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ABSTRACT. Let y1 and y2 be principal and nonprincipal solutions of the non-
oscillatory differential equation (r(t)y’)’ + f(t)y = 0. In an earlier paper
we showed that if [*°(f — g)y1y2 dt converges (perhaps conditionally), and a
related improper integral converges absolutely and sufficently rapidly, then the
differential equation (r(t)z’)’ + g(¢)z = 0 has solutions z; and x2 that behave
asymptotically like y1 and y2. Here we consider the case where [°(f — 9)y3 dt
converges (perhaps conditionally) without any additional assumption requiring
absolute convergence.

1. INTRODUCTION

We consider the differential equation

(1) (r()a’) + g(t) = 0
as a perturbation of
(2) (r@®)y') + f(t)y =0,

under the following standing assumption.

Assumption A. Letr and f be real-valued and continuous, with r > 0, on [a, 00).
Suppose that (2) is nonoscillatory at infinity. Let g be continuous and possibly
complez-valued on [a, 00).

It is known [4], p. 355] that since (2)) is nonoscillatory at infinity, it has solutions
y1 and yo which are positive on [b,00) for some b > a and satisfy the following
conditions:

(3) r(yiys —Yiy2) =1, t>a,

t

(4) lim y2(t)

t—o00 Y1 (t)

Without loss of generality we let b = a. Henceforth ¢ > a. It is convenient to
define

(5) p=y2/y1.
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From (B) and (@),
(6) o =1/ry? >0 and tlim p(t) = oo.

We use the Landau symbols “0” and “O” in the standard way to denote behavior
as t — oo. In [6] we proved the following theorem.

Theorem 1. Suppose that [~ (f —g)y1y2 dt converges (perhaps conditionally) and

/ (= i ds| < (),

where ¢(t) — 0 monotonically as t — co. Define

(®) alt) = / T - gyds,

and suppose that

(7) sup

T>1

/ |G|pp dt < oo
and

(9) lim sup(¢(t))~* /too |Glpp'ds = A < 1/3.

t—o0

Then () has a solution x; such that
r1 =y1(1+ 0(9))

and

(x1/y1)" = O(ép'/p),

and a solution xo such that

2 = ya(1 + O(dm))

and
(z2/y2)" = O(¢mp'/p),
where
bm = max{e, o}
with

. 1 L
i) == [ oas

This result was an improvement on a theorem of Hartman and Wintner [4]
p. 379], and it was subsequently improved by Chen [I] and Simsa [5]. (For more
on the Hartman-Wintner problem, see [2] and [3].) In this continuation of [6]
we consider the case where [ o (f — g)y3 dt converges, perhaps conditionally. To
motivate the present work, we first apply Theorem [[lunder this assumption.

Let

(10) 1) = [ (¢ - s
and recall from () that
sup{|H(7)[} < ¢(t).

T>t
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Let
(1) 0= [ (r-ais
and suppose that
(12) STI;IZ{U(T)H < o(t),
where o(t) — 0 monotonically as ¢ — co. From (B)), (I0), and (I,
Y I O (GRS SR N
(13) Hi) = /t PR +/t ! <p> !
and
S R U EU
“= /t R0 +/t I(p2> o
(14) [H(t)| < 20(t)/p(t) and |G(t)] < 20(8)/p(2).

It is straightforward to verify that (@) holds with ¢ = o/p and A = 0. Therefore
Theorem [[] implies that () has solutions x; and xs such that

(15) z1=y1(1+O(c/p)),
(16) (r1/32) = Olop /),
(17) 22 = ya2(1+ 0(9)),
and
(18) (w2/y2)' = O(p'/p),
with
o L[
o) = p(t) / P

At best, (7)) and (I8) imply that
22 = y2(1+ O(1/p))
and
(22/y2)" = O(¢/p)

if faoo op'/pds < oo, which may be false. Among other things, we will show that
([7) and ([d8) can be replaced by

(19) z3 = y2(1+ O(a/p))
and
(20) (z2/y2)' = O(ap'/p?).

These two equations are improvements over (7)) and (IX), since limy_.oo p(t)(t)/o(t)
= oo in any case. In fact, it can be seen from (1H), ([I€), (@9), and Q) that
(zi/yi)— 1,1 =1, 2, approach zero at the same rate as t — oo, as do (z;/y;)’, i = 1,
2. We also note that the results of these four equations can be written as

zi/yi =14 O(oy/y2) and  (x;/y;)' = O(o/ry3), i=1,2.



1418 WILLIAM F. TRENCH

2. MAIN RESULTS

Theorem 2. Suppose that foo(f — g)y3dt converges. Let I and o be as in (1)
and (I@). Then ) has a solution x1 that satisfies (IA) and (IA), and a solution

To such that

(21) T2 Y2 _ O(0)
Y1

and

(52) =0 (F)

Proof. We have already proved the assertion concerning z;. For the assertion con-
cerning xo, we use the contraction mapping theorem. If

(23)  z2(t) = 32() + /too(yz(S)yl(t) = yu(8)y2(1))(f(s) — g(5))z2(s) ds,

then x4 satisfies (). Although this suggests a transformation to work with, it is
better to use a transformation with the fixed point ¢, where

(= (z2 —y2)/y1-
Rewriting (23) in terms of ¢ yields

= " (als) — 1 ()pO)(F(5) — 9(3))wa(s) d
+ " () = (Do) (F(5) — 9(5))y ()C(s) ds.

We use the transformation 7z = Q + Lz, where

Q) = [ (0n(6) = n(O)TE) ~ gle)a(o) ds
and
€20 = [ () = (OIS - aDn (95 .
From (I, (1), and (3),
Q) = 10 = pOH() = ot0) [ 10/p) ds.
50 [Q()] < o(t), from (). Moreover,
Q =I—-pH —Hp = —-H/p,

SO

Q') < 20()p'(1)/p(1),
from (I4). Therefore we let 7 act on the Banach space B of functions z on [tg, c0)
such that

z=0(c) and 2z =O0(cp'/p),

with norm

!
(24) ol = sup {max {121 2L
t>to g op
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We will show that 7 maps B into B, and is a contraction if ¢g is sufficiently large.

Since @ € B, it suffices to show that £ is a contraction of B if ¢ is sufficiently large.
To this end, suppose z € B and tyg <t < T, and consider the finite integral

T
wr(t; 2) :/lt (y2(s) — y1(s)p(0))(f(s) — 9(5))y1(s)2(s) ds.
From (B) and (&),
T

wrtis) = = [ o(s) = p(t)=(:)G'(s) ds
= —{p(T) — p)=TIG)

(%) = [ (000) = )G9 5) s
- " (5)G()0 (5)d.
From (T2) and (Z),
(6(T) = plt) 2(T)G(T)| < 20|20*(T)/p(T) — 0 as T — o,
(6(5) = P)G(5)(5)] < 2= ()/P(s), 528,
and

|2(s)G(5)p' (s)] < 2[2llo(s)p' (5)/p*(5)-

Therefore we can let T — oo in (28) and conclude that

(26) (L2)(t) = - /tOO(P(S) = p(t)z(s)G'(s) ds
exists and satisfies the inequality

e U2p/ Uz(t)
(27) [(L2)(#)] < 4”2”/15 = ds < 4|z OR
From (26,

(L2)'(t) = p'(t) /OO 2G' ds = —p/(t) (z(t)G(t) + /too G2 ds) .

t

From (I4) and (24)), the last integral converges absolutely and

o? g2y a?(t)p’
(£2)(8)] < 2012010/ (8) (pfg [ = dS) < 4“”%'

From this and @7),

I(£2)]| < 4l[zllo(2)/ p()-

Hence £ (and consequently 7) is a contraction of B if o(to)/p(to) < 1/4. There-
fore there is a (unique) ¢ € B such that 7¢ = (, and the function zo defined by
22 = Y2 + 11 (t > to) is a solution of () that satisfies ZI) and (22). We can
extend the definition of x5 back to t = a. O

Corollary 1. Under the assumptions of Theorem[d, x5 satisfies (L9 and (20).
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Proof. Since ya2/y1 = p, (ZI)) implies that yo satisfies (I9) and
z2/y1 = p+ O(0).
From (22)),
(z2/y1) = p' (1+0(a/p)).

1 / / /
(ﬂ) _ ﬂ) _<ﬂ) 1 myp
Yo y1p vi) p o p?
/ pl

= a+owm»—2@+OWD—0(%U-

Therefore

7 N

NS
>

O

It is natural to ask whether the convergence of [ “(f — g)y3 dt is necessary for
the existence of a solution x5 of () such that

w2 =ya(1+0(1/p)) and  (22/y2) = o(p'/p?).
Although we do not know the answer to this question, we offer the following related
theorem.

Theorem 3. If () has a solution zo that satisfies (I9) and (20) for some positive
monotonic function o such that lim;_,o, o(t) =0, then

(28) | = gmmdt =0 /p).
Moreover, if
(29) /00 %pl dt < o0,

then [*°(f — g)y3 dt converges.
Proof. From (0), R(t) = [ (x2/y2)’ dt converges absolutely and

(30) R=0(c/p).
If t > T, define
T /
RT(t) :/ <@> ds.
t Y2
From (B) and (@),
! ’ / /
(31) <@> _ T oap _ F
Y2 Y2 P
where
u = r(y2y — T2Y3).
From (I) and @),
u' = (f — g)yawa.
Therefore
u(t)  uw(T) /T
Rr(t) = —+% — —= + f—9)y1zads.
=50 e T, Ve
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From 20) and @), v = o(0), so we can let T' — oo and invoke (B0) to conclude
that

(32) .Mwﬁlmu—gMWﬂm—owm»
Now let
T T
Sr(t) = / (f—g)ylygds:—/ ?;—QR’ds
v ——éwéw—MHMnlf%%%)@
0) zo(T') t T '
But

[V

/ 2 / /
<%>__2(ﬂ>_0<@>
3 5 \ Y2 p?
from (I9) and 20). From this and ([B2), we can let T'— oo in ([B3)) to conclude that

(34) ﬂﬂglwﬁ—mmm—0®M)

This verifies (B8). If (9) holds and T > a, then

T T T
(35) /‘u—gm&%=—/nn?wzpmwm>—mean+/'sﬁm.

Since ([B4)) implies that limp_o p(T)S(T) = 0 and (B9) and (B4) together imply
that [°° Sp’dt converges, ([B5) implies that [~ (f — g)y2 dt converges. O

3. EXAMPLES

Examples illustrating our results can be constructed by letting

PTG
o) = J0)+ T 1z

where v and S are continuously differentiable and S has a bounded antiderivative
C on [a,00), while lim¢ o u(t) = 0 and [~ |u/(¢)| dt < co. Then

|6 = geDuis) ds = - [ u(e)S(s)ds = ~u(s)C(s)| + [ w51 ds
t t t
converges, and the convergence may be conditional. Here we may take
o(t) = M sup <|u(7')| —|—/ [u(s)] ds> ,
T>t T

where M is an upper bound for C on [a, ).
For a specific example, consider the equation

oo

t

[e )

sint
ot = t>
t%logt)“x 0, t>a>0 (a>0),

as a perturbation of y” = 0. Our results imply that (36) has solutions z; and
such that

(36) 2 +

z1(t) =140 (t ' (logt)™®), 2i(t) =0 (t *(logt)™*)
and

z2(t) =t +O((logt)™®), zh(t) =1+ 0@t *(logt)™®).
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