t))(f(s) − g(s))y1(s)z(s) ds.

From (10), (11), and (13),

Q(t) = I(t)− ρ(t)H(t) = −ρ(t)
∫ ∞
t

I(1/ρ)′ ds,

so |Q(t)| ≤ σ(t), from (12). Moreover,

Q′ = I ′ − ρH ′ −Hρ′ = −Hρ′,
so

|Q′(t)| ≤ 2σ(t)ρ′(t)/ρ(t),

from (14). Therefore we let T act on the Banach space B of functions z on [t0,∞)
such that

z = O(σ) and z′ = O(σρ′/ρ),

with norm

‖z‖ = sup
t≥t0

{
max

{
|z|
σ
,
ρ|z′|
σρ′

}}
.(24)
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We will show that T maps B into B, and is a contraction if t0 is sufficiently large.
Since Q ∈ B, it suffices to show that L is a contraction of B if t0 is sufficiently large.
To this end, suppose z ∈ B and t0 ≤ t < T , and consider the finite integral

wT (t; z) =
∫ T

t

(y2(s)− y1(s)ρ(t))(f(s) − g(s))y1(s)z(s) ds.

From (5) and (8),

wT (t; z) = −
∫ T

t

(ρ(s)− ρ(t))z(s)G′(s) ds

= −(ρ(T )− ρ(t))z(T )G(T )

+
∫ T

t

(ρ(s)− ρ(t))G(s)z′(s) ds

+
∫ T

t

z(s)G(s)ρ′(s) ds.

(25)

From (14) and (24),

|(ρ(T )− ρ(t))z(T )G(T )| < 2‖z‖σ2(T )/ρ(T )→ 0 as T →∞,

|(ρ(s)− ρ(t))G(s)z′(s)| ≤ 2‖z‖σ2(s)ρ′(s)/ρ2(s), s ≥ t,

and

|z(s)G(s)ρ′(s)| ≤ 2‖z‖σ2(s)ρ′(s)/ρ2(s).

Therefore we can let T →∞ in (25) and conclude that

(Lz)(t) = −
∫ ∞
t

(ρ(s)− ρ(t))z(s)G′(s) ds(26)

exists and satisfies the inequality

|(Lz)(t)| < 4‖z‖
∫ ∞
t

σ2ρ′

ρ2
ds < 4‖z‖σ

2(t)
ρ(t)

.(27)

From (26),

(Lz)′(t) = ρ′(t)
∫ ∞
t

zG′ ds = −ρ′(t)
(
z(t)G(t) +

∫ ∞
t

Gz′ ds

)
.

From (14) and (24), the last integral converges absolutely and

|(Lz)′(t)| ≤ 2‖z‖ρ′(t)
(
σ2(t)
ρ2(t)

+
∫ ∞
t

σ2ρ′

ρ3
ds

)
< 4‖z‖σ

2(t)ρ′(t)
ρ2(t)

.

From this and (27),

‖(Lz)‖ < 4‖z‖σ(t)/ρ(t).

Hence L (and consequently T ) is a contraction of B if σ(t0)/ρ(t0) < 1/4. There-
fore there is a (unique) ζ ∈ B such that T ζ = ζ, and the function x2 defined by
x2 = y2 + y1ζ (t ≥ t0) is a solution of (1) that satisfies (21) and (22). We can
extend the definition of x2 back to t = a.

Corollary 1. Under the assumptions of Theorem 2, x2 satisfies (19) and (20).
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Proof. Since y2/y1 = ρ, (21) implies that y2 satisfies (19) and

x2/y1 = ρ+O(σ).

From (22),

(x2/y1)′ = ρ′ (1 +O (σ/ρ)) .

Therefore (
x2

y2

)′
=

(
x2

y1ρ

)′
=
(
x2

y1

)′ 1
ρ
− x2

y1

ρ′

ρ2

=
ρ′

ρ
(1 +O(σ/ρ)) − ρ′

ρ2
(ρ+O(σ)) = O

(
σρ′

ρ2

)
.

It is natural to ask whether the convergence of
∫∞(f − g)y2

2 dt is necessary for
the existence of a solution x2 of (1) such that

x2 = y2(1 + o(1/ρ)) and (x2/y2)′ = o(ρ′/ρ2).

Although we do not know the answer to this question, we offer the following related
theorem.

Theorem 3. If (1) has a solution x2 that satisfies (19) and (20) for some positive
monotonic function σ such that limt→∞ σ(t) = 0, then∫ ∞

t

(f − g)y1y2 dt = O(σ/ρ).(28)

Moreover, if ∫ ∞ σρ′

ρ
dt <∞,(29)

then
∫∞(f − g)y2

2 dt converges.

Proof. From (20), R(t) =
∫∞
t (x2/y2)′ dt converges absolutely and

R = O(σ/ρ).(30)

If t > T , define

RT (t) =
∫ T

t

(
x2

y2

)′
ds.

From (5) and (6), (
x2

y2

)′
=
y2x
′
2 − x2y

′
2

y2
2

= u
ρ′

ρ2
,(31)

where

u = r(y2x
′
2 − x2y

′
2).

From (1) and (2),

u′ = (f − g)y2x2.

Therefore

RT (t) =
u(t)
ρ(t)

− u(T )
ρ(T )

+
∫ T

t

(f − g)y1x2 ds.
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From (20) and (31), u = o(σ), so we can let T → ∞ and invoke (30) to conclude
that

R̂(t) df=
∫ ∞
t

(f − g)y1x2 ds = O(σ/ρ).(32)

Now let

ST (t) =
∫ T

t

(f − g)y1y2 ds = −
∫ T

t

y2

x2
R̂′ ds

=
y2(t)
x2(t)

R̂(t)− y2(T )
x2(T )

R̂(T ) +
∫ T

t

R̂

(
y2

x2

)′
ds.

(33)

But (
y2

x2

)′
= − y

2
2

x2
2

(
x2

y2

)′
= O

(
σρ′

ρ2

)
from (19) and (20). From this and (32), we can let T →∞ in (33) to conclude that

S(t) df=
∫ ∞
t

(f − g)y1y2 = O(σ/ρ).(34)

This verifies (28). If (29) holds and T > a, then∫ T

a

(f − g)y2
2 dt = −

∫ T

a

ρS′ dt = ρ(a)S(a)− ρ(T )S(T ) +
∫ T

a

Sρ′ dt.(35)

Since (34) implies that limT→∞ ρ(T )S(T ) = 0 and (29) and (34) together imply
that

∫∞
Sρ′ dt converges, (35) implies that

∫∞(f − g)y2
2 dt converges.

3. Examples

Examples illustrating our results can be constructed by letting

g(t) = f(t) +
u(t)S(t)
y2

2(t)
, t ≥ a,

where u and S are continuously differentiable and S has a bounded antiderivative
C on [a,∞), while limt→∞ u(t) = 0 and

∫∞ |u′(t)| dt <∞. Then∫ ∞
t

(f(s)− g(s))y2
2(s) ds = −

∫ ∞
t

u(s)S(s) ds = −u(s)C(s)
∣∣∣∣∞
t

+
∫ ∞
t

u′(s)C(s) ds

converges, and the convergence may be conditional. Here we may take

σ(t) = M sup
τ≥t

(
|u(τ)|+

∫ ∞
τ

|u′(s)| ds
)
,

where M is an upper bound for C on [a,∞).
For a specific example, consider the equation

x′′ +
sin t

t2(log t)α
x = 0, t ≥ a > 0 (α > 0),(36)

as a perturbation of y′′ = 0. Our results imply that (36) has solutions x1 and x2

such that

x1(t) = 1 +O
(
t−1(log t)−α

)
, x′1(t) = O

(
t−2(log t)−α

)
and

x2(t) = t+O((log t)−α), x′2(t) = 1 +O(t−1(log t)−α).
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[5] J. Šimša, Asymptotic integration of a second order ordinary differential equation, Proc. Amer.
Math. Soc. 101 (1987), 96-100. MR 89b:34129

[6] W. F. Trench, Linear perturbations of a nonoscillatory second order equation, Proc. Amer.
Math. Soc. 97 (1986), 423-428. MR 87g:34036

95 Pine Lane, Woodland Park, Colorado 80863

E-mail address: wtrench@trinity.edu

http://www.ams.org/mathscinet-getitem?mr=92a:34057
http://www.ams.org/mathscinet-getitem?mr=98f:34045
http://www.ams.org/mathscinet-getitem?mr=99h:34077
http://www.ams.org/mathscinet-getitem?mr=30:1270
http://www.ams.org/mathscinet-getitem?mr=89b:34129
http://www.ams.org/mathscinet-getitem?mr=87g:34036

	1. Introduction
	2. Main results
	3. Examples
	References

